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Abstract. For given graphs G and H, the Ramsey number R(G, H)
is the least natural number n such that for every graph F of order
n the following condition holds: either F contains G or the com-
plement of F' contains H. In this paper, we improve the Surahmat
and Tomescu’s result [9] on the Ramsey number of paths versus Ja-
hangirs. We also determine the Ramscy number R(UG, H), where
G is a path and H is a Jahangir graph.
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1 Introduction

The study of Ramsey Numbers for (general) graphs have received tremendous
efforts in the last two decades, see few related papers [1-4, 6, 8] and a nice survey
paper [7]. One of useful results on this is the establishment of a general lower
bound by Chvital and Harary (5], namely R(G, H) > (x(G) — 1)(c¢(H) — 1) + 1,
where x(G) is the chromatic number of G and ¢(H) is the number of vertices in
the largest component of H.

Let G(V, E) be a graph with the vertex-set V(G) and cdge-set E(G). If (z,y) €
E(G) then z is called adjacent to y, and y is a neighbor of z and vice versa. For
any A C V(G), we use Na(z) to denote the set of all neighbors of x in A, namely
Na(z) = {y € Al(z,y) € E(G)}. Let P, bc a path with n vertices, C» be a cycle
with n vertices, and Wy, be a wheel of m + 1 vertices, i.c., a graph consisting of
a cycle Crm with one additional vertex adjacent to all vertices of Cr. For m > 2,
the Jahangir graph Jam is a graph consisting of a cycle Camm with one additional
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vertex adjacent alternatively to m vertices of Com. For example, Figure 1! shows
a Jahangir graph Jie.

Fig. 1. Jahangir Ji

Recently, Surahmat and Tomescu [9] studied the Ramsey number of a combina-
tion of P, versus a J2m, and obtained the following result.

Theorem A. (Surahmat and Tomescu [9])
6 if (n,m) = (4,2),
R(Pn,Jom)=<¢ n+1 ifm=2andn>5,
n+m-1 ifm>3andn> (dm-1)(m-1)+1.

In this paper, we determine the Ramsey numbers involving paths and Jahangir
graphs. For particular, we improve the Surahmat and Tomescu’s result for Ja-
hangir graphs Jg, Jg and Jig as follows.

Theorem 1. R(P.,Jam)=n+m—1forn>2m+1 andm=3,4 or5.

We are also able to determine the Ramnsey number R(kP,, Jom), for any integer
k > 2, m > 2. These results are stated in the following theorems.

Theorem 2. R(kPn,Js) =kn+ 1, forn >4, k > 1, except for (n =4,k = 1).

Theorem 3. R(kPn,Jam) = kn+m — 1, for any integer n > 2m+1 if m = 3,4
or5; and forn > (dm — 1)(m - 1) + 1 if m > 6, where k > 2.

! The figure Ji¢ appears on Jahangir’s tomb in his mausoleum, it lies in § km
north-west of Lahore, Pakistan across the River Ravi. His tomb was built by his
Queen Noor Jehan and his son Shah-Jehan (This was emperor who constructed
one of the wonder of world Taj Mahal in India) around 1637 A.D. It has a
majestic structure made of red sand-stonc and marble.
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2 The Proof of Theorems

The proof of Theorem 1.

Consider graph G & K;—1 U Ky—;. Clearly, G contains no P, and G contains
10 Jom. Thus, R(Pn,Jom) > n+m— 1. Form=3,40r 5and n > 2m + 1, we
will show that R(P,,Jam) < n+m — L. Let F be a graph of n + m — 1 vertices
containing no P,. Take any longest path L in F. Let L be (x1,%2,-- ,zx), and
Y = V(F)\V(L). Since k < n — 1, then |Y| > m. Obviously, yz1,yzx are not in
E(F), for any y € Y. Now, consider the following two cases

Casel.2m < |L|<n-1.

Let |[L| = t and A = {z2,23,--- ,T2m-1} be the set of first 2m — 2 vertices
of L after x1. Take the set of any m distinct vertices of Y and denote it by
B ={v1, - ,ym}. By the maximality of L, every vertex of B has at most m — 1

neighbors in A. If there are two vertices of B having m — 1 neighbors in A then
all the neighbors arc intersected.

Subcase 1.1 There exists b € B, |[Na(b)] =m - 1.

Let Ay = A\Na(b) and take any vertex v1 of A1 whose the highest degree at B.
Define Dy = {z1,z:,b} U A1\{w1}, and D2 = {v,} U B\{b}. By the maximality
of L, dp,(w) < 1 for any vertex w of D2. In particular, dp, (v1) = 0. Since v,
has the highest degree then there arc at most m — 2 edges connecting vertices
between D; and D in F. This implies that D; U D, will induces a Ja, in F.

Subcase 1.2 All vertices b € B, [Na(b)] < m - 2.

If m = 3 then let D; = {any two vertices of A}. If m = 4 then by the Pigeon
Hole principle there exists two vertices of A has neighbors at most 1 in B. In this
case let D1 = {three vertices of A with two of degree at most one }. f m = 5
then by the Pigeon Hole principle there exists three vertices of A has neighbors
at most 2 in B. In this case let D1 = {four vertices of A with three of degree at
most two}. Therefore, {z1,2:} U D; U B will induce a Jo,, in F.

Case 2. 1< |L|<2m - 1.
We breakdown the proof into several subcases.

Subcase 2.1. 1 < |L| < 3 _
In this case, the component of F is cither K3, P, Cs or a star. Therefore, F
contains a Jom, for m = 3,4 or 5.

Subcase 2.2. 4 < |L|<m+ 1.

Let L be (x1,22,- - ,z¢), where t <m+ 1, and so |Y| = |[V(F)\V(L)] > 2m— 1.
Now, consider the set Ny (z2) of vertices in Y adjacent to z2. Note that any
vertex of Ny (z2) is nonadjacent to any other vertices of Y. If [Ny (z2)| > m — 2
then form two scts Dy and D. as follows. The set D; consists of x1,2: and
any m — 2 vertices of Ny (z2). The set D2 consists of the other vertices of YV
not sclected in D). Thus, |D;| = m and |D2| = m + 1. By the maximality of
L, there is no edge connecting any vertex of D, to any vertex of Dz. Thus,
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the set D1 U D induces Kmm41 2 Jom in F. If |[Ny(z2)] = m — 3 then take
D1 = {z1,21,z2} U Ny (22), and D2 as the set of the remaining vertices of Y.
Then, D1 U D; again contains Km,m+1 2 Jom in F. Now, if [Ny (z2)] = m — 4
(for m = 4 or 5) then in showing F 2 Jom take Dy = {:z:l,a:g,:zzg,:ct 1}U Ny (z2),
and D2 as the set of the remaining vertices of Y not adjacent to z:—;. This is
true since |Ny (z:-1)| < 1 (by symmetrical argument). If [Ny (z2)| = m — 5 (for
m = § only), then D = {x1,x2,2:—1,2¢,b} where b is a vertex at distance two
from z3 or b is any vertex of Y with a smallest degree, and D, as the set of the
remaining vertices of Y. Thus, D; U D, will induce Jyo in F.

Subcase 2.3. |L| =m + 2.

Let L be (z1,z2,--- ,2:) where t = m + 2, then |Y| = |V(F)\V(L)| > 2m - 2.
Now, consider the set Ny (z2) of vertices in Y adjacent to z2. Note that any
vertex of Ny (x2) is nonadjacent to any other vertices of Y. If |Ny (z2)| > m — 2
then form two sets D) and D; as follows. If z3 is nonadjacent to T4z then
D, = {z1,Zm42} U {any m — 2 vertices of Ny(z2)} and D; consists of 3 to-
gether with the remaining vertices of Y. Otherwise (if z3 ~ Zm42), take Dy =
{z1,Zm4+2,z4} U {any m — 2 vertices of Ny(z2)} and D, consists of any m re-
maining vertices of Y. By the maximality of L, there is no edge connecting any
vertex of D) to any vertex of Da. Thus, the set Dy U D induces K m+1 2 Jom
in F.

If [Ny (z2)| = m — 3 then take D1 = {z1,5:,22} U Ny(z2), and D; as the set
of the remaining vertices of Y. Then, D; U D2 again contains K, il 2 Jam in
F. Now, if |[Ny(z2)] = m — 4 (for m = 4 or 5) then in showing F D Jom take
D, = {El,mt,$2,$t 1} U Ny (x2), and D, as the set of the remaining vertices
of Y not adjacent to x:—;. This is true since |Ny (z¢-1)| < 1 (by symmetrical
argument). If [Ny (z2)| = m — 5 (for m = 5 only), then Dy = {z1, T2, T¢-1, z¢,b}
where b is a vertex at distance two from z3 or b is any vertex of Y with a smallest.
dcgree, and D; as the set of the remaining vertices of Y. Thus, D; U D, will
induce Jyo in F.

Subcase 2.4. |[L| =m + 3 (or 2m — 1,2m — 2 if m = 4,5 respectively).

Let L be (z1,z2, - ,2¢) where t = m + 3, then |Y| = |[V(F)\V(L)| > 2m - 3.
Now, consider the set Ny (z2) of vertices in Y adjacent to z2. Note that any
vertex of Ny (z2) is nonadjacent to any other vertices of Y. If |[Ny (z2)| > m -1
then form two scts Dy and D as follows. If z;—; is adjacent to some vertex of
Ny (z2) then by the maximality of L, z:—2 is nonadjacent to z; and any vertex
of Ny(z2). In this case set b = x:—2. If z,—1 is nonadjacent to any vertex of
Ny (z2), then take b = z(-1 provided x:—1 7 z1. Otherwise (if z:—1 ~ z1), by
the maximality of L we have that z._» is nonadjacent to z; and to any vertex of
Ny (z2). In this case, again take b = z,—2. Now, define D; = {z;} U {any m - 1
vertices of Ny (x2)} and Dy .= {z3,z:,b}U { any m — 2 other vertices of Y'}. By
the maximality of L, there is no edge connecting any vertex of D; to any vertex
of Ds. Thus, the set D; U D, induces Kmm+1 D Jam in F.
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If [Ny (z2)| = m — 2 then take D; = {z1,Z2}UNy (z2), and D2 = {z3,z:}U{ any
m — 1 other vertices of Y. Then, D1 U D2 contains K, m41 minus at most two
cdges (z2,z3) and (z2,z:) in F. Therefore, F D Jom. Now, if [Ny (z2)] = m — 3
then in showing F D Jom take Dy = {1,%2,2:} U Ny (22), and Dy = {z3} U {
any m other vertices of Y. This is true since Dy U D2 contains Km,m+1 mi-
nus at most two cdges (z2,z3) and (z2,z:) in F. If |Ny(z2)| = m — 4, then
Dy = {z1,Z2,24-1,%: } U Ny (z2) U Ny (z:-1) and D2 as the sct of the remaining
vertices of Y. Thus, D1 U D, will induce K m+1 in F. If [Ny (z2)| = m — 5 (only
for m = 5), then D, = {x1,z2,z¢-1, 2¢, b}, where b is either z3, a ncighbor of z3
in Y or a vertex of Y at distance two from x3 and D- as the set of the remain-
ing vertices of Y. Thus, D;UD; will induce K 41 minus at most onc edge in F.

Subcase 2.5. |L| =m+4 = 2m — 1 (only for m = 5).

Let L be (x1,22, -+ ,2¢) where t = 2m — 1, then |Y| = [V(F\V(L)| > 2m - 4.
Now, cousider the set Ny (x2) of vertices in Y adjacent to z2. Note that any
vertex of Ny (x2) is nonadjacent to any other vertices of Y. If | Ny (z2)] > m — 2
then form two sets D; and D, as follows. By the maximality of L, one element
in cach pair {z4,25} and {ze,z7} is nonadjacent to all vertices of Ny (z2). Call
these two vertices by b and ¢. Therefore, there are at most four edges connecting
from {x1,z:} to {z3,b,c} in F. Now, define Dy = {z1,3:} U {any m — 2 vertices
of Ny (z2)} and D; = {x3,b,c}u {any m — 2 other vertices of Y'}. Thus, the set
D, U D, induces Ks ¢ minus four edges in F, and so F D Jio.

If [Ny(z2)] = m ~ 3 then By the maximality of L, one vertex in {z4,zs} is
nonadjacent to all vertices of Ny (zz2). Call this vertex by b. Therefore, there
arc at most four edges connecting from {z,z2,2.} to {xs,b} in F. Now, take
Dy = {z3,z2,%:} U Ny (z2), and D2 = {z3,b} U {any m — 1 other vertices of Y}.
Then, D, U D2 contains K5 minus at most four cdges in F. Therefore, F 2 Jio.

if [Ny (z2)| = m — 4 then take Dy = {z1,%2,Zt—-1,%:} U Ny (x2) U Ny (z:-1), and
D> = {z3}U{all the remaining vertices of Y'}. Then, Dy UD; contains Ks,s minus
possibly two edges (z3,2:—1) and (z3,2¢) in F. Thercfore, F' D Jig.

if [Ny (x2)| = m — 5 then take Dy = {z1,%2,b,z.—1,x:} where b is cither z3 or
x4 whose the smallest number of neighbors - in Y,and D; =Y. Then, D, U D,
contains K56 minus at most. three edges in F. Thercefore, F O Jyo. o

The proof of Theorem 2.

For n = 4 and k = 2, consider graph G = K; U K7. Clearly G contains no 2P,
and G contains no Js. Hence R(2P;, Js) > 9. To prove the upper bound, consider
now graph F' of order 9 containing no 2P;. Take a longest path in F and call it L.
Let L be x1,x2, -+ ,x. Clearly, k < 7, since F 2 2P4. If A= V(F)\V(L), then
|A| 2 2. Any vertex of A is nonadjacent to z1 and zx. Thus, the number vertices
in A must be cxactly 2 and so k = 7, since otherwisc A together with {z1,zc}
will form a Ka,3 = Js in F. Let A = {y, z}, and consider the following two cases:
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Case 1. Vertices y and z has a common neighbor in L.

Let z; be the common neighbor of y and z in L, for some i € {2,3,---,6}. Then,
Y, 2 are nonadjacent to zi-1 and ziy1, since otherwise the maximality of L will
suffer. At least one of the last two vertices must differ with x; and z7, call it w.
So, we have a Jy in F formed by {z1,27,y, z,w}.

Case 2. Vertices y and 2z has no common neighbor in L.

If there exists a vertex x;, 2 < ¢ < 6, is nonadjacent to y and z, then {z;, z1,27,y, 2}
forms a Js in F. Thus, every x; is adjacent to at least one of {y, z}. Now, since y
and 2z has no common neighbor in L, without loss of generality we can assume that
2oy € E(F), and so 222 ¢ E(F),xay ¢ E(F),z3z € E(F),x42 ¢ E(F),z4y €
E(F),zsy ¢ E(F)and x5z € E(F). Therefore, the path 1, z2, y, 4, x3, 2, 5, T6, T7
is Hamiltonian, which contradicts the maximality of path L in F.

Now, let n > 5. Consider graph G = K) U Kin—1. Clearly G contains no kP,
and G contains no J;. Hence R(kP.,J4) > kn — 1+ 1+ 1 = kn + 1. For the
upper bound, let F be a graph of order kn + 1 such that F does not contain J,.
By induction on k, we will show that F' contains kP,. By Theorem A gives a
verification of the result for kK = 1. Assume the theorem is true for any s < k— 1,
namely R(sP,,Js) = sn + 1, for n > 5. Now consider graph F of kn + 1 vertices
such that ¥ 2 Js. By the induction hypothesis, F will contain (k — 1)P,. Let
Y = V(F)\V((k—-1)P). Then, |Y| = n+1 = R(Py, Ju) and hence F[Y] contains
a P,. This implies that F' contains kFP;. (n]

The proof of Theorem 3.

Since graph G = Km-1 U Kgy-1 contains no kP, and G contains no Jm, then
R(kPn,J2m) > kn + m — 1. For proving the upper bound, let F be a graph of
order kn+m — 1 such that F contains no a Js. We will show that F contains kP,,.
We use an induction on k. For k£ = 1 it is truc from Theorem A. Now, let assume
that the theorem is true for all s < k— 1. Take any graph F of kn+ m — 1 vertices
such that its complement contains no Jem. By the hypothesis, F' must contain
(k — 1) disjoint copies of P,. Remove these copies from F, then the remaining
vertices will induce another P, in F since ¥ 2 Jom. Therefore F D kP,. The
proof is complete. (m]
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