On the Ramsey numbers for a combination of paths and Jahangirs Kashif Ali¹, Edy Tri Baskoro² School of Mathematical Sciences, Government College University, 68-B,New Muslim Town, Lahore Pakistan akashif@sms.edu.pk ² Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jalan Genesa 10 Bandung 40132, Indonesia, cbaskoro@math.itb.ac.id Abstract. For given graphs G and H, the Ramsey number R(G, H) is the least natural number n such that for every graph F of order n the following condition holds: either F contains G or the complement of F contains H. In this paper, we improve the Surahmat and Tomescu's result [9] on the Ramsey number of paths versus Jahangirs. We also determine the Ramsey number $R(\cup G, H)$, where G is a path and H is a Jahangir graph. Keywords: Ramsey number, path, Jahangir ## 1 Introduction The study of Ramsey Numbers for (general) graphs have received tremendous efforts in the last two decades, see few related papers [1-4, 6, 8] and a nice survey paper [7]. One of useful results on this is the establishment of a general lower bound by Chvátal and Harary [5], namely $R(G, H) \ge (\chi(G) - 1)(c(H) - 1) + 1$, where $\chi(G)$ is the chromatic number of G and c(H) is the number of vertices in the largest component of H. Let G(V, E) be a graph with the vertex-set V(G) and edge-set E(G). If $(x, y) \in E(G)$ then x is called adjacent to y, and y is a neighbor of x and vice versa. For any $A \subseteq V(G)$, we use $N_A(x)$ to denote the set of all neighbors of x in A, namely $N_A(x) = \{y \in A | (x, y) \in E(G)\}$. Let P_n be a path with n vertices, C_n be a cycle with n vertices, and W_m be a wheel of m+1 vertices, i.e., a graph consisting of a cycle C_m with one additional vertex adjacent to all vertices of C_m . For $m \ge 2$, the Jahangir graph J_{2m} is a graph consisting of a cycle C_{2m} with one additional vertex adjacent alternatively to m vertices of C_{2m} . For example, Figure 1¹ shows a Jahangir graph J_{16} . Fig. 1. Jahangir J_{16} Recently, Surahmat and Tomescu [9] studied the Ramsey number of a combination of P_n versus a J_{2m} , and obtained the following result. Theorem A. (Surahmat and Tomescu [9]) $R(P_n, J_{2m}) = \begin{cases} 6 & \text{if } (n, m) = (4, 2), \\ n+1 & \text{if } m = 2 \text{ and } n \geq 5, \\ n+m-1 & \text{if } m \geq 3 \text{ and } n \geq (4m-1)(m-1) + 1. \end{cases}$ In this paper, we determine the Ramsey numbers involving paths and Jahangir graphs. For particular, we improve the Surahmat and Tomescu's result for Jahangir graphs J_6 , J_8 and J_{10} as follows. **Theorem 1.** $R(P_n, J_{2m}) = n + m - 1$ for $n \ge 2m + 1$ and m = 3, 4 or 5. We are also able to determine the Ramsey number $R(kP_n, J_{2m})$, for any integer $k \geq 2$, $m \geq 2$. These results are stated in the following theorems. Theorem 2. $R(kP_n, J_4) = kn + 1$, for $n \ge 4$, $k \ge 1$, except for (n = 4, k = 1). **Theorem 3.** $R(kP_n, J_{2m}) = kn + m - 1$, for any integer $n \ge 2m + 1$ if m = 3, 4 or 5; and for $n \ge (4m - 1)(m - 1) + 1$ if $m \ge 6$, where $k \ge 2$. ¹ The figure J_{16} appears on Jahangir's tomb in his mausoleum, it lies in 5 km north-west of Lahore, Pakistan across the River Ravi. His tomb was built by his Queen Noor Jehan and his son Shah-Jehan (This was emperor who constructed one of the wonder of world Taj Mahal in India) around 1637 A.D. It has a majestic structure made of red sand-stone and marble. ## 2 The Proof of Theorems ## The proof of Theorem 1. Consider graph $G \cong K_{m-1} \cup K_{n-1}$. Clearly, G contains no P_n and \overline{G} contains no J_{2m} . Thus, $R(P_n, J_{2m}) \geq n+m-1$. For m=3,4 or 5 and $n\geq 2m+1$, we will show that $R(P_n, J_{2m}) \leq n+m-1$. Let F be a graph of n+m-1 vertices containing no P_n . Take any longest path L in F. Let L be (x_1, x_2, \dots, x_k) , and $Y = V(F) \setminus V(L)$. Since $k \leq n-1$, then $|Y| \geq m$. Obviously, yx_1, yx_k are not in E(F), for any $y \in Y$. Now, consider the following two cases ## Case 1. $2m \le |L| \le n - 1$. Let |L| = t and $A = \{x_2, x_3, \dots, x_{2m-1}\}$ be the set of first 2m-2 vertices of L after x_1 . Take the set of any m distinct vertices of Y and denote it by $B = \{y_1, \dots, y_m\}$. By the maximality of L, every vertex of B has at most m-1 neighbors in A. If there are two vertices of B having m-1 neighbors in A then all the neighbors are intersected. ## Subcase 1.1 There exists $b \in B$, $|N_A(b)| = m - 1$. Let $A_1 = A \setminus N_A(b)$ and take any vertex v_1 of A_1 whose the highest degree at B. Define $D_1 = \{x_1, x_t, b\} \cup A_1 \setminus \{v_1\}$, and $D_2 = \{v_1\} \cup B \setminus \{b\}$. By the maximality of L, $d_{D_1}(w) \leq 1$ for any vertex w of D_2 . In particular, $d_{D_1}(v_1) = 0$. Since v_1 has the highest degree then there are at most m-2 edges connecting vertices between D_1 and D_2 in F. This implies that $D_1 \cup D_2$ will induces a J_{2m} in \overline{F} . # Subcase 1.2 All vertices $b \in B$, $|N_A(b)| \le m - 2$. If m=3 then let $D_1=\{$ any two vertices of $A\}$. If m=4 then by the Pigeon Hole principle there exists two vertices of A has neighbors at most 1 in B. In this case let $D_1=\{$ three vertices of A with two of degree at most one $\}$. If m=5 then by the Pigeon Hole principle there exists three vertices of A has neighbors at most 2 in B. In this case let $D_1=\{$ four vertices of A with three of degree at most two $\}$. Therefore, $\{x_1,x_t\}\cup D_1\cup B$ will induce a J_{2m} in \overline{F} . # Case 2. $1 \le |L| \le 2m - 1$. We breakdown the proof into several subcases. # Subcase 2.1. $1 \le |L| \le 3$ In this case, the component of F is either K_1 , P_2 , C_3 or a star. Therefore, \overline{F} contains a J_{2m} , for m=3,4 or 5. # **Subcase 2.2**. $4 \le |L| \le m + 1$. Let L be (x_1, x_2, \dots, x_t) , where $t \leq m+1$, and so $|Y| = |V(F) \setminus V(L)| \geq 2m-1$. Now, consider the set $N_Y(x_2)$ of vertices in Y adjacent to x_2 . Note that any vertex of $N_Y(x_2)$ is nonadjacent to any other vertices of Y. If $|N_Y(x_2)| \geq m-2$ then form two sets D_1 and D_2 as follows. The set D_1 consists of x_1, x_t and any m-2 vertices of $N_Y(x_2)$. The set D_2 consists of the other vertices of Y not selected in D_1 . Thus, $|D_1| = m$ and $|D_2| = m+1$. By the maximality of L, there is no edge connecting any vertex of D_1 to any vertex of D_2 . Thus, the set $D_1 \cup D_2$ induces $K_{m,m+1} \supseteq J_{2m}$ in \overline{F} . If $|N_Y(x_2)| = m-3$ then take $D_1 = \{x_1, x_t, x_2\} \cup N_Y(x_2)$, and D_2 as the set of the remaining vertices of Y. Then, $D_1 \cup D_2$ again contains $K_{m,m+1} \supseteq J_{2m}$ in \overline{F} . Now, if $|N_Y(x_2)| = m-4$ (for m=4 or 5) then in showing $\overline{F} \supseteq J_{2m}$ take $D_1 = \{x_1, x_t, x_2, x_{t-1}\} \cup N_Y(x_2)$, and D_2 as the set of the remaining vertices of Y not adjacent to x_{t-1} . This is true since $|N_Y(x_{t-1})| \le 1$ (by symmetrical argument). If $|N_Y(x_2)| = m-5$ (for m=5 only), then $D_1 = \{x_1, x_2, x_{t-1}, x_t, b\}$ where b is a vertex at distance two from x_3 or b is any vertex of Y with a smallest degree, and D_2 as the set of the remaining vertices of Y. Thus, $D_1 \cup D_2$ will induce J_{10} in \overline{F} . ## Subcase 2.3. |L| = m + 2. Let L be (x_1, x_2, \dots, x_t) where t = m + 2, then $|Y| = |V(F) \setminus V(L)| \ge 2m - 2$. Now, consider the set $N_Y(x_2)$ of vertices in Y adjacent to x_2 . Note that any vertex of $N_Y(x_2)$ is nonadjacent to any other vertices of Y. If $|N_Y(x_2)| \ge m - 2$ then form two sets D_1 and D_2 as follows. If x_3 is nonadjacent to x_{m+2} then $D_1 = \{x_1, x_{m+2}\} \cup \{\text{any } m - 2 \text{ vertices of } N_Y(x_2)\}$ and D_2 consists of x_3 together with the remaining vertices of Y. Otherwise (if $x_3 \sim x_{m+2}$), take $D_1 = \{x_1, x_{m+2}, x_4\} \cup \{\text{any } m - 2 \text{ vertices of } N_Y(x_2)\}$ and D_2 consists of any m remaining vertices of Y. By the maximality of L, there is no edge connecting any vertex of D_1 to any vertex of D_2 . Thus, the set $D_1 \cup D_2$ induces $K_{m,m+1} \supseteq J_{2m}$ in \overline{F} . If $|N_Y(x_2)| = m - 3$ then take $D_1 = \{x_1, x_t, x_2\} \cup N_Y(x_2)$, and D_2 as the set of the remaining vertices of Y. Then, $D_1 \cup D_2$ again contains $K_{m,m+1} \supseteq J_{2m}$ in \overline{F} . Now, if $|N_Y(x_2)| = m - 4$ (for m = 4 or 5) then in showing $\overline{F} \supseteq J_{2m}$ take $D_1 = \{x_1, x_t, x_2, x_{t-1}\} \cup N_Y(x_2)$, and D_2 as the set of the remaining vertices of Y not adjacent to x_{t-1} . This is true since $|N_Y(x_{t-1})| \le 1$ (by symmetrical argument). If $|N_Y(x_2)| = m - 5$ (for m = 5 only), then $D_1 = \{x_1, x_2, x_{t-1}, x_t, b\}$ where b is a vertex at distance two from x_3 or b is any vertex of Y with a smallest degree, and D_2 as the set of the remaining vertices of Y. Thus, $D_1 \cup D_2$ will induce J_{10} in \overline{F} . Subcase 2.4. |L|=m+3 (or 2m-1, 2m-2 if m=4,5 respectively). Let L be (x_1,x_2,\cdots,x_t) where t=m+3, then $|Y|=|V(F)\setminus V(L)|\geq 2m-3$. Now, consider the set $N_Y(x_2)$ of vertices in Y adjacent to x_2 . Note that any vertex of $N_Y(x_2)$ is nonadjacent to any other vertices of Y. If $|N_Y(x_2)|\geq m-1$ then form two sets D_1 and D_2 as follows. If x_{t-1} is adjacent to some vertex of $N_Y(x_2)$ then by the maximality of L, x_{t-2} is nonadjacent to x_1 and any vertex of $N_Y(x_2)$. In this case set $b=x_{t-2}$. If x_{t-1} is nonadjacent to any vertex of $N_Y(x_2)$, then take $b=x_{t-1}$ provided $x_{t-1} \not\sim x_1$. Otherwise (if $x_{t-1} \sim x_1$), by the maximality of L we have that x_{t-2} is nonadjacent to x_1 and to any vertex of $N_Y(x_2)$. In this case, again take $b=x_{t-2}$. Now, define $D_1=\{x_1\}\cup\{\text{any }m-1 \text{ vertices of }N_Y(x_2)\}$ and $D_2=\{x_3,x_t,b\}\cup\{\text{ any }m-2 \text{ other vertices of }Y\}$. By the maximality of L, there is no edge connecting any vertex of D_1 to any vertex of D_2 . Thus, the set $D_1\cup D_2$ induces $K_{m,m+1}\supseteq J_{2m}$ in \overline{F} . If $|N_Y(x_2)|=m-2$ then take $D_1=\{x_1,x_2\}\cup N_Y(x_2)$, and $D_2=\{x_3,x_t\}\cup \{$ any m-1 other vertices of Y. Then, $D_1\cup D_2$ contains $K_{m,m+1}$ minus at most two edges (x_2,x_3) and (x_2,x_t) in \overline{F} . Therefore, $\overline{F}\supseteq J_{2m}$. Now, if $|N_Y(x_2)|=m-3$ then in showing $\overline{F}\supseteq J_{2m}$ take $D_1=\{x_1,x_2,x_t\}\cup N_Y(x_2)$, and $D_2=\{x_3\}\cup \{$ any m other vertices of Y. This is true since $D_1\cup D_2$ contains $K_{m,m+1}$ minus at most two edges (x_2,x_3) and (x_2,x_t) in \overline{F} . If $|N_Y(x_2)|=m-4$, then $D_1=\{x_1,x_2,x_{t-1},x_t\}\cup N_Y(x_2)\cup N_Y(x_{t-1})$ and D_2 as the set of the remaining vertices of Y. Thus, $D_1\cup D_2$ will induce $K_{m,m+1}$ in \overline{F} . If $|N_Y(x_2)|=m-5$ (only for m=5), then $D_1=\{x_1,x_2,x_{t-1},x_t,b\}$, where b is either x_3 , a neighbor of x_3 in Y or a vertex of Y at distance two from x_3 and D_2 as the set of the remaining vertices of Y. Thus, $D_1\cup D_2$ will induce $K_{m,m+1}$ minus at most one edge in \overline{F} . Subcase 2.5. |L| = m + 4 = 2m - 1 (only for m = 5). Let L be (x_1, x_2, \dots, x_t) where t = 2m - 1, then $|Y| = |V(F) \setminus V(L)| \ge 2m - 4$. Now, consider the set $N_Y(x_2)$ of vertices in Y adjacent to x_2 . Note that any vertex of $N_Y(x_2)$ is nonadjacent to any other vertices of Y. If $|N_Y(x_2)| \ge m - 2$ then form two sets D_1 and D_2 as follows. By the maximality of L, one element in each pair $\{x_4, x_5\}$ and $\{x_6, x_7\}$ is nonadjacent to all vertices of $N_Y(x_2)$. Call these two vertices by b and c. Therefore, there are at most four edges connecting from $\{x_1, x_t\}$ to $\{x_3, b, c\}$ in F. Now, define $D_1 = \{x_1, x_t\} \cup \{\text{any } m - 2 \text{ vertices}$ of $N_Y(x_2)\}$ and $D_2 = \{x_3, b, c\} \cup \{\text{any } m - 2 \text{ other vertices of } Y\}$. Thus, the set If $|N_Y(x_2)| = m - 3$ then By the maximality of L, one vertex in $\{x_4, x_5\}$ is nonadjacent to all vertices of $N_Y(x_2)$. Call this vertex by b. Therefore, there are at most four edges connecting from $\{x_1, x_2, x_t\}$ to $\{x_3, b\}$ in F. Now, take $D_1 = \{x_1, x_2, x_t\} \cup N_Y(x_2)$, and $D_2 = \{x_3, b\} \cup \{\text{any } m - 1 \text{ other vertices of } Y\}$. Then, $D_1 \cup D_2$ contains $K_{5,6}$ minus at most four edges in \overline{F} . Therefore, $\overline{F} \supseteq J_{10}$. $D_1 \cup D_2$ induces $K_{5,6}$ minus four edges in \overline{F} , and so $\overline{F} \supseteq J_{10}$. if $|N_Y(x_2)| = m-4$ then take $D_1 = \{x_1, x_2, x_{t-1}, x_t\} \cup N_Y(x_2) \cup N_Y(x_{t-1})$, and $D_2 = \{x_3\} \cup \{\text{all the remaining vertices of } Y\}$. Then, $D_1 \cup D_2$ contains $K_{5,6}$ minus possibly two edges (x_3, x_{t-1}) and (x_3, x_t) in \overline{F} . Therefore, $\overline{F} \supseteq J_{10}$. if $|N_Y(x_2)| = m - 5$ then take $D_1 = \{x_1, x_2, b, x_{t-1}, x_t\}$ where b is either x_3 or x_4 whose the smallest number of neighbors in Y, and $D_2 = Y$. Then, $D_1 \cup D_2$ contains $K_{5,6}$ minus at most three edges in \overline{F} . Therefore, $\overline{F} \supseteq J_{10}$. ## The proof of Theorem 2. For n=4 and k=2, consider graph $G=K_1\cup K_7$. Clearly G contains no $2P_n$ and \overline{G} contains no J_4 . Hence $R(2P_4,J_4)\geq 9$. To prove the upper bound, consider now graph F of order 9 containing no $2P_4$. Take a longest path in F and call it L. Let L be x_1,x_2,\cdots,x_k . Clearly, $k\leq 7$, since $F\not\supseteq 2P_4$. If $A=V(F)\setminus V(L)$, then $|A|\geq 2$. Any vertex of A is nonadjacent to x_1 and x_k . Thus, the number vertices in A must be exactly 2 and so k=7, since otherwise A together with $\{x_1,x_k\}$ will form a $K_{2,3}=J_4$ in \overline{F} . Let $A=\{y,z\}$, and consider the following two cases: Case 1. Vertices y and z has a common neighbor in L. Let x_i be the common neighbor of y and z in L, for some $i \in \{2, 3, \dots, 6\}$. Then, y, z are nonadjacent to x_{i-1} and x_{i+1} , since otherwise the maximality of L will suffer. At least one of the last two vertices must differ with x_1 and x_7 , call it w. So, we have a J_4 in \overline{F} formed by $\{x_1, x_7, y, z, w\}$. ### Case 2. Vertices y and z has no common neighbor in L. If there exists a vertex x_i , $2 \le i \le 6$, is nonadjacent to y and z, then $\{x_i, x_1, x_7, y, z\}$ forms a J_4 in \overline{F} . Thus, every x_i is adjacent to at least one of $\{y, z\}$. Now, since y and z has no common neighbor in L, without loss of generality we can assume that $x_2y \in E(F)$, and so $x_2z \notin E(F)$, $x_3y \notin E(F)$, $x_3z \in E(F)$, $x_4z \notin E(F)$, $x_4y \in E(F)$, $x_5y \notin E(F)$ and $x_5z \in E(F)$. Therefore, the path $x_1, x_2, y, x_4, x_3, z, x_5, x_6, x_7$ is Hamiltonian, which contradicts the maximality of path L in F. Now, let $n \geq 5$. Consider graph $G = K_1 \cup K_{kn-1}$. Clearly G contains no kP_n and \overline{G} contains no J_4 . Hence $R(kP_n,J_4) \geq kn-1+1+1=kn+1$. For the upper bound, let F be a graph of order kn+1 such that \overline{F} does not contain J_4 . By induction on k, we will show that F contains kP_n . By Theorem A gives a verification of the result for k=1. Assume the theorem is true for any $s \leq k-1$, namely $R(sP_n,J_4)=sn+1$, for $n\geq 5$. Now consider graph F of kn+1 vertices such that $\overline{F} \not\supseteq J_4$. By the induction hypothesis, F will contain $(k-1)P_n$. Let $Y=V(F)\backslash V((k-1)P_n)$. Then, $|Y|=n+1=R(P_n,J_4)$ and hence F[Y] contains a P_n . This implies that F contains kP_n . #### The proof of Theorem 3. Since graph $G=K_{m-1}\cup K_{kn-1}$ contains no kP_n and \overline{G} contains no J_m , then $R(kP_n,J_{2m})\geq kn+m-1$. For proving the upper bound, let F be a graph of order kn+m-1 such that \overline{F} contains no a J_4 . We will show that F contains kP_n . We use an induction on k. For k=1 it is true from Theorem A. Now, let assume that the theorem is true for all $s\leq k-1$. Take any graph F of kn+m-1 vertices such that its complement contains no J_{2m} . By the hypothesis, F must contain (k-1) disjoint copies of P_n . Remove these copies from F, then the remaining vertices will induce another P_n in F since $\overline{F} \not\supseteq J_{2m}$. Therefore $F \supseteq kP_n$. The proof is complete. ## References - E. T. Baskoro and Surahmat, The Ramsey numbers of path with respect to wheels, Discrete Math., 294 (2005), 275-277. - S. A. Burr, P. Erdös and J. H. Spencer, Ramsey theorem for multiple copies of graphs, Trans. Amer. Math. Soc., 209 (1975), 87-89. - S. A. Burr, On Ramsey numbers for large disjoint unions of graphs, Discrete Math., 70 (1988), 277-293. - 4. Y. J. Chen, Y. Q. Zhang and K.M. Zhang, The Ramsey numbers of stars versus wheels, *European J. Combin.*, 25 (2004), 1067-1075. - V. Chvátal and F. Harary, Generalized Ramsey theory for graphs, III: small off-diagonal numbers, Pac. J. Math., 41 (1972), 335-345. - Hasmawati, E. T. Baskoro and H. Assiyatun, Star-wheel Ramsey numbers, J. Combin. Math. Conbin. Comput., 55 (2005), 123-128. - S. P. Radziszowski, Small Ramsey numbers, Electron. J. Combin., July (2006) #DS1.9, http://www.combinatorics.org/ - 8. Surahmat and E. T. Baskoro, On the Ramsey number of a path or a star versus W_4 or W_5 , Proceedings of the 12-th Australasian Workshop on Combinatorial Algorithms, Bandung, Indonesia, July 14-17 (2001), 165-170. - Surahmat and Ioan Tomescu, On path-Jahangir Ramsey numbers, Preprint (2006).