Edge antimagic total labeling on paths and unicycles

Denny R. Silaban and Kiki A. Sugeng

Department of Mathematics
Faculty of Mathematics and Sciences,
University of Indonesia
Depok 16424, Indonesia
{denny-rs,kiki}@ui.edu

Abstract. Let G = (V, E) be a simple and undirected graph with v vertices and e edges. An (a,d)-edge-antimagic total labeling is a bijection f from $V(G) \cup E(G)$ to the set of consecutive integers $\{1,2,\cdots,v+e\}$ such that the weight of edges form arithmetical progression with initial term a and common difference d. A super (a,d)-edge antimagic total labeling is an edge antimagic total labeling f which $f(V(G)) = \{1,\cdots,v\}$. In this paper we solve some problems on edge antimagic total labeling, such as on paths and unicyclic graphs.

key words: Edge antimagic total labeling, super edge antimagic total labeling

1 Introduction

In this paper we only deal with simple and connected graphs. Let G = (V, E) be a simple and undirected graph with v vertices and e edges. Let V = V(G) be the set of vertices of G and E = E(G) be the set of edges of G.

Hartsfield and Ringel [5] introduced the concept of an antimagic labeling. For a graph G of size e, it is said to be antimagic if there is a labeling from E(G) into $\{1, 2, \ldots, e\}$ such that all sums of the labels on the edges incident with each vertex v are distinct. Such a labeling is called an antimagic labeling. Paths, cycles, complete graphs, and wheels are the examples of antimagic graphs. We know that K_2 is not antimagic. In fact, Hartsfield and Ringel conjecture that every connected graph other than K_2 is antimagic. A (v, e)-graph G is defined to be edge-antimagic if there exists a labeling f from $V(G) \cup E(G)$ into $\{1, 2, \ldots, v + e\}$ which satisfies the condition that $f(u_1) + f(v_1) + f(u_1v_1) \neq f(u_2) + f(v_2) + f(u_2v_2)$ for any pair of distinct edges u_1v_1 and u_2v_2 of G.

The term of edge-antimagic labeling was introduced by Kotzig and Rosa [6], but it started to get more attention after Enomoto et al work [3]. Many families

of graphs have been proved to have an (a,d)-edge antimagic total labeling. As examples see [2,?]. For the complete survey, see [4]. Several works still left some open problems and some of them have been collected in [1]. We list some open problems that has relations with our work in the next section.

A total labeling of G is a bijection $f: V(G) \cup E(G) \to 1, 2, \ldots, v+e$ and the associated weight $w_f(xy)$ of an edge xy in G is $w_f(xy) = f(x) + f(y) + f(xy)$. All labelings considered in this paper are total labelings, and so from now on by a labeling we always mean a total labeling. The labeling f of G is edge magic if every edge has the same weight. f is called a super edge labeling if $f(V) = \{1, ..., n\}$. Sedláček [9] introduced magic labeling of graphs in 1963, and since then there have been many results in magic labeling, especially in edge magic labeling. For the details see [4].

A bijection $f:V(G)\cup E(G)\to \{1,2,...,v+e\}$ is called an (a,d)-edge-antimagic total ((a,d)-EAT) labeling of G if the set of edge-weights of all edges in G is $\{a,a+d,a+2d,\ldots,a+(v-1)d\}$, where a>0 and $d\geq0$ are two fixed nonnegative integers. If d=0 then we call f a edge-magic total labeling (EMT). An (a,d)-edge-antimagic total labeling f is called a super (a,d)-edge-antimagic total super (a,d)-EAT) labeling if $f(V))=\{1,2,...,v\}$ and $f(E)=\{v+1,v+2,...,v+e\}$. Note that if we restrict the domain of f to V(G) then we have (a',d')-edge antimagic vertex labeling ((a',d')-EAV labeling).

In this paper we solve some open problems on edge antimagic total labeling that proposed on several published papers, such as on paths and unicyclic graphs.

2 Basic properties and open problems

Let $f:V(G)\cup E(G)\to \{1,2,\ldots,v+e\}$ be an (a,d)-edge-antimagic total labeling of G and $W=\{wt_f(uv):wt_f(uv)=f(u)+f(v)+f(uv),uv\in E(G)\}=\{a,a+d,a+2d,\ldots,a+(e-1)d\}$ is the set of edge-weights. Then the minimum possible edge-weight in (a,d)-edge-antimagic total labeling is at least 6. Consequently $a\geq 6$. On the other hand, the maximum possible edge-weight is at most 3v+3e-3. Then

$$d \leq \frac{3v + 3e - 9}{e - 1}.$$

Bača et al. had survey on edge antimagic labeling in [1]. In their survey, they proposed some open problems regarding with paths and cycles, such as follows:

- Find (a,5)-EAT labelings for paths P_n , for the feasible values.
- Find (a, d)-EAT labelings for even cycles with $d \in \{4, 5\}$ and for odd cycles with d = 5.

The results on (a, 4)-EAT and (a, 6)-EAT (cited in [1] as a preprint) are given in the following section.

3 Paths

Let P_n be a path with n vertices, then according to the inequality [1], the following observation is hold.

Observation 1 If paths P_n has an (a,d)-EAT labeling then Then

$$d \leq 6$$
.

Wallis et al. proved that all path is an edge magic ((a, 0)-EAT). Bača et al. [2] have proved the following:

- Every path P_n has (2n+2,1)-EAT, (3n,1)-EAT, (n+4,3)-EAT and (2n+2,3)-EAT labelings.
- Every odd path P_{2k+1} , $k \ge 1$, has (3k+4,2)-EAT (5k+4,3)-EAT, (2k+4,4)-EAT and (2k+6,4)-EAT labelings.
- Every even path P_{2k} , $k \ge 1$, has (3k+3, 2)-EAT and (5k+1, 2)-EAT labelings.

and Ngurah [7] has proved the following theorem

Theorem 1 Every odd path P_{2k+1} , $k \ge 1$, has (4k + 4, 1)-EAT (6k + 5, 3)-EAT, (4k + 4, 2)-EAT and (4k + 5, 2)-EAT labelings.

In the following theorem, we want to complete the results that we mentioned above.

Theorem 2 Every path P_n has (n + 5, 4)-EAT (for n odd), (n + 4, 4)-EAT (for n even) and (6, 6)-EAT labelings.

Proof.

Let P_n be the paths with n vertices. Let v_i , i = 1, ..., n be a set of vertices of P_n . Label the vertices and edges of P_n of G as follows.

$$f_1(v_i) = \begin{cases} i & \text{if } i \text{ is odd} \\ n+i & \text{if } i \text{ is even and } n \text{ is odd} \\ n+i-1 & \text{if } i \text{ is even and } n \text{ is even} \end{cases}$$

$$f_1(v_i v_{i+1}) = 2i, \text{ for all } i$$

We can see that f_1 is a bijection and the edge weights form an arithmetic progression with difference 4. Thus f_1 is a (n+5,4)-EAT labeling for P_n , n odd and a (n+4,4)-EAT labeling for P_n , n even.

Define a new labeling f_2 as follows.

$$f_2(v_i) = 2i - 1$$
 for all i

$$f_2(v_i v_{i+1}) = 2i$$
 for all i

The labeling f_2 form a bijection and the edge weights form an arithmetic progression with the difference 6. It means we obtain a (6,6)-EAT labeling for P_n .

4 Unicyclic graphs

In this section we presents the (a, d)-EAT labeling construction of a special unicyclyc that we called sun. The following theorem and observation will be used in the proof that a sun graph has an (a, d)-EAT labeling for $d \in \{2, 4\}$.

Theorem 3 [2] If G has an (a, d)-EAV labeling then

- (i) G has a (a+n+1,d+1)-EAT labeling
- (ii) G has a (a+n+e,d-1)-EAT labeling

Observation 2 If G has a super edge magic total (SEMT) labeling then G has an (a, 1)-EAV labeling.

An *n*-crown graph $G \cong C_m \odot \bar{K}_n$ is a graph obtained by taking one copy of C_m (which has order m) and m copies of \bar{K}_n , and then joining the i-th vertex of C_m to every vertex in the i-th copy of \bar{K}_n . A sun graph $G = C_n \odot \bar{K}_1$ is obtained by joining n isolated vertices to a cycle C_n in such a way that each isolated vertex adjacent with one vertex in C_n .

Observation 3 If a sun graph $G = C_n \odot \overline{K}_1$ has an (a,d)-EAT labeling then $d \leq 5$

Observation 4 [8] For every two integers $m \geq 3$ and $n \geq 1$, the n-crown $G \cong C_m \odot \overline{K_n}$ is super magic.

Since sun graphs are special n-crown graphs then we have the following corollary:

Corollary 1 A sun graph $G = C_n \oplus \overline{K_1}$ has a super edge magic total ((a, 0)-EAT) labeling.

Theorem 4 Sun graphs $G = C_n \odot \tilde{K_1}$ have an (a, d)-EAT labeling for $d \in \{2, 4\}$

Proof.

According to 4 every sun graph $G = C_n \odot \overline{K_1}$ has a SEMT labeling. Obviously sun graphs also have an (a, 1)-EAV labeling by 4, say the labeling is f. Then the edge weight of labeling wt_f forms an arithmetic progression $a, a+1, \ldots, a+(2n-1)$.

Case 1: d=2. Define a new labeling g as follows. Let $\{v_1,...,v_n\}$ be internal

vertices of sun graph G and $\{w_1, ..., w_n\}$ be external vertices of G. Note that internal vertices means all the vertices of G that has degree 3 and external vertices means all vertices of G that has degree 1.

$$g(v) = \begin{cases} f(v_i) & \text{if } v = v_i \\ f(w_i) & \text{if } v = w_i \end{cases}$$

$$g(e_i) = 2n + i$$
, if $wt_f(e_i) = a + i - 1$

Then the edge weight of labeling g are $a+n+1, a+n+3, \ldots, a+(6n-1)$. This sequence forms an arithmetic progression with difference 2. Thus g is an (a+n+1,2)-EAT labeling for sun graphs.

Case 2: d = 4. The integers that we can use for labels vertices and edges of sun graphs are $1, 2, \ldots, 4n$. Define a new labeling g as follows.

$$g(v) = \begin{cases} 2f(v_i) & \text{if } v = v_i \\ 2f(w_i) & \text{if } v = w_i \end{cases}$$

$$g(e_i) = 2i + 1$$
, if $wt_f(e_i) = a + i - 1$

Then the edge weight of labeling g are $2a+3, 2a7, \ldots, 2a+(6n-2)$. This sequence forms an arithmetic progression with difference 4. Thus g is an (2a+3,4)-EAT labeling for sun graphs. \Box .

Theorem 5 If n and d are odds, there is no (a, d)-EAT labeling for $G = C_n \odot \bar{K}_1$.

Proof. Let $\{v_1, \ldots, v_n\}$ are the internal vertices (the vertex that has degree 3).

Suppose that $G = C_n \odot \overline{K}_1$ has an (a, d)-EAT labeling for d odd. Then the sum of the edge-weights.

$$w = a + (a + d) + (a + 2d) + \ldots + (a + (2n - 1)d) = 2na + dn(2n - 1)$$

Since d and n are odd then the value of w is always odd. Observe that the sum of all labels is as follows.

$$S_L = 1 + \ldots + 4n + 2(x_1 + \ldots + x_n) = 2n(4n+1) + 2(x_1 + \ldots + x_n),$$

where $(x_1 + \ldots + x_n)$ are labels for (v_1, \ldots, v_n) respectively. The value of S_L is always even. Contradict with the fact that if $G = C_n \odot \overline{K}_1$ has an (a, d)-EAT labeling for n and d odds then $w = S_L$. \square

5 Open Problems

In the purpose to solve open problems of (a, d)-EAT labeling of path, we only can find an (a, 5)-EAT labeling for path $P_n, n \leq 9$. Unfortunately, we cannot find the pattern of the labeling. Thus the problem in [1] is still open for d = 5. We list here two problems for further investigation.

Conjecture 1: P_n has (a,5)-EAT labelings for the feasible values of a.

Open Problems 1 Find if there is an (a, d)-EAT labeling, $d \in \{1, 3, 5\}$, for sun graphs $G = C_n \odot \overline{K}_1$ for n even.

References

- M. Bača, E.T. Baskoro, M. Miller, J. Ryan, R. Simanjuntak and K.A. Sugeng, Survey of edge antimagic labelings of graphs, J. Indones. Math. Soc(MIHMI) 12 No. 1 (2006) 113-130.
- M. Bača, Y. Lin, M. Miller and R. Simanjuntak, New construction of magic and antimagic graph labelings, *Utilitas Math* 60 (2001) 229-239.
- H. Enomoto, A.S. Llado, T. Nakamigawa and G. Ringel, Super edge-magic graphs, SUT J. Math. 34 (1998) 105-109.
- 4. J. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics 6(2003), DS6.
- N. Hartsfield and G. Ringel, Supermagic and antimagic graphs, J. Rec. Math., 21 (1989), 107–115
- A. Kotzig and Λ. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970) 451-461.
- A.A. Ngurah, On (a, b)-edge antimagic total labeling of odd cycle, MIHMI 9 (2003) 9-12.
- R.M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, Magical coronation of graphs, Austral. J. Combin. 26(2002) 199-208.
- J. Sedlacek, Problem 27, Theory of Graphs and its Applications, Proc. Symposium Smolenice (1963) 163-167.
- 10. K.A. Sugeng and M. Miller, Relationships between adjacency matrices and super (a, d)-edge-antimagic total graphs, JCMCC 55 (2005) 71-82.
- W.D. Wallis, E.T. Baskoro, M. Miller and Slamin, Edge magic total labelings, Austral. J. Combin. 22 (2000) 177-190.