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Abstract. A simple graph G(V, E) is called A-magic if there is
a labeling f : E — A*, where A is an Abclian group and A™ =
A — {0} so that the induced vertex labeling f* : V — A, defined
as f*(v) = Zuen()f(uv) = k, for every v € V, k is a constant in
A. In this paper we show constructions of new classes of A-magic
graphs from known A-magic graphs using labeling matrices.

1 Imntroduction

Let G = (V,E) be a simple graph. For an arbitrary Abelian group A4, a
mapping f : E — A*, with A* = A — {0}, is called a labeling of G. This
labeling induces a mapping f* : V — A, defined as f*(v) = Zyen(w)f(uv),
where N(v) = {u € V|uv € E} is a neighborhood of v € V. Note that
f*(v) is also known as the weight of the vertex v. We call a labeling f
A-magic labeling if for every v € V, f*(v) = Zyen)f(uv) = k, where k
is a constant in A. The number k is called the magic constant of G. Using
this definition, edge labels do not have to be the same. Magic labeling was
introduced by Sedlééek [1] in 1963. Sedlacek’s labeling uses real numbers
for edge labels and every edge has a distinct label.

Many researchers have studied magic labeling and its variations. If f(E) =
{1,2,3,...,|E|} C N, and every edge has a distinct label, then we call f
a vertez magic labeling, see [2,?] for details. Another variation of magic
labeling is obtained when we allow some edges to have the same label. Let
Vi be the group of the direct sum of Z; x Z, with binary operation @, which
can be represented by its Cayley Table, as in Table 1. Lee et al. [3] studied
the properties of V;-magic graphs and constructed Vj-magic labelings on
several classes of graphs, such as stars, cycles, flowers and bipyramids.
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® _[(0,0) (0,1) (1,0) (1,1)
(0,0)[(0,0) (0,1) (1,0) (1.1)
(0,1)](0,1) (0,00 (1,1) (1,0)
(1,0)] (1,0) (1,1) (0,0) (0.1)
(1,111 (1,0 (0,1) (0,0)

Table 1. Cayley table of group V4

Shie and Low (6], using the same principle as in (3], studied Z3-magic label-
ing for a complete n-partite graph. Low and Lee [4] explored a group magic
labeling of Eulerian graphs. In another paper, Low and Lee [5] proved that
some products of several A-magic graphs can be group magic graphs. In
that paper they showed that G; x G2, lexicographic product G, ¢ G2 and
G2eGh, tensor product G1 ® G, (with additional requirements) and normal
product G; x G2 (with additional requirements) are A-magic graphs if both
G, and G, are A-magic graphs.

Inspired by a labeling matrix used in [6,?], we will give new constructions
to generate new classes of A-magic graphs using labeling matrices.

2 Basic theory

Let f : V — A — {0} be an A-magic labeling of G, with A an arbitrary
Abelian group. Let {v1,...,v,} be the set of the vertices of G. A labeling
matriz of f, denoted by Az(G) = (ai;), is a matrix in which each row and
each column represents the vertices of G and the entry ij is a label of the
edge v;v;. Thus

uos = § f(vivs) if viv; is an edge of G,
70 if v;v; is not an edge of G.

Figure 1 shows Z3-magic labelings for cycle C; and complete graph Kj.
Graph C; in Fig. 1 is a Z3-magic graph with magic constant 0, and graph
K, is a Z3-magic graph with magic constant 1. The labeling matrix of Cy4
is

Ag =

DO =O
ON O -
- O N O
o= ON
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Fig. 1. Zs-magic labeling of C4 and Kj.

while the labeling matrix of K, is

0121
1012
By = 2101
1210

3 Construction of new A-magic graphs

Let Gi and G2 be A-magic graphs with labeling matrices Ay and By,
respectively. By creating a bigger labeling matrix using Ay, By, diagonal
matrices and/or their combination we obtain new matrix that represents
new classes of A-magic graphs.

Theorem 6 Let Gy and G; be A-magic graphs with labeling matrices Ay
and By, respectively. If Gy and G2 have the same magic constant k then
G1UG; is an A-magic graph.

Proof: Let G; and G, be A-magic graphs with labeling matrices Ay and
B, respectively, with magic constant k. Define matrix C as

_(A4r O
c=(75)

Define a new labeling L on G; U G2 as follows.

_ [ flay) if zy € E(Gy),
L(zy) = { g(;z;/) if iz € E(G;).

Then C represents a labeling matrix of L. Since the sums of all entries
in each row/column are the same (every vertex in G; U Gy has the same
weight, equal to the magic constant k), then the induced labeling L*(v) =
Xyenw)L(zy) is a constant. Hence L is an A-magic labeling for G, U Gs.
a
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Note that if we have G; = G for i = 1,2,...,m then we can have the
following result by doing the process in the proof of the above Theorem
repeatedly m times.

Corollary 2 Let G be an A-magic graph with labeling matriz Ay. Then
a matching graph mG is also an A-magic graph, for every positive integer
m> 1.

Theorem 7 Let G and Gy be A-magic graphs with labeling matriz Ay and
By, respectively. If G1 and G2 have the same number of vertices and have
disjoint edges then the composition of G1 and G is en A-magic graph.

Proof. Let G; and G, be A-magic graphs with magic constants k and
h , respectively. Since G; and G have the same number of vertices but
disjoint edges, we can give the same label for vertices in G; and G;. Let
{v1, ---»Un} be the set of vertices of both G; and G». Define a new graph G
such that {vy,...,v,} is the set of vertices of G and E(G) = E(G;)UE(Gz).
Every vertex v; now has incidence edges from E(G; and E(G2. Thus G is
a composition of G; and G;. Define a new labeling L on E(G) as

_ [ fviv;) if viv; € E(Gh),
L(viv;) = { g(v,-vj-) if v,-'u; . E(G;).

Define a matrix C = (¢;;) as

f(v,-vj) if VY5 € E(Gl),
cij =< glzy) if viv; € E(Gz),
0 for others.

Since G; and G2 are A-magic graphs, then the weight of a vertex v; in
G is f*(u:) = Zy,en(w) f(vivy) = k since v; € V(G1) and the weight of
a vertex v; in Gz is g*(v) = Zy;en(v:)9(vivj) = h since v; € V(Gz). If
we consider v; as a vertex of G then the weight of v; € V(G) is L*(v;) =
f*(vi) + g*(v;) = k + h, for every v; € V(G). As a consequence, G is an
A-magic graphs. 0O

Let G; and G2 be A-magic graphs of order n and m, respectively. Let
Af and B, be labeling matrices of G; and G2 respectively. Let P be a
rectangular matrix of order n x m, where all entry of P are elements of
A and the sum of all elements of each row and each column of P are the
same. Note that P does not have to be a rectangular magic, since some of
the elements can be duplicated. Construct a labeling matrix

_(Ar P
o=(¥5,)
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Let G* = G * G2 be a graph that has C as its adjacency matrix.
Then we have

Theorem 8 Let G, and G2 be A-magic graphs with labeling matriz A !
and By, respectively. If G1 and G2 have the same magic constant k then
the graph G* = G1 * G2, as defined above, is an A-magic graph.

Proof. Let G and G2 be A-magic graphs with labeling matrices A5 and
By, respectively, with magic constant k.

Define a new labeling L on E(G*) following the adjacency matrix C.
Then C represents a labeling matrix of a labeling L on G*. Suppose that
the sum of each row/column of G* is @ € A. Then the sum of all the entries
in each row is equal to k + a, that is, every vertex in G; U G5 has the same
weight, equal to the magic constant k + a. Then L is an A-magic labeling
for G*. O

4 Conclusion

In this paper we show three different constructions to gencrate new classes
of graphs using combinations of labeling matrices of known A-magic graphs.
There are still more combinations of labelings that could be obtained using
labeling matrices.
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