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Abstract. For two given graphs G and H, the Ramsey number
R(G, H) is the smallest positive integer N such that for every graph
F of order N the following holds: either F contains G as a subgraph
or the complement of F' contains H as a subgraph. In this paper,
we shall study the Ramsey number R(T,, W,,) for a star-like tree
Tn with n vertices and a wheel Wy, with m + 1 vertices and m
odd. We show that the Ramsey number R(S,n, W) = 3n — 2 for
n > 2m - 4,m > 5 and m odd, where S, denotes the star on n
vertices. We conjecture that the Ramsey number is the same for
general trees on n vertices, and support this conjecture by proving
it for a number of star-like trees.

Keywords: Ramsey number, star, tree, wheel.
AMS Subject Classifications: 05C55, 05D10.

1 Introduction

Throughout the paper, all graphs are finite and simple. Let G be such a
graph. We write V(G) or V for the vertex set of G and E(G) or E for
the edge set of G. The graph G is the complement of the graph G, i.e.,
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the graph obtained from the complete graph K)y(¢) on |V(G)| vertices by
deleting the edges of G.

The graph H = (V',E’) is a subgraph of G = (V,E) if V' C V and
E’' C EN(V’ x V’). For any nonempty subset S C V, the induced subgraph
by S is the maximal subgraph of G with vertex set S; it is denoted by G[S].

If e = {u,v} € E (in short, e = uv), then u is called adjacent to v,
and u and v are called neighbors. For each £ € V and B C V, define
Np(z) = {y € B: zy € E}. The degree i(z) of a vertex z is |Ny(z)|.

A cycle Cy, of length n > 3 is a connected graph on n vertices in which
every vertex has degree two. A star S, is a connected graph with one vertex
of degree n — 1, called the center, and n — 1 vertices of degree one. A wheel
W, is a graph on n + 1 vertices obtained from a C,, by adding one vertex
z, called the hub of the wheel, and making z adjacent to all vertices of the
Chp, called the rim of the wheel.

Given two graphs G and H, the Ramsey number R(G,H) is defined
as the smallest natural number N such that every graph F on N vertices
satisfies the following condition: F' contains G as a subgraph or F contains
H as a subgraph.

Chviétal and Harary [4] studied Ramsey numbers for graphs and es-
tablished the lower bound: R(G, H) > (x(G) — 1)(|V(H)| — 1) + 1, where
X(G) is the chromatic number of G. In their paper they also showed that
R(Tn, Km) = (n—1)(m —1)+1, where T, is an arbitrary tree on n vertices
and K, is a complete graph on m vertices.

Several results have been obtained for wheels. For instance, Henry [8]
showed R(W3,Wy) = 17 and R(W,, W,) = 15 [7]. Faudree and McKay [5)
established R(Wj3, W5) = 19, R(Wy, W5) = 17 and R(W5, Ws) = 17.

For a combination of cycles and wheels, Burr and Erdds (2] showed that
R(C3,Wr,) = 2m+1 for each m > 5. Then Radziszowski and Xia [11] gave
a simple and unified method to establish the Ramsey number R(G,Cj),
where G is either a path, a cycle or a wheel.

Recently, in [14], it was shown that the Ramsey number R(S,, W;) =
2n—1ifn > 3 and n is odd, R(S,,Wy) =2n+1if n > 4 and n is even,
and R(S,,Ws) = 3n — 2 for each n > 3.

2 Main Results

In the sequel we will study the Ramsey number R(T,, W,,), where T}, is a
tree on n vertices, and m is odd. We first determine R(S,,, W,,) in the next
section, and discuss other trees later.
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2.1 Large Stars versus Odd Wheels

The aim of this section is to determine the Ramsey number for a combina-
tion of a star S,, and a wheel W,,,. We show that R(S,,W,,) = 3n — 2 for
n>2m—4, m>5 and m odd.

For the lower bound, consider the graph F = 3K,,_; for n > 2m — 4.
Then F has 3n — 3 vertices and it has no star S,,, whereas its complement
has no W,, with m > 5 and m odd. Thus R(S,, W,,) > 3n — 2. Note that
the lower bound is valid for general trees on n vertices.

For the upper bound we will present a proof by induction, starting with
the next result for W; obtained in [14].

Theorem 1. For alln > 3, R(S,,,Ws) = 3n — 2.
Theorem 2. For alln > 2m—4, m > 5 and m odd, R(Sy, W) = 3n—2.

Proof. We shall use induction on m > 5 for all odd m. The start of the
induction is implied by Theorem 1: For m = 5 we have R(S,, Ws) = 3n—2
if n > 6. Now assume the theorem holds for 5 < m < k, k odd, namely,
R(S,, W) = 3n—2if n > 2m — 4 and m is odd. We shall show that
R(Sn,Wi) = 3n—2if n > 2k — 4. Let F be a graph on 3n — 2 vertices
with n > 2k — 4, and suppose F contains no star S,. We shall show that
its complement must contains Wy. To the contrary, assume F contains no
Wi. By the induction hypothesis, F contains a Wj_,. Let ag denote the
hub and A = {a1,a2,...,ak—2} the vertex set of the rim of such a Wi_,
in a cyclic ordering. In the remainder of the proof we use Ng(v) to denote
the neighbors of v in § C V(F) in the graph F. Let X = V(F)\(AU {ao})
and Y = X\Nx(ao). See Figure 1, in which edges in F are indicated by
lines, and edges in F by broken lines; dots between two vertices indicate
that there might be more vertices in the same set.

Since F' containsno 8, |Y| > [X|-(n—-2)=3n-2—-(k-1)—(n—-2) =
2n—k+1. For each a € A there exists a vertex y € Y such that ay ¢ E(F);
otherwise a has at least 2n—k+1 > %n—l 2> n—1 neighbors, since k& < "2—15,
yielding an Sy,. Now, let yo € Y be a nonneighbor in F of a; € A for a fixed
i € {1,2,..,k —2}. Define ¥; = {y € Y : y is adjacent to yo in F} and
Y2 = {y € Y : y is not adjacent to yo in F}. Then, Y;UY> = Y\{yo}. Since
F contains no Sy, |Yi| < n—2and hence |Y3| > 2n—-k+1)—(n—-2)—-1=
n — k + 2. Since F contains no Wy, we obtain the following fact.

Fact 1. Ny,(a;)=Ys forj=i—-1andj=1i+1.
Otherwise, replacing for instance a;a; 1in F by a;yoy*aiq, in F for some

y* € Y2\Ny,(ai+1), we obtain a W, in F.
Since F' contains no S, we can use Fact 1 to obtain the next fact.
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Fig. 1. The set up of the proof of Theorem 6.

Fact 2. |[Ny,(a;)| <k-4 forj=i—1landj=i+1.

Otherwise, by Fact 1, a; has at least n — k + 2 — (k — 3) = n — 1 neighbors
in F, yielding an S,,.

Now distinguish the following two cases.

Case 1. a;_3 is not adjacent to y for some y € Ys.

See Figure 2.
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Fig. 2. Case 1 of the proof of Theorem 6.
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Suppose a;-2 is not adjacent to y; € Y5. Since F contains no Wy, then
11y € E(F) for each y € (Y1 UY2)\(Ny, (ai-1) U {y1}); otherwise, we can
either replace a;_sa;.; by @i-2y1Y2Qi—1 in F for some suitable y2 € Y1, or
replace a;_ 2@i-16; by ai_2y1y290a; in F for some suitable Y2 € Ya, to ob-
tain a W;, in F. We conclude that [Ny (y1)| > |Y2| — 14|Y;| — | Ny, (ai—1 )=
[Y|=2~|Ny,(a;i1)| > 2n—k—1)—(k—4) = 2n—2k+3 > n+1, yielding
an S, in F, a contradiction.

Case 2. a;_» is adjacent to all y € Ys.
See Figure 3.

Since F contains no Sy, a;_2 has at most (n — 2) — |¥3| neighbors in Y; in
the graph F, hence at least |Y;| - (n = 2) + |Yz| = Y| -n+1>n—k+2
nonneighbors in Y;. Using Fact 2, at least (n—k+2)—(k—4) = n~2k+6 > 2
vertices of ) are nonneighbors in F of both a;_; and a;_,. By symmetry,
if we are not in Case 1 for a;yo instead of a;_», we may assume that at
least two vertices of Y} are nonneighbors in F of both ai+1 and a;4. It is
obvious that we can now find two suitable vertices y;,y2 € Y1, and replace
@i—1a;—2 in F by a;—1Y18;—2 and @i+1@i4+2 by a;41Y2ai42, to obtain a W
in F, our final contradiction. |
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Fig. 3. Case 2 of the proof of Theorem 6.
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To conclude this section, we present three conjectures. First of all, we
conjecture that for n > m we have R(S,,W,,) =3n—-2ifm >5and m
is odd. For even n, we believe the Ramsey number R(S, W,,) should be
2n—1if n > 3 and n is odd, and 2n + 1 if n > 4 and n is even. Starting
with the results in [14] for W, we can use the proof technique from this
section to prove an upper bound of 3n — 2 for n > 2m — 4, but to establish
a sharper bound one will need a different approach. Finally, we conjecture
that the result from this section holds for general trees instead of stars. We
support this conjecture by proving it for star-like trees in the next section.

2.2 Large Star-like Trees versus Odd Wheels

With a star-like tree we mean a subdivided star (which is not a path), i.e.,
a tree with exactly one vertex of degree exceeding two. A star-like tree in
which only one of the edges of the star has been subdivided, is sometimes
called a comet in literature; it is usually denote by Y, ,, and consists of a
path P, and [ additional vertices of degree one, all adjacent to the same
end vertex of the P, . For this reason, and because of the series of results we
will present below, we denote by Y,, 1, 1,,....1, the star-like tree consisting of
a Py, and k additional mutually disjoint paths P,, P, ..., P, all attached
by one edge from one of their end vertices to the same end vertex of the P,.
If alll; are equal to 1, we use the shorter notation Y,, x to denote Y, 4, 15,...1x.-

Starting with our result on stars from the previous section, we will show
in a number of steps that the same result holds for star-like trees instead of
stars. This is done first for Y;, 1,1, then for Y}, &, and so on. For convenience,
we have split the main result in a number of (weaker) results.

Lemma 1. R(Y,, 11, W) =3(n+2)—2 forn >m >5 and m odd.

Proof. We use induction on m. For i = 5, we can apply the result in (1] that
R(T»,Ws) = 3n—2forn > 3and T, # S,. Now assume the lemma holds for
5 <m < k, with m and k odd. We will show that R(Y, 1,1, Wi) = 3(n+2)-2
for n > k. Consider a graph F on 3(n+2)—2 vertices for n > k and suppose
F contains no Y, ;,;. We will show that F contains Wy. To the contrary
assume this is not the case. Then it is not difficult to show that F con-
tains a vertex z such that |[Ng(z)| > 3; otherwise the high degrees in F
easily yield a W;; we leave the details to the reader. Now consider a Y; 11
in F which is maximal with respect to ¢t. It is clear that 2 < ¢t < n — 1.
Denote with yi,y2, y3 the end vertices of Y; 1,1, where y3 is the end vertex
of the P;. By the maximality of ¢, y3 is not adjacent in F to a vertex in
X =V(F)\V(Y,1,1). We have | X|=3(n+2)-2—-(t+2) >2(n+2)-1.
By a result in [12], [6], and [10], that R(C,,Cr) =2n—-1for3 <k <n, k
odd, and (n,k) # (3,3), we obtain that F[X] contains a cycle Cp42 with
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vertex set U, say. Denote Z = X \ U. Then |Z| > n + 1. We obtain the
following facts.

Fact 1. No vertez of U is adjacent in F to a verter in V(Y;1,1) U 2.
Otherwise, we clearly get a contradiction with the choice of ¢.
Fact 2. F[U] is a complete graph.

Otherwise, assume there exist nonadjacent vertices u,v € U. Using Fact 1,
it is not difficult to construct in F a Cj, starting at u, alternating between
U and Z, and ending, via v, at u. This implies F' contains a W, with y3 as
a hub, a contradiction.

By Fact 2, F[U] contains Y5 1,1, our final contradiction. |

Lemma 2. R(Y, 4, W) =3(n+k)-2forn>2m—-4,k>2, m>5m
odd.

Proof. Let m > 5 be a fixed odd integer. Let F be a graph on 3(n + k&) — 2
vertices and suppose F contains no W,,. We will show that F contains
Y, k. By the result of the previous section, F' contains a star Spyx. If F is
disconnected, then one easily shows the existence of Y;, i in F, using that F
is the join of two subgraphs and does not contain W,,,. We omit the details.
Now assume F' is connected and contains no Y;, ;. Consider a V;; in F
chosen in such a way that ¢ is as large as possible. Such a subgraph exists
because of the presence of the star S, in F. We get that 2 <t <n -1,
and denote by z; and z; the end vertices of the P, and by v1,...,yx the
other end vertices of Y; x, assuming x; is the vertex with degree exceeding
2. Now z; is clearly not adjacent to a vertex in X = V(F)\ V(Y k). As in
the proof of Lemma 1, we obtain that F[X] contains a Cy. Let A = V(Cy)
and B = X \ A. By similar arguments we find a cycle Cz)4, in F[B]. We
let D =V(C|2)4+1) and Z = B\ D, and obtain the following facts.

Fact 1. No verter of Y; x is adjacent in F' to a vertez in A.
Otherwise, we clearly get a contradiction with the choice of ¢.

Fact 2. Each vertez of A is adjacent to at most k — 1 vertices in B.
Otherwise, we easily obtain Y,, ; in F, a contradiction.

Now we distinguish two cases.
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Case 1. No vertezx of A is adjacent to a vertez of D.

By similar arguments as in the proof of Lemma 1, using that F contains
no Wp,, we conclude that both F[A] and F[D] are complete graphs. The
connectivity of /' now implies there exists a vertex z € Z that is adjacent to
both a vertex of ¥; x and a vertex of A. This obviously implies F' contains
Y, k, @ contradiction.

Case 2. Some vertez of A is adjacent to a vertez in D.

Since F contains no Yy, x, no vertex of AU D is adjacent to a vertex of Y .
Since F is connected, there exists a vertex z € Z that is adjacent to both
a vertex of Y; ; and a vertex of AU D. This again implies F' contains Y, ,
our final contradiction. [ |

Below we use Y,, » . to denote Y}, 1,1,...,1, where the number of 1s is .

Lemma 3. R(Yn kW) =3(n+r+k)—2 forn >2m—-4,n>r,m > 5,
m odd, and k+1 2> | 3| + 1.

Proof. We use induction on &k + r. According to Lemma 2, the lemma is
true for k = 1 and r = 1. Assume the lemma holds for &',7' with | 2] +1 <
k'+71' < k+r. We shall show that the lemma holds for k4. Let the graph F
have 3(n+r+k)—2 vertices and suppose F contains no W,,. We shall show
that F' must contain Y;, ;. If F' is disconnected, then it is easy to see that
F contains Yy, , x, as in the proof of Lemma 2. Now suppose F is connected.
By the induction assumption, F' contains Y,, -k, say with x; as the vertex
with degree exceeding 2; denote by z,, the other end vertex of the path P,
in Y3 r—1,- Denote by v,_, the end vertex of Y, »_1 x corresponding to the
P,._,, and by y1,¥2, ...,y the other end vertices of Yy, 1 -

Let X = V(F)\V(Ya,r-1,k). To the contrary, suppose F' contains no Yy k.
Then v,_; is not adjacent to a vertex in X. As in the previous proof,
this implies the subgraph F[X] contains two cycles Cp, and Cy a4 tx- Let
A=V(C.),D=V(Ciz)4r+x) and Z = X\(AUD).If Cy, is not connected
to C|g)4r41, then, as before, F[A]} and F[D] are both complete graphs,
and F clearly contains Yy, ;. Next suppose C,, is connected to Cl 2 | rdks
namely, a;d, € E(F) for a; € A,d; € D. Then we obtain the followmg
facts. We omit the proofs because they are similar to previous proofs.

Fact 1. No w € AU D is adjacent to a vertez in {Z1,Y1,..-Y1, V1, ...Ur—1}.

Fact 2. There exists vertices z, and 2o in a path P, C F[Z] such that z, is
adjacent to a verter in A and z» to a vertez in zj € {T2,T3,...,Tn}.
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Fact 3. 21 is not adjacent to a vertez in {z1,11,..y1,%1,...0r—1} and
|Np(z1)| < k1.

Fact 4. The complement of the subgraph of F induced by {z1,y,...u1,
V1, ...Ur—1} U D\Np(21) contains Cy,.

Thus, we obtain a W,,, with z; as a hub, a contradiction. This completes
the proof. |

We are now prepared to present the main result of this section.

k
Theorem 3. R(Yy 1, 05,...10: Wim) =3(D_ L) — 2 forn > 2m —4,n > I; for
i=1
k
eachi=1,2,...k,m>5 odd, and | 3| +1< Y L.
i=1

Proof. The proof of this theorem is similar to that of Lemma 3, using

k
induction on Y~ I; . We omit the details. |

i=1
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