The Ramsey numbers of large star and large star-like trees versus odd wheels

Surahmat^{1*}, Edy Tri Baskoro², H. J. Broersma³

Department of Mathematics Education, Universitas Islam Malang, Jalan MT Haryono 193 Malang 65144, Indonesia caksurahmat@yahoo.com

² Department of Mathematics Institut Teknologi Bandung, Jalan Ganesa 10 Bandung, Indonesia ebaskoro@math.itb.ac.id

³ Faculty of Mathematical Sciences University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands, broersma@math.utwente.nl

Abstract. For two given graphs G and H, the Ramsey number R(G,H) is the smallest positive integer N such that for every graph F of order N the following holds: either F contains G as a subgraph or the complement of F contains H as a subgraph. In this paper, we shall study the Ramsey number $R(T_n, W_m)$ for a star-like tree T_n with n vertices and a wheel W_m with m+1 vertices and m odd. We show that the Ramsey number $R(S_n, W_m) = 3n-2$ for $n \geq 2m-4, m \geq 5$ and m odd, where S_n denotes the star on n vertices. We conjecture that the Ramsey number is the same for general trees on n vertices, and support this conjecture by proving it for a number of star-like trees.

Keywords: Ramsey number, star, tree, wheel. AMS Subject Classifications: 05C55, 05D10.

1 Introduction

Throughout the paper, all graphs are finite and simple. Let G be such a graph. We write V(G) or V for the vertex set of G and E(G) or E for the edge set of G. The graph \overline{G} is the *complement* of the graph G, i.e.,

^{*} Part of the work was done while the first author was visiting the University of Twente

the graph obtained from the complete graph $K_{|V(G)|}$ on |V(G)| vertices by deleting the edges of G.

The graph H=(V',E') is a subgraph of G=(V,E) if $V'\subseteq V$ and $E'\subseteq E\cap (V'\times V')$. For any nonempty subset $S\subset V$, the induced subgraph by S is the maximal subgraph of G with vertex set S; it is denoted by G[S].

If $e = \{u, v\} \in E$ (in short, e = uv), then u is called adjacent to v, and u and v are called neighbors. For each $x \in V$ and $B \subset V$, define $N_B(x) = \{y \in B : xy \in E\}$. The degree $\delta(x)$ of a vertex x is $|N_V(x)|$.

A cycle C_n of length $n \geq 3$ is a connected graph on n vertices in which every vertex has degree two. A $star \, S_n$ is a connected graph with one vertex of degree n-1, called the center, and n-1 vertices of degree one. A wheel W_n is a graph on n+1 vertices obtained from a C_n by adding one vertex x, called the hub of the wheel, and making x adjacent to all vertices of the C_n , called the rim of the wheel.

Given two graphs G and H, the Ramsey number R(G,H) is defined as the smallest natural number N such that every graph F on N vertices satisfies the following condition: F contains G as a subgraph or \overline{F} contains H as a subgraph.

Chvátal and Harary [4] studied Ramsey numbers for graphs and established the lower bound: $R(G,H) \geq (\chi(G)-1)(|V(H)|-1)+1$, where $\chi(G)$ is the chromatic number of G. In their paper they also showed that $R(T_n,K_m)=(n-1)(m-1)+1$, where T_n is an arbitrary tree on n vertices and K_m is a complete graph on m vertices.

Several results have been obtained for wheels. For instance, Henry [8] showed $R(W_3, W_4) = 17$ and $R(W_4, W_4) = 15$ [7]. Faudree and McKay [5] established $R(W_3, W_5) = 19$, $R(W_4, W_5) = 17$ and $R(W_5, W_5) = 17$.

For a combination of cycles and wheels, Burr and Erdős [2] showed that $R(C_3, W_m) = 2m + 1$ for each $m \ge 5$. Then Radziszowski and Xia [11] gave a simple and unified method to establish the Ramsey number $R(G, C_3)$, where G is either a path, a cycle or a wheel.

Recently, in [14], it was shown that the Ramsey number $R(S_n, W_4) = 2n - 1$ if $n \ge 3$ and n is odd, $R(S_n, W_4) = 2n + 1$ if $n \ge 4$ and n is even, and $R(S_n, W_5) = 3n - 2$ for each $n \ge 3$.

2 Main Results

In the sequel we will study the Ramsey number $R(T_n, W_m)$, where T_n is a tree on n vertices, and m is odd. We first determine $R(S_n, W_m)$ in the next section, and discuss other trees later.

2.1 Large Stars versus Odd Wheels

The aim of this section is to determine the Ramsey number for a combination of a star S_n and a wheel W_m . We show that $R(S_n, W_m) = 3n - 2$ for $n \ge 2m - 4$, $m \ge 5$ and m odd.

For the lower bound, consider the graph $F = 3K_{n-1}$ for $n \ge 2m - 4$. Then F has 3n - 3 vertices and it has no star S_n , whereas its complement has no W_m with $m \ge 5$ and m odd. Thus $R(S_n, W_m) \ge 3n - 2$. Note that the lower bound is valid for general trees on n vertices.

For the upper bound we will present a proof by induction, starting with the next result for W_5 obtained in [14].

Theorem 1. For all $n \ge 3$, $R(S_n, W_5) = 3n - 2$.

Theorem 2. For all $n \geq 2m-4$, $m \geq 5$ and m odd, $R(S_n, W_m) = 3n-2$.

Proof. We shall use induction on $m \geq 5$ for all odd m. The start of the induction is implied by Theorem 1: For m=5 we have $R(S_n,W_5)=3n-2$ if $n\geq 6$. Now assume the theorem holds for 5< m < k, k odd, namely, $R(S_n,W_m)=3n-2$ if $n\geq 2m-4$ and m is odd. We shall show that $R(S_n,W_k)=3n-2$ if $n\geq 2k-4$. Let F be a graph on 3n-2 vertices with $n\geq 2k-4$, and suppose F contains no star S_n . We shall show that its complement must contains W_k . To the contrary, assume \overline{F} contains no W_k . By the induction hypothesis, \overline{F} contains a W_{k-2} . Let a_0 denote the hub and $A=\{a_1,a_2,...,a_{k-2}\}$ the vertex set of the rim of such a W_{k-2} , in a cyclic ordering. In the remainder of the proof we use $N_S(v)$ to denote the neighbors of v in $S\subset V(F)$ in the graph F. Let $X=V(F)\setminus (A\cup \{a_0\})$ and $Y=X\setminus N_X(a_0)$. See Figure 1, in which edges in F are indicated by lines, and edges in \overline{F} by broken lines; dots between two vertices indicate that there might be more vertices in the same set.

Since F contains no S_n , $|Y| \ge |X| - (n-2) = 3n-2-(k-1)-(n-2) = 2n-k+1$. For each $a \in A$ there exists a vertex $y \in Y$ such that $ay \notin E(F)$; otherwise a has at least $2n-k+1 \ge \frac{3}{2}n-1 \ge n-1$ neighbors, since $k \le \frac{n+4}{2}$, yielding an S_n . Now, let $y_0 \in Y$ be a nonneighbor in F of $a_i \in A$ for a fixed $i \in \{1, 2, ..., k-2\}$. Define $Y_1 = \{y \in Y : y \text{ is adjacent to } y_0 \text{ in } F\}$ and $Y_2 = \{y \in Y : y \text{ is not adjacent to } y_0 \text{ in } F\}$. Then, $Y_1 \cup Y_2 = Y \setminus \{y_0\}$. Since F contains no S_n , $|Y_1| \le n-2$ and hence $|Y_2| \ge (2n-k+1)-(n-2)-1 = n-k+2$. Since \overline{F} contains no W_k , we obtain the following fact.

Fact 1.
$$N_{Y_2}(a_j) = Y_2$$
 for $j = i - 1$ and $j = i + 1$.

Otherwise, replacing for instance $a_i a_{i+1}$ in \overline{F} by $a_i y_0 y^* a_{i+1}$ in \overline{F} for some $y^* \in Y_2 \setminus N_{Y_2}(a_{i+1})$, we obtain a W_k in \overline{F} .

Since F contains no S_n , we can use Fact 1 to obtain the next fact.

Fig. 1. The set up of the proof of Theorem 6.

Fact 2. $|N_{Y_1}(a_j)| \le k-4$ for j = i-1 and j = i+1.

Otherwise, by Fact 1, a_j has at least n - k + 2 - (k - 3) = n - 1 neighbors in F, yielding an S_n .

Now distinguish the following two cases.

Case 1. a_{i-2} is not adjacent to y for some $y \in Y_2$.

See Figure 2.

Fig. 2. Case 1 of the proof of Theorem 6.

Suppose a_{i-2} is not adjacent to $y_1 \in Y_2$. Since \overline{F} contains no W_k , then $y_1y \in E(F)$ for each $y \in (Y_1 \cup Y_2) \backslash (N_{Y_1}(a_{i-1}) \cup \{y_1\})$; otherwise, we can either replace $a_{i-2}a_{i-1}$ by $a_{i-2}y_1y_2a_{i-1}$ in \overline{F} for some suitable $y_2 \in Y_1$, or replace $a_{i-2}a_{i-1}a_i$ by $a_{i-2}y_1y_2y_0a_i$ in \overline{F} for some suitable $y_2 \in Y_2$, to obtain a W_k in \overline{F} . We conclude that $|N_Y(y_1)| \geq |Y_2| - 1 + |Y_1| - |N_{Y_1}(a_{i-1})| = |Y| - 2 - |N_{Y_1}(a_{i-1})| \geq (2n-k-1) - (k-4) = 2n-2k+3 \geq n+1$, yielding an S_n in F, a contradiction.

Case 2. a_{i-2} is adjacent to all $y \in Y_2$.

See Figure 3.

Since F contains no S_n , a_{i-2} has at most $(n-2)-|Y_2|$ neighbors in Y_1 in the graph F, hence at least $|Y_1|-(n-2)+|Y_2|=|Y|-n+1\geq n-k+2$ nonneighbors in Y_1 . Using Fact 2, at least $(n-k+2)-(k-4)=n-2k+6\geq 2$ vertices of Y_1 are nonneighbors in F of both a_{i-1} and a_{i-2} . By symmetry, if we are not in Case 1 for a_{i+2} instead of a_{i-2} , we may assume that at least two vertices of Y_1 are nonneighbors in F of both a_{i+1} and a_{i+2} . It is obvious that we can now find two suitable vertices $y_1, y_2 \in Y_1$, and replace $a_{i-1}a_{i-2}$ in \overline{F} by $a_{i-1}y_1a_{i-2}$ and $a_{i+1}a_{i+2}$ by $a_{i+1}y_2a_{i+2}$, to obtain a W_k in \overline{F} , our final contradiction.

Fig. 3. Case 2 of the proof of Theorem 6.

To conclude this section, we present three conjectures. First of all, we conjecture that for $n \ge m$ we have $R(S_n, W_m) = 3n - 2$ if $m \ge 5$ and m is odd. For even n, we believe the Ramsey number $R(S_n, W_m)$ should be 2n-1 if $n \ge 3$ and n is odd, and 2n+1 if $n \ge 4$ and n is even. Starting with the results in [14] for W_4 we can use the proof technique from this section to prove an upper bound of 3n-2 for $n \ge 2m-4$, but to establish a sharper bound one will need a different approach. Finally, we conjecture that the result from this section holds for general trees instead of stars. We support this conjecture by proving it for star-like trees in the next section.

2.2 Large Star-like Trees versus Odd Wheels

With a star-like tree we mean a subdivided star (which is not a path), i.e., a tree with exactly one vertex of degree exceeding two. A star-like tree in which only one of the edges of the star has been subdivided, is sometimes called a comet in literature; it is usually denote by $Y_{n,l}$, and consists of a path P_n and l additional vertices of degree one, all adjacent to the same end vertex of the P_n . For this reason, and because of the series of results we will present below, we denote by $Y_{n,l_1,l_2,...,l_k}$ the star-like tree consisting of a P_n , and k additional mutually disjoint paths $P_{l_1}, P_{l_2}, \ldots, P_{l_k}$ all attached by one edge from one of their end vertices to the same end vertex of the P_n . If all l_i are equal to 1, we use the shorter notation $Y_{n,k}$ to denote $Y_{n,l_1,l_2,...,l_k}$.

Starting with our result on stars from the previous section, we will show in a number of steps that the same result holds for star-like trees instead of stars. This is done first for $Y_{n,1,1}$, then for $Y_{n,\underline{k}}$, and so on. For convenience, we have split the main result in a number of (weaker) results.

Lemma 1.
$$R(Y_{n,1,1}, W_m) = 3(n+2) - 2$$
 for $n \ge m \ge 5$ and m odd.

Proof. We use induction on m. For m=5, we can apply the result in [1] that $R(T_n,W_5)=3n-2$ for $n\geq 3$ and $T_n\neq S_n$. Now assume the lemma holds for $5\leq m< k$, with m and k odd. We will show that $R(Y_{n,1,1},W_k)=3(n+2)-2$ for $n\geq k$. Consider a graph F on 3(n+2)-2 vertices for $n\geq k$ and suppose F contains no $Y_{n,1,1}$. We will show that \overline{F} contains W_k . To the contrary assume this is not the case. Then it is not difficult to show that F contains a vertex x such that $|N_F(x)|\geq 3$; otherwise the high degrees in \overline{F} easily yield a W_k ; we leave the details to the reader. Now consider a $Y_{t,1,1}$ in F which is maximal with respect to t. It is clear that $1\leq t\leq n-1$. Denote with $1\leq t\leq t\leq n-1$. Denote with $1\leq t\leq t\leq t\leq t$ contains $1\leq t\leq t\leq t\leq t$. By the maximality of $1\leq t\leq t\leq t\leq t$ contains $1\leq t\leq t\leq t\leq t$. By a result in $1\leq t\leq t\leq t$ contains a cycle $1\leq t\leq t\leq t$. By a result in $1\leq t\leq t\leq t$ contains a cycle $1\leq t\leq t\leq t$. By an analysis in $1\leq t\leq t\leq t$ contains a cycle $1\leq t\leq t\leq t$. By an analysis in $1\leq t\leq t\leq t$ contains a cycle $1\leq t\leq t\leq t$. By an analysis in $1\leq t\leq t\leq t$ contains a cycle $1\leq t\leq t\leq t$.

vertex set U, say. Denote $Z = X \setminus U$. Then $|Z| \ge n + 1$. We obtain the following facts.

Fact 1. No vertex of U is adjacent in F to a vertex in $V(Y_{t,1,1}) \cup Z$.

Otherwise, we clearly get a contradiction with the choice of t.

Fact 2. F[U] is a complete graph.

Otherwise, assume there exist nonadjacent vertices $u, v \in U$. Using Fact 1, it is not difficult to construct in \overline{F} a C_k starting at u, alternating between U and Z, and ending, via v, at u. This implies \overline{F} contains a W_k with y_3 as a hub, a contradiction.

By Fact 2, F[U] contains $Y_{n,1,1}$, our final contradiction.

Lemma 2. $R(Y_{n,\underline{k}},W_m) = 3(n+k) - 2$ for $n \ge 2m-4$, $k \ge 2$, $m \ge 5$, m odd.

Fact 1. No vertex of $Y_{t,\underline{k}}$ is adjacent in F to a vertex in A.

Otherwise, we clearly get a contradiction with the choice of t.

Fact 2. Each vertex of A is adjacent to at most k-1 vertices in B.

Otherwise, we easily obtain $Y_{n,k}$ in F, a contradiction.

Now we distinguish two cases.

Case 1. No vertex of A is adjacent to a vertex of D.

By similar arguments as in the proof of Lemma 1, using that \overline{F} contains no W_m , we conclude that both F[A] and F[D] are complete graphs. The connectivity of F now implies there exists a vertex $z \in Z$ that is adjacent to both a vertex of $Y_{t,\underline{k}}$ and a vertex of A. This obviously implies F contains $Y_{n,\underline{k}}$, a contradiction.

Case 2. Some vertex of A is adjacent to a vertex in D.

Since F contains no $Y_{n,\underline{k}}$, no vertex of $A \cup D$ is adjacent to a vertex of $Y_{t,\underline{k}}$. Since F is connected, there exists a vertex $z \in Z$ that is adjacent to both a vertex of $Y_{t,\underline{k}}$ and a vertex of $A \cup D$. This again implies F contains $Y_{n,\underline{k}}$, our final contradiction.

Below we use $Y_{n,r,\underline{k}}$ to denote $Y_{n,r,1,1,\ldots,1}$, where the number of 1s is k.

Lemma 3. $R(Y_{n,r,\underline{k}},W_m)=3(n+r+k)-2$ for $n\geq 2m-4, n\geq r, m\geq 5$, m odd, and $k+r\geq \lfloor \frac{m}{2}\rfloor+1$.

Proof. We use induction on k+r. According to Lemma 2, the lemma is true for k=1 and r=1. Assume the lemma holds for k',r' with $\lfloor \frac{m}{2} \rfloor + 1 \le k'+r' < k+r$. We shall show that the lemma holds for k+r. Let the graph F have 3(n+r+k)-2 vertices and suppose \overline{F} contains no W_m . We shall show that F must contain $Y_{n,r,\underline{k}}$. If F is disconnected, then it is easy to see that F contains $Y_{n,r,\underline{k}}$, as in the proof of Lemma 2. Now suppose F is connected. By the induction assumption, F contains $Y_{n,r-1,\underline{k}}$, say with x_1 as the vertex with degree exceeding 2; denote by x_n the other end vertex of the path P_n in $Y_{n,r-1,\underline{k}}$. Denote by v_{r-1} the end vertex of $Y_{n,r-1,\underline{k}}$ corresponding to the P_{r-1} , and by y_1, y_2, \ldots, y_l the other end vertices of $Y_{n,r-1,\underline{k}}$. Let $X = V(F) \setminus V(Y_{n,r-1,k})$. To the contrary, suppose F contains no $Y_{n,r,\underline{k}}$.

Let $X = V(F) \setminus V(Y_{n,r-1,\underline{k}})$. To the contrary, suppose F contains no $Y_{n,r,\underline{k}}$. Then v_{r-1} is not adjacent to a vertex in X. As in the previous proof, this implies the subgraph F[X] contains two cycles C_n and $C_{\lfloor \frac{n}{2} \rfloor + r + k}$. Let $A = V(C_n)$, $D = V(C_{\lfloor \frac{n}{2} \rfloor + r + k})$ and $Z = X \setminus (A \cup D)$. If C_n is not connected to $C_{\lfloor \frac{n}{2} \rfloor + r + l}$, then, as before, F[A] and F[D] are both complete graphs, and F clearly contains $Y_{n,r,\underline{k}}$. Next suppose C_n is connected to $C_{\lfloor \frac{n}{2} \rfloor + r + k}$, namely, $a_1d_1 \in E(F)$ for $a_1 \in A, d_1 \in D$. Then we obtain the following facts. We omit the proofs because they are similar to previous proofs.

Fact 1. No $w \in A \cup D$ is adjacent to a vertex in $\{x_1, y_1, ... y_l, v_1, ... v_{r-1}\}$.

Fact 2. There exists vertices z_1 and z_2 in a path $P_l \subseteq F[Z]$ such that z_1 is adjacent to a vertex in A and z_2 to a vertex in $x_i \in \{x_2, x_3, ..., x_n\}$.

Fact 3. z_1 is not adjacent to a vertex in $\{x_1, y_1, ... y_l, v_1, ... v_{r-1}\}$ and $|N_D(z_1)| \le k-1$.

Fact 4. The complement of the subgraph of F induced by $\{x_1, y_1, ... y_l, v_1, ... v_{r-1}\} \cup D \setminus N_D(z_1)$ contains C_m .

Thus, we obtain a W_m with z_1 as a hub, a contradiction. This completes the proof.

We are now prepared to present the main result of this section.

Theorem 3.
$$R(Y_{n,l_1,l_2,...,l_k},W_m) = 3(\sum_{i=1}^k l_i) - 2 \text{ for } n \geq 2m-4, n \geq l_i \text{ for } each \ i = 1, 2, ..., k, \ m \geq 5 \text{ odd, and } \lfloor \frac{m}{2} \rfloor + 1 \leq \sum_{i=1}^k l_i.$$

Proof. The proof of this theorem is similar to that of Lemma 3, using induction on $\sum_{i=1}^{k} l_i$. We omit the details.

References

- E. T. Baskoro, Surahmat, S.M. Nababan, and M. Miller, On Ramsey Graph Numbers for all Trees versus W₄ or W₅, Graphs and Combinatorics 18, (2002) 4, 717-721.
- S. A. Burr and P. Erdős, Generalization of a Ramsey-Theoretic Result of Chvátal, Journal of Graph Theory 7 (1983) 39-51.
- Chen Guantao, A Result on C₄-Star Ramsey Numbers, Discrete Mathematics 163 (1997) 243-246.
- V. Chvátal and F. Harary, Generalized Ramsey Theory for Graphs, III. Small off Diagonal Numbers, Pas. Journal Math. 41 (1972) 335-345.
- 5. R. J. Faudree and B. D. McKay, Λ Conjecture of Erdős and the Ramsey Number $R(W_6)$, Journal of Combinatorial Mathematics and Combinatorial Computing 13 (1993) 23-31.
- R. J. Faudree and R. H. Schelp, All Ramsey Numbers for Cycles in Graphs, Discrete Mathematics 8 (1974) 313-329.
- H. Harborth and I. Mengersen, All Ramsey Number for Five Vertices and Seven or Eight edges, Discrete Mathematics 73 (1988/1989) 91-98.
- 8. G.R.T. Henry, The Ramsey Numbers $R(K_2 + \overline{K}_3, K_4)$ and $R(K_1 + C_4, K_4)$, Utilitas Mathemathica 41 (1992) 181-203.
- 9. C. J. Jayawardene and C. C. Rousseau, Ramsey Number $R(C_5, G)$ for all Graphs G of Order Six, *Preprint*.
- G. Karolyi and V. Rosta, Generalized and Geometric Ramsey Numbers for Cycles, Preprint (1998).

- S. P. Radziszowski and J. Xia, Paths, Cycles and Wheels without Antitriangles, Australasian Journal of Combinatorics 9 (1994) 221-232.
- V. Rosta, On a Ramsey Type Problem of J.A. Bondy and P. Erdős, Journal of Combinatorial Theory (B) 15 (1973) 94-120.
- 13. Y J Sheng, H Y Ru and Z K Min, $R(C_n, K_4) = 3(n-1)+1$, $(n \ge 4)$, Preprint.
- 14. Surahmat and Edy Tri Baskoro, On The Ramsey Number of a Path or a Star versus W_4 or W_5 , Proceedings of the 12-th Australasian Workshop on Combinatorial Algorithms, Bandung, Indonesia, July 14-17 (2001) 165-170.
- H. L. Zhou, The Ramsey Number of an Odd Cycles With respect to a Wheel (in chinese), Journal of Mathematics, Shuxu Zazhi (Wuhan) 15 (1995), 119-120.