The computational complexity of λ -backbone colorings of graphs with n-complete backbones

A. N. M. Salman

Combinatorial Mathematics Research Division Faculty of Mathematics and Natural Sciences Institut Teknologi Bandung Jl. Ganesa 10 Bandung, Indonesia msalman@math.itb.ac.id

Abstract. Given an integer $\lambda \geq 2$, a graph G = (V, E) and a spanning subgraph H of G (the backbone of G), a λ -backbone coloring of (G, H) is a proper vertex coloring $V \to \{1, 2, \ldots\}$ of G, in which the colors assigned to adjacent vertices in H differ by at least λ . We study the computational complexity of the problem "Given a graph G with a backbone H, and an integer ℓ , is there a λ -backbone coloring of (G, H) with at most ℓ colors?" Of course, this general problem is NP-complete. In this paper, we consider this problem for collections of pairwise disjoint complete graphs with order n. We show that the complexity jumps from polynomially solvable to NP-complete between $\ell = (n-1)\lambda$ and $\ell = (n-1)\lambda + 1$.

Keywords: λ -backbone coloring, λ -backbone coloring number, n-complete backbone, computational complexity. 2000 Mathematics Subject Classification: 05C15, 05C78

1 Introduction

In [2] backbone colorings are introduced, motivated and put into a general framework of coloring problems related to frequency assignment. We refer to [2], [3], [4], [6], and [7] for an overview of related research, but we repeat the relevant definitions here. For undefined terminology we refer to [1].

Let G=(V,E) be a graph, where $V=V_G$ is a finite set of vertices and $E=E_G$ is a set of unordered pairs of two different vertices, called edges. A vertex function $f:V\to\{1,2,3,\ldots\}$ is called a *proper vertex coloring* of V if $|f(u)-f(v)|\geq 1$ holds for all edges $uv\in E$. A proper vertex coloring $f:V\to\{1,\ldots,k\}$ is called a k-coloring, and the chromatic number $\chi(G)$ is the smallest integer k for which there exists a k-coloring. A set $V'\subseteq V$

is independent if G does not contain edges with both end vertices in V'. By definition, a k-coloring partitions V into k independent sets V_1, \ldots, V_k .

Let H be a spanning subgraph of G, i.e., $H = (V_G, E_H)$ with $E_H \subseteq E_G$. Given an integer $\lambda \geq 2$, a proper vertex coloring f is a λ -backbone coloring of (G, H), if $|f(u) - f(v)| \geq \lambda$ holds for all edges $uv \in E_H$. The λ -backbone coloring number $BBC_{\lambda}(G, H)$ of (G, H) is the smallest integer ℓ for which there exists a λ -backbone coloring $f: V \to \{1, \ldots, \ell\}$.

We call a spanning subgraph H of a graph G

- an *n*-complete backbone of G if H is a collection of pairwise disjoint complete graphs with order $n \geq 3$;
- a star backbone of G if H is a collection of pairwise disjoint stars;
- a matching backbone of G if H is a (perfect) matching.
- a tree backbone of G if H is a tree;
- a path backbone of G if H is a (Hamilton) path;

The following decision problem can be posed.

Problem 4 Given a graph G, a spanning subgraph H, and an integer ℓ , is $BBC_{\lambda}(G, H) \leq \ell$?

In general this problem is NP-complete. For particular instances of the problem complexity jumps from polynomial to NP-complete have been observed in several cases. If H is a tree backbone of G and $\lambda=2$ the complexity jump occurs between $\ell=4$ (easy for all tree backbones) and $\ell=5$ (difficult even for path backbones) [2]. If H is a star backbone of G and $\lambda \geq 2$ the complexity jump occurs between $\ell=\lambda+1$ (easy for all star backbones) and $\ell=\lambda+2$ (difficult even for matching backbones) [3]. In this paper we consider this problem for n-complete backbones.

2 Main results

In this section we show that if H is an n-complete backbone of G for Problem 4, then the complexity jump occurs between $\ell = (n-1)\lambda$ and $\ell = (n-1)\lambda + 1$.

Theorem 5 Let $\lambda \geq 2$.

- (a) The following problem is polynomially solvable for any $\ell \leq (n-1)\lambda$: Given a graph G and an n-complete backbone \tilde{K}_n , decide whether $\mathrm{BBC}_{\lambda}(G,\tilde{K}_n) \leq \ell$.
- (b) The following problem is NP-complete for all $\ell \geq (n-1)\lambda + 1$: Given a graph G and an n-complete backbone \tilde{K}_n , decide whether $\mathrm{BBC}_{\lambda}(G, \tilde{K}_n) \leq \ell$.

Proof. We start with the positive result in statement (a). Let $\ell \leq (n-1)\lambda$ and G = (V, E) be a graph with an *n*-complete backbone $\tilde{K}_n = (V, E_{\tilde{K}_n})$. Since every vertex in $V_{\tilde{K}_n}$ is in one $V(K_n)$, we need at least *n* colors with a distance at least λ apart. So there is no a λ -backbone coloring with color set $\{1, 2, \ldots, \ell\}$ for (G, \tilde{K}_n) .

Now let us prove the negative result in statement (b). The reduction is done from the NP-complete classical problem of GRAPH k-COLORABILITY (see Garey & Johnson [5] problem [GT 4] for more information): Given a graph $H = (V_H, E_H)$, does there exist a k-coloring of H? This problem is known to be NP-complete for any integer $k \geq 3$. We distinguish the following cases.

Case 1 $\ell = (n-1)\lambda + t$ for $t = 1, ..., \lambda - 1$.

Let $H = (V_H, E_H)$ be an instance of ℓ colorability, and let v_1, v_2, \ldots, v_m denote the vertices in V_H . We create m(n-1) new vertices $u_{i,j}$ $(i=1,\ldots,m$ and $j=2,\ldots,n)$ and introduce the new edges $v_iu_{i,j}$ $(i=1,\ldots,m$ and $j=2,\ldots,n)$ and $u_{i,j}u_{i,k}$ $(i=1,\ldots,m,\ 2\leq j< k\leq n)$. The graph that results from this is denoted by G. The new edges form an n-complete backbone \tilde{K}_n of G. We complete the proof by showing that $\chi(H)\leq n\cdot t$ if and only if $\mathrm{BBC}_{\lambda}(G,\tilde{K}_n)\leq \ell$.

Assume that $\mathrm{BBC}_{\lambda}(G,\tilde{K}_n) \leq l$ and consider a λ -backbone ℓ -coloring b of (G,\tilde{K}_n) . Since for every vertex $v \in V_G$ there are exactly n-1 edges in $E_{\tilde{K}_n}$ that are incident with v, colors $p \cdot \lambda + q$ for $p = 0, \ldots, n-2$ and $q = t+1, \ldots, \lambda$ can not be used at all. Then define a $n \cdot t$ -coloring c of d by:

- if
$$b(v) = p \cdot \lambda + k$$
 for $p = 0, \dots, n-1$ and $k = 1, \dots, t$: $c(v) = p \cdot t + k$.

Next, assume that $\chi(H) \leq n \cdot t$, and consider a $n \cdot t$ -coloring $f: V_H \to \{1, \ldots, n \cdot t\}$. We define a λ -backbone ℓ -coloring $g: V_G \to \{1, \ldots, \ell\}$ of (G, \tilde{K}_n) by:

- if $v \in V_H$ and $f(v) = p \cdot t + k$ for $p = 0, \ldots, n-1$ and $k = 1, \ldots, t$: $g(v) = p \cdot \lambda + k$;
- if $p \cdot \lambda + 1 \le g(v_i) \le p \cdot \lambda + t$ for $p = 0, \ldots, n-1$:

$$g(u_{i,j}) = \begin{cases} (j-2)\lambda + 1 & \text{for } j \le p+1\\ (j-1)\lambda + t & \text{for } j \ge p+2. \end{cases}$$

Case 2 $\ell \geq n\lambda$.

Let $H = (V_H, E_H)$ be an instance of ℓ colorability, and let v_1, v_2, \ldots, v_m denote the vertices in V_H . We create m(n-1) new vertices $u_{i,j}$ $(i = 1, \ldots, m$ and $j = 2, \ldots, n)$ and introduce the new edges $v_i u_{i,j}$ $(i = 1, \ldots, m$ and $j = 2, \ldots, n$) and $u_{i,j} u_{i,k}$ $(i = 1, \ldots, m, 2 \le j < k \le n)$. The graph

that results from this is denoted by G. The new edges form an n-complete backbone \tilde{K}_n of G. We complete the proof by showing that $\chi(H) \leq \ell$ if and only if $BBC_{\lambda}(G, \tilde{K}_n) \leq \ell$.

Indeed, assume that $\mathrm{BBC}_{\lambda}(G, \tilde{K}_n) \leq \ell$ and consider such a λ -backbone ℓ -coloring. Then the restriction to the vertices in V_H yields a ℓ -coloring of H. Next assume that $\chi(H) \leq \ell$, and consider a ℓ -coloring $f: V_H \to \{1, \ldots, \ell\}$. We define a λ -backbone ℓ -coloring $g: V_G \to \{1, \ldots, \ell\}$ of (G, \tilde{K}_n) by:

$$-g(v) = f(v) \text{ for } v \in V_H;$$

- if $p \cdot \lambda + 1 \le g(v_i) \le (p+1)\lambda$ for $p = 0, \ldots, n-1$ and $i = 1, \ldots, m$:

 $g(u_{i,j})=\left\{ \begin{array}{ll} (j-2)\lambda+1 & \text{for } j\leq p+1\\ j\cdot\lambda & \text{for } j\geq p+2. \end{array} \right.$ This completes the proof.

_

3 Acknowledgments

This research was supported by The Research Fund of Institut Teknologi Bandung, Program Riset Unggulan ITB No.: 0018/K01.03.2/PL2.1.5/I/2006.

References

- 1. J.A. BONDY AND U.S.R. MURTY, Graph Theory with Applications, Macmillan, London and Elsevier, New York (1976).
- H.J. BROERSMA, F.V. FOMIN, P.A. GOLOVACH, AND G.J. WOEGINGER, Backbone colorings for networks, Lecture Notes in Computer Science 2880 (2003) 131-142. The full paper version "Backbone colorings for graphs: tree and path backbones" has been published online in: Journal of Graph Theory. DOI link is: http://dx.doi.org/10.1002/jgt.20228.
- H.J. BROERSMA, J. FUJISAWA, L. MARCHAL, D. PAULUSMA, A.N.M. SALMAN, AND K. YOSHIMOTO, λ-Backbone colorings along pairwise disjoint stars and matchings, Accepted for publication in Discrete Mathematics (2007).
- H.J. BROERSMA, L. MARCHAL, D. PAULUSMA, AND A.N.M. SALMAN, Improved upper bounds for λ-backbone colorings along matchings and stars, in:
 Proceedings of the 33rd Conference on Current Trends in Theory and Practice of Computer Science SOFSEM 2007, LNCS 4362 (2007), 188–199.
- M.R. GAREY AND D.S. JOHNSON, Computers and Intractability, A Guide to the Theory of NP-Completeness, W.H. Freeman and Company, New York (1979).
- A.N.M. Salman, λ-Backbone colorings of graphs: known results and open problems, in: Proceedings of International Conference on Applied Mathematics ICAM05 (2005), 131-140.
- A.N.M. SALMAN, λ-Backbone coloring numbers of split graphs with tree backbones, in: Proceedings of The Second IMT-GT 2006 Regional Conference on Mathematics, Statistics, and Applications, (2006), 43-47.