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Abstract. It is well known that apart from the Petersen graph
there are no Moore graphs of degree 3. As a cubic graph must
have an even number of vertices, there are no graphs of maximum
degree 3 and 4 vertices less than the Moore bound, where J is
odd. Additionally, it is known that there exist only thrce graphs of
maximum degree 3 and 2 vertices less than the Moore bound. In this
paper, we consider graphs of maximum degree 3, diameter D > 2
and 4 vertices less than the Moorc bound, denoted as (3, D, 4)-
graphs. We obtain all non-isomorphic (3, D, 4)-graphs for D = 2.
Furthermore, for any diameter D, we consider the girth of (3, D, 4)-
graphs. By a counting argument, it is easy to see that the girth is
at least 2D — 2. The main contribution of this paper is that we
prove that the girth of a (3, D, 1)-graph is at lcast 2D — 1.
Finally, for D > 4, we conjecture that the girth of a (3, D, 4)-graph
is 2D.

Keywords: Degree/diameter problem, cubic graphs, Moore bound,
Moore graphs, defect.

1 Introdu_ction

Derived from the need of designing ever larger interconnection networks with
constraints on the specification of the network, many graph-theorctical problems
have arisen. One of thesc problems is the degree/diameter problem, which can be
enunciated as follows

* Research supported in part by the Australian Research Council grant ARC
DP0450294.

JCMCC 65 (2008), pp. 25-31



Degree/diameter problem: Given natural numbers A and D, find the largest
possible number of vertices na,p in a graph of maximum degree A and di-
ameter at most D.

This problem is also known as the (4, D)-graph problem. An upper hound for
na,p is given by the following expression; see [2].
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The right hand sidc of this expression is known as the Moore bound, and is
denoted by Ma,p. A graph whose order is equal to the Moore bound is called a
Moore graph.

Moore graphs exist only for certain special values of maximum degree and
diameter. For diameter D = | and degree A > 1, Moore graphs are the complete
graphs Ka4). For diameter D = 2, Hoffman and Singleton [5] proved that Moore
graphs exist for A = 2,3,7 and possibly A = 57, but not for any other degrees.
Finally, for D > 3 and A = 2, Moore graphs are the cycles on 2D + 1 vertices.
The fact that Moore graphs do not exist for D > 3 and A > 3 was shown by
Damerell [3] and, independently, also by Bannai and Ito [1].

Therefore, we are interested in studying the existence of large graphs of given
maximum degrec 4, diameter D and order M(A,D) - § for & > 0, that is,
(4, D, 6)-graphs, where 4 is called the defect. In this paper we particularly restrict
ourselves to the case when A = 3.

A cubic graph, that is, a regular graph of degree 3, must have an even number
of vertices. It is then clear that (3, D, 0)-graphs cannot exist whenever 4 is odd.
Therefore, the next interesting case is when the order is M3, p — 2. This case was
analyzed by Jorgensen [6] in 1992. Jorgensen proved that for D > 4 there are no
(3, D, 2)-graphs and showed the uniqueness of the two known (3, 2, 2)-graphs and
of the known (3, 3, 2)-graph. Therefore, n3,p < M3,p — 4, for D > 4.

We consider graphs of maximum degree 3, diameter D > 2 and order M3, p-4.

If a (3, D, 4)-graph has a vertex of degree at most 2, then the order of such
a graph would be at most %Ma, D+ -:1-,- Therefore, for D > 3, a (3, D, 4)-graph is
regular.

For diameters 2 and 3, the cataloguc of the cubic graphs on 6 and 18 vertices
can be found in [9]. However, for D = 2, a (3,2,4)-graph does not have to be
regular and so we include all the non-regular (3,2, 4)-graph as well as all the
regular ones from (9].

The cubic graph on 18 vertices, i.e., (3,3, 4)-graph, was constructed first by
Faradzhev [4]; however, his catalogue was not widely available. For this reason,
McKay and Royle [8] in 1986 constructed, among other graphs, again the cubic
graph with diamecter 3 on 18 vertices, and proved its uniqueness. '

The nonexistence of (3,4,4)-graphs was proved by Jorgensen (7] in 1993.
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The case of (3, D, 4)-graphs, is cspecially interesting because it is the first
time that we deal with (4, D, §)-graphs, where § > A.

By a counting argument, it can be showed that a (3, D, 4)-graph has girth at
least 2D —2. In this paper, we state that the girth of such a graph is at lcast 2D—1,
giving, in this way, the first steps to completely characterize (3, D, 4)-graphs.

When referring to paths, we shall always mean shortest paths.

The rest of this paper is structured as follows: in Scction 2, we scttle the
notation and terminology used throughout this paper; in Scction 3, we present
all the (3, D, 4)-graphs with D = 2, 3. Scction 4 is dedicated to proving that the
girth of a (3, D, 4)-graph is at least 2D — 1, for D > 4. In Section 5,we summarize
the obtained results.

2 Notation and terminology

‘We denote an edge with endvertices u and v by wv. A path from a vertex z to a
vertex y is denoted by z — y or by the sequence of its vertices. A cycle of length k
is called a k-cycle. A cycle could be denoted by a sequence of paths, for instance,
r—-yzt—zx.

The set of vertices at distance k from a vertex z is denoted by Ni(z) and
Ni(z) is called the k - distance class of z. The set of neighbors of a vertex z in
G is simply denoted by N(zx).

3 Enumeration of (3, D, 4)-graphs of diameters 2 and
3

3.1 Diameter 2

As mentioned carlier, all the cubic graphs on G vertices were already known.
However, a (3, 2, 4)-graph G needs not be regular. In particular, it is possible for
G to contain some vertices of degree 2 (but none of degree 1). In our construction
of (3,2,4)-graphs, we have obtained the two (already known) regular (3,2,4)-
graphs as well as the three new non-regular graphs.

Let G be a (3, 2,4)-graph and let = be a vertex of G. Let a be the number of
cdges joining vertices at Na(x), b be the number of edges from N(z) to Na(z),
and ¢ be the number of cdges joining vertices at N(z); sce Figure 1(a).

As M32=10, the order of G is 6. We distinguish two cases; the case of cubic
graphs and the case of graphs with at least onc vertex of degree 2.

Cubic graphs In a cubic (3, 2,4)-graph G there arc 9 edges. We can start with
some 3, as in Figure 1{a). Then 6 further cdges need to be inserted in Figure 1(a).
Let us consider the following system of equations:

a+b+c=6 2a+b=0 2c+b=06 (2)

From System 2, we sce that @ = ¢ and b > 4. Therefore, the solutions are
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Fig. 1. Auxiliary figurcs for the case of diameter 2.

(a,b,c) = (1,4,1) or (0,6,0).

Case a) (a,b,c) = (1,4,1).

Up to isomorphism, the graph H, in Figure 2(a) is the only cubic graph that
can be constructed with these parameters.

Case b) (a,b,¢) = (0,6,0).

Up to isomorphism, the cubic complete bipartite graph K33, depicted in
Figure 2(b), is the only such cubic graph.

Non-regular graphs As there should be at least one vertex of degree 3, the
only possible degree sequences are

(2,2,2,2,3,3), or (2,2,3,3,3,3).

Case 1. (2,2,2,2,3,3).

In this case let us refer to Figure 1(a) again. We then have the following
system, where a, b and ¢ have the same meaning as before.

a+b+c=1 a<l1 b>2 c<1 3)

The solutions of System 3 are:

(a,b,¢) = (1,2,1) or (0,3,1) or (0,4,0) or (1,3,0).

It is not difficult to sce that the first three cases do not correspond to any
suitable graph.

Ifa =1, b=3and c = 0 then, up to isomorphism, the only possible graph is
the graph depicted in Figure 2(c), a subgraph of H;.

Case 2. (2,2,3,3,3,3).

If the vertices with degree 2 are not neighbors, then we can add one edge
between them and we will obtain the graph H;. Therefore, the possible graphs
are subgraphs of H; and up to isomorphism the only possible graph is the one
depicted in Figure 2(d).

Let us next suppose the vertices of degree 2 are neighbors. In this case, if we
consider Figure 1(b) and that @, b and c have the same meaning as before, we
have the following system of equations:

a+b+c=5 2a+b=28 c=0 (4)
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whose solution is (a,b,¢) = (3,2,0) and the only possible graph is the one
depicted in Figure 2(c).

H, Kia

(a) {b) (©) {d) (e)

Fig. 2. All (3,2, 1)-graphs.

3.2 Diameter 3

In this case, we restrict ourselves to show the unique (3, 3, 4)-graph in Figure 3.
For a description of a method to construct cubic graphs on up to 20 vertices, we
refer the reader to [8] and for the complete catalogue of cubic graphs on up to 24
vertices, see [9].

/

Fig. 3. The unique (3,3, 4)-graph.

4 On the girth of a (3, D,4)-graph with D > 5

In this scction, we analyze the girth of (3, D, 4)-graphs with D > 5.
By a counting argument, we prove the following proposition.
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Proposition 1. The girth of a (3, D, 4)-graph is at least 2D — 2. Furthermore, if
z is a verter contained in a (2D — 2)-cycle then = is not contained in any other
cycle of length at most 2D.

Proof. Let Ni(z) he independent sets and let |[Ni(z)| = 3 x 27!, for i €
[1..D — 3]. If Np_2(z) has at most 3 x 273 — 1 vertices then |Np-1(z)} <
3x2P~2 _3 and [Np(z)| < 3x2P~! - 6. Then |G| < Ma,p - 10, a contradiction.
Thus, Np_2(z) = 3 x 271

If there is an edge between any two vertices at distance D — 2 from z, then
[Np-1(z)| < 3x2P~2—-2and |Np(z)| < 3x2P~! —4. Therefore, |G| < Ms,p —6,
a contradiction. Thus, Np_2(z) is an independent set and G has girth at least
2D - 2. (m}

Theorem 1. A (3, D,4)-graph has girth at least 2D — 1.

Proof. Let C be a cycle of length 2D — 2. Let  and y be two vertices in C
at distance D — 1 and let 1 and y1 be the respective neighbors of z and y not
contained in C.

By Proposition 1, a path P, = 23 — y; is a D-path and PLNC = 0.

Let y2 € N(y1), y2 # y and y2 ¢ P1. By Proposition 1, a path P2 = y2 — z
is a D-path and P, N C = {z}, so z1 € P. Let z2 and z3 be the two ncighbors
of z; different from z, such that 2 € P,. Let us suppose that |, N P| > 1.
Then [P N Py| = {z1,z2} and y; lies on a 2D — 2-cycle, say C1. By Proposition
1, a path y — x3 is a D-path and intersects C in y. Therefore, y — z3 is going
through y1 but in this case some vertices of C; will be contained in another cycle
of length at most 2D, which contradicts Proposition 1. Thus, |P N Pi| = {z1}
and z3 € P»; see Figure 4.

Let y3 € N(y2), y3 # v1 and y3 ¢ P». Let us now consider a path P3 = y3 —z.
Then {yz2,23} ¢ P3s and P3N C = {x}. Therefore, 2 € Ps and if P3isa D - 1-
path, then 7, is contained in a cycle of length at most 2D — 2 and, as above, by
considering a path y — z3, we obtain a contradiction to Proposition 1. Therefore,
P is a D-path.

Let us now denote the neighbors of z in C by u and v. By Proposition 1, a
path Py = y3 — u is D-path, y2 ¢ P4 and P41 Ps = {ya}, otherwise either y or =
is contained in a further cycle of length at most 2D — 1, a contradiction. Let us
finally denote by z the neighbor of y3 on Ps. Analogously, a D-path Ps = y3 —v is
also going through z, but in this case, z is contained in the 2D-cycle ru — z — vz,
contradicting Proposition 1. a

5 Conclusions

In this paper, we have given the first steps towards a characterization of (3, D, 4)-
graphs for D > 2 as follows.

Diameters 2 and 3. There are two regular and three non-regular (3,2, 4)-
graphs. When the diameter is 3, there is a unique (3, 3,4)-graph.

Diameter 4. The nonexistence of the particular case of D = 4 was proved
by Jorgesen.
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Fig. 4. Auxiliary figure for Theorem 1

Diameters greater than 4. We proved that if such a graph cxists, then its

girth is at least 2D — L. Furthermore, we propose the following conjecturc.

Conjecture 1. The girth of a (3, D, 4)-graph is 2D, for D > 5.
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