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Abstract. A (p,q)-graph G is said to be multiplicative if its ver-
tices can be assigned distinct positive integers so that the values
of the edges, obtained as the products of the numbers assigned to
their end vertices arc all distinct. Such an assignment is called a
multiplicative labeling of G. A multiplicative labeling is said to be
(a,7r)-geometric if the values of the edges, can be arranged as a
geometric progression a, ar, ar?,...,ar" . In this paper we prove
that some well known classes of graphs are geometric for certain
values of a,r and also initiate a study on the structure of finite
(e,r)-geometric graphs.
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1 Introduction

‘We consider only finite graphs. For all notations in graph theory we follow
Harary [4] and West [5].

Several practical problems in real life situations have motivated the
study of labelings of a graph G =(V, E), which are required to obey a
variety of conditions. There is an enormous literature built up on several
kinds of labelings of graphs over the past four decades or so. An interested
reader can refer to Gallian [ 3 |.

Given a graph G = (V, E), the set R of real numbers, a subset N of R
and a commutative binary operation * : R X R — R, every vertex function
f: V(G) - N(N is the set of positive integers) induces an edge function
f* : E(G) — R such that f*(zy) = f(z) x f(y) for all zy € E(G). One is
interested in determining the vertex functions f having a specified property
P such that the induced edge function f* have a specified property @, where
P and @Q need not necessarily be distinct.

In this paper we are interested in the study of vertex functions f:V(G)—N,
for which the induced edge function f*:E(G)—N is defined as f*(zy) =
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f(z) x f(y), Vzy € E(G). Such vertex functions are said to be multiplicative
vertezr functions and henceforth this induced map f* of f is denoted as f*.

The following result gives a general property of multiplicative vertex
functions, which can be proved by easy counting arguments.

Theorem 1. (Acharya and Hegde [1]): For any graph G and for any mul-
tiplicative vertez function f: V(G) - N

I fXe= I f(“)d(") (1)
e € E(G) u € V(G)

Corollary 1.1: If G is an r-regular graph then for any multiplicative vertex
function f of G,
I f*(e)= I f(u)
e€ E(G) wueV(G)

2 Multiplicative Labelings

A multiplicative labeling of a graph G is an injective multiplicative vertex
function f such that the induced edge function f* is also injective.
We adopt the following notations throughout this paper:

M(G) = The set of all multiplicative labelings of G.
f(G)={f(v):ue V(G)} f*(G)={f"(e) : e € E(G)}
fmin(G) =min  f(u)  fmax(G) = max f(u)

ue V(G) u € V(G)
fxx(G)=max f*(e) O(G)= min frmax(G)
ee E(G) feM(G)

Figure 1 shows two multiplicative labelings of K¢

Remark 1. Figure 1(a) shows that #(Kg) can be very small compared to
Fmaz(Kg) of Figure 1(b). One can also verify that 6(Kg) is 7. Thus, finding
a suitable upper bound for #(K,) is an interesting problem.

Theorem 2. Every graph admits a multiplicative labeling.

proof. We observe that if a graph G admits a multiplicative labeling f
then each of its subgraphs does so - in fact, if H is a subgraph of G then
the restriction map f/H is an multiplicative labeling of H. Therefore, to
prove the theorem, it is enough to consider complete graphs.
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(a) (b)

Fig. 1. Multiplicative labelings of K

Hence, let G = K,, and V(G) = {v1,v2,...,v,}. Then assign 1 to the
vertex v, and first n-1 prime numbers to the remaining n-1 vertices of K,
at random in a one-to-one manner. Then it is not hard to verify that K,
is multiplicative. ¢

3 Geometric Labelings (Graphs)

Given a (p, q)-graph G and an f € M(G), we say that f is (a,r)-geometric,
if f*(G) = {a,ar,ar?,...,ar9"!} where a and r are positive integers both
at least 2. Let M, ,(G) denote the set of all (a, r)-geometric labelings of G.
Further, G is said to be (a,r)-geometric if M, .(G) #@, then M, ,(G) is
finite as there are only finite number of factors of a. Thus, one may conceive
of two parameters for any (a, r)-geometric graph G, viz.,

ea,r(G) = fel\r/}},l,?(c) fmax(G) aa,r(G) = IEE,EXAG) finax(G).

Clearly, for any (a, r)-geometric graph G,
P < 0(G) < 00,(C) < 0,(G) < ar™. @)

where the last inequality is attained by the star K ,_; by assigning 1 to
its central vertex and a,ar,...,ar?"! to its pendant vertices at random in
a one-to-one manner.

We say that a graph is geometric if it is (a, r)-geometric at least for one
value of the positive integers a > 2 and r > 2.
Remark 2. If a graph G is (@, 7)-geometric then it is (at?, r)—geometric,
where t is a positive integer.

Theorem 3. Let G be a connected (a, a)-geometric (p,q)-graph. Then for
any f € My o(G), 1€ f(G) if and only if a|f(u),Vu, f(u) #1.

Proof. Let f € M, 4(G). Then f*(G) = {a’ : 1 < j < q}. Hence if alf(u)
Vu € V(G) — {v} then for the edge zy € E(G) with f*(zy) = a, we must
have either f(z) or f(y) to be 1, whence 1 € f(G).
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For the converse, let v € V(G) be such that f(v) =1. Then for all w €
N(v) = {u € V(G) : vu € E(G)} we must have f(v).f(w) = f*(vw) = at
where ¢ is a positive integer. This yields f(w) = a* as f(v) = 1. Thus a|f(w)
V w € N(v). Now, fix any wo € N(v). Then for any w; € N(wo) — N(v) we
have f(wp).f(w1) = f*(wow;) = o’ for the positive integer j > 1, so that
f(wy) = ali~*l, whence a|f(w,). Since w; was arbitrary by choice we get
that a|f(w) for all w € N(v) U (UN(u),u € N(v)). Continuing in this way,
we exhaust all the vertices of G with the conclusion that the vertex values
except v are factors of a. ¢

From the above proof one can see that (a,r)-geometric graph G with

a, a prime number or the square of a prime number, 1€ f(G) for every
f e M. (G).

Theorem 4. Let G be a connected bipartite graph which is not a star. If
G is an (a,a)-geometric graph, then for any f € M, qo(G), 1 ¢ f(G).

Proof. Consider any f € M,o(G) and let A = {u1,ug,....,un} and B =
{v1,v2,...., v} constitute the parts of a bipartition of G. Suppose that 1
€ f(G). Without loss of generality, assume that f(u;) = 1. Since f*(G) =
{a,a?, a3, ...,a7} we must have f(v;) = a for some v; € N(u;). Without loss
of generality, let j = 1. Next let zy € E(G) be such that a® = f*(zy) =
f(z)-f(y). By Theorem 3, a divides both f(z) and f(y), or one of f(z)
and f(y). Thus f(z) =1 and £ = u;. Also, f(y) = a® and, without loss
of generality, we may take y = v,. Next; let zy € E(G) be such that
a® = f*(zy) = f(z).f(y). Again by Theorem 3, a divides both f(z) and
f(y) or one of f(z) and f(y). Therefore, we see that either one of f(z) and
f(y) is a and the other is a® or that one of f(z) and f(y) is 1 and the
other is a®. Clearly, the first possibility cannot arise as f is injective and
vertices labeled a and a2 have already occurred in B. So, the latter case
must hold. Then, without loss of generality we may assume that f(z) =
1 and f(y) = a3. But then injectivity of f forces z = uj, so that y = v3.
Continuing this way, we see that if N(u,) = {v1,vs,....,v;} where t is the
degree of u; in G then f(v;) = a’ for each 7, 1 < j < ¢. Since G is not
a star and connected, it follows that |A] > 2 so that a**! € f*(G). Let
zy€ E(G) be such that a**! = X (zy) = f(z). f(y). This yields z # v, and
f(z) = (@41)/ f(y) < o or f(y)=(a"*")/f(z) < a* as f(z) > a and f(y)
2 @, a contradiction to the fact that f(N(u;)) = {a’ : 1 < j <t} and that
[ is injective. ¢

Corollary 4.1 : No connected bipartite graph, except the star is (a,a)-
geometric when a is a prime number or square of a prime number.
Corollary 4.2 : Any connected (a, a)-geometric graph when a is a prime
number or square of a prime number, is either a star or has a triangle.
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Remark 3. In Corollary 4.1 it is possible to relax the condition of connect-
edness of G if a = 2,3,5. However, if a= 4 then it is not possible to do so as
G = K> U K 3 has (4, 4)-geometric labeling, which can be easily verified.

Our next Theorem gives a method to recursively enlarge a given (a,r)-
geometric graph G to a (a, r)-geometric graph H of an arbitrarily high
order.

Theorem 5. Let G be a (p,q)-graph having an (a, 7)-geometric labeling
f such that the elements of f(G’)C f(G) where G'C G, can be arranged
as a subsequence P, of the geometric progression Q= {a,ar,ar’,... ,art =
Fuax(G)}. Let X = {z1,22,...,2:} = V(K;) and let Y = {a1,a2,....,a } be
a set with V(G)NY = @, where w is the number of terms in Q which are
not in P. Then the (a, r) geometric labeling f of G can be extended to the
newly added edges of (G UY) + K, where t is a positive integer.

Proof. Let G be (a,r)-geometric with a geometric labeling f. Let G’'be
a subgraph of G such that f(G’) can be arranged as a subsequence P of
the geometric progression Q= {a, ar, ar?,...,ar* = fmax(G)}. Let Y =
{a1, a2, ....aw} be a set of vertices with V(G) NY = @, where w is the
number of terms in Q which are not in P and X = {z), 2, ...7¢} =
V(Ky). Construct the graph H from G and Y by joining the vertices of G’
and Y to the vertices of X. Let v: Y — (@ — P) be a bijection. Then define

amap F: V(H) —» N by

f(u) if ue V(G)
')’(ai) 'I.f u=a; €Y

F(u) = gat1+05@HIYDG-1) f yege X,1<i<t, a=r.
ar(FGOI+IY D+, 1<i<t, a#r.

Then one can verify that F is an extension of the (a,r)-geometric labeling
fofGto H. O

Consider the (2, 2)-geometrically labeled graph G shown in Figure 2(a),
where f(G')= {1, 2, 4, 16}, P= {1, 2,4, 16}, Q ={1, 2,4, 8,16}, Y = {a1}
and let X = {z;, z2}. The augmented graph H = G UY, geometrically
labeled, is shown in Figure 2(b) and the (2, 2)-geometrically labeled graph
is shown in Figure 2(c).
Remark 4. The above example shows that the number 1 can be included
in Q in some cases (when a = r) to construct a bigger (a,r)-geometric
graph as an application of Theorem 5, making a slight modification in the
function in F to the vertices of X. Also, one can verify that it is not always
possible to include the numbers less than a in Q.

Henceforth, unless mentioned otherwise, any bipartite graph G with
bipartition {4, B} will be assumed to be accompanied with a labeling of its
vertices given by A = {u1,u2,...,um} and B = {v1, vz, ...,vn} wherem < n.
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Fig. 2. Nllustration of Theorem 5.

Theorem 6. For the positive integers a and r both at least 2 , and for any
two factors a1 and az of a with 1 < a; < ay, the star Ky, has an (a,
r)-geometric labeling f such that a;, az, € f(K1,n).

Proof. Let A = { u} (i.e. u; = u) and f: AUB — N be a map defined by
flw) =a )
flvi) = aari~t,1<i<b.
It can be easily seen that f is a required (a, r)-geometric labeling of
Kl,n- O

Thus, K, , is ” arbitrarily geometric”, in the sense that it is an (a, 7)-
geometric graph for all values of a and r. According to Corollary 4.1 there
are no other connected bipartite graphs with this property. Thus, it follows
that the star K, is the only arbitrarily geometric graph.

Theorem 7. The complete bipartite graph Kpmpn , 2< m < n is (k, k)-
geometric if and only if k is neither a prime number nor the square of a
prime number.

Proof. Suppose, K, » is (k, k)-geometric. It follows from Theorem 4 that
1 ¢ f(G). This means the number kis obtained as the product of two
distinct numbers a; and as such that neither of them is one. As a prime
number has only two factors 1 and itself, k cannot be a prime. Similarly,
as the square of a prime number p has three factors 1, p and p?, k cannot
be the square of any prime number.
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Conversely, suppose that k is a positive integer which is not a prime
number or square of any prime number. Let & = a;.a2,2 < a1 < as.
Define a map f: AUB — Nby

flu)=a1k™!, 1<i<m

f(v;) = ak®U~V, 1<j<n.

Then one can verify that the labeling f and f* defined above are injec-
tive and that f is an (k, k)-geometric labeling of Ky n. ¢

The labeling mentioned in the proof of Theorem 7 is illustrated in Figure
3 and 4 below.

2 4
4.8°
2.8
4.8
282 4.8°

Fig. 3. An (8,8)-geomctric labeling of K34

4
4.5°
25
4.5
9
252 4.5

Fig. 4. An (8,5)-geometric labeling of K34

Remark 5. From Figure 4 one can see that K, ,, is (8,5)-geometric. This
means that K, , is geometric for some other values of k and r,when k#r.
‘We note that the labeling is obtained by using the labeling mentioned in the
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proof of Theorem 7. Hence it is interesting to investigate the other values
of k, r for which K, ,, is (k,r)-geometric.

We denote by Cr, » a caterpillar with bipartition {4, B}, with m= |A|
and n = |B|. For given integers m,n,Cp, » is not necessarily unique.

Theorem 8. The caterpillar Cmn, 2 < m <, is (k, k)-geometric if and
only if k is neither a prime number nor the square of a prime number.

Proof. Suppose, Cp, » is (k, k)-geometric. Then by Theorem 4 we get 1 ¢
f(G). This means the number k is obtained as the product of two distinct
numbers a; and a3 such that neither of them is one. As a prime number has
only two factors 1 and itself, k¥ cannot be a prime. Similarly, as the square
of a prime number p has three factors 1, p and p?, k cannot be the square
of any prime number.

Conversely, suppose that k is a positive integer which is not a prime
number or square of any prime number. Let k = a;.a2,2 < a; < a2.

Define amap f: AUB — N by

flw)=ak"!, 1<i<m
f(v;) = a2kU=D, 1<j<n.
Then one can easily verify that f so defined is a (k, k)-geometric labeling
of Cryn with 2 < @y < a2.

The labeling mentioned in the proof of Theorem 8 is illustrated in Figure
5 and 6 below.

3
2 36
3.62
2.6'
3.6°
2.6? 3.6¢
3.6°

Fig. 5. A (6,6)-geometric labeling of C3 6

Remark 6. From Figure 6 one can see that Cp, » is (6,7)-geometric. This
means that C,, , is geometric for some other values of k and r,when k#r.
We note that the labeling is obtained by using the labeling mentioned in the
proof of Theorem 8. Hence it is interesting to investigate the other values
of k,r for which Cp, , is (k,r)-geometric.
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3

2 37
3.

2.7
3.7
2.7 37
3.7

Fig. 6. A (6,7)-geometric labeling of C3 6

Proposition 1. The graph K, 51, m < n, is (k,k)-geometric for all
integers k > 2.

Proof. Let {A, B,C}, where A = {u1,us, ..., um }, B= {v1,v2, ..., 05} and C
= { w}, be the tripartition of the complete tripartite graph K,y »,1. Define
the map f: AUBUC — N by

flw)y=1

f(ui)=kt1 ]-S'l'Sma

flug) = k™03 1< <,

can be easily verified to be a required (k, k)-geometric labeling of Ky 1.

¢

Lemma 1. If a complete graph K,,n > 3 is (a,r)-geometric then a is a
multiple of r.

Proof. Suppose that K,,n > 3 is (a, 7)-geometric. Without loss of gener-
ality, let f(v1) = a1, f(v2) = ag, f(v3) = a3 ...., such that a; < a3 < a3 <
.... < ay. Since a3 < az < ag, we can take

a2 =4a (3)
a) a3 = ar' 4
Qg az = arj (5)

Solving (3)-(5) for a;, a2,a3 we get
a; = Vari-J, ay=qa/Vart-i, a3= ari/\/ari‘i.

Since a1, ag, as are positive integers > 1, ar*~7 must be a perfect square
ie.,
a =172 = (ri-i-1 {2)r = kr for somek > 1.
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Theorem 9. For the cycle Cy, n > 4, the following statements hold:

(A)The cycle Cy is is (a, a)-geometric if and only if a is neither a
prime number nor the square of a prime number.

(B) For any integer positive integer t > 1 and r > 2,Cyqpe1 s (12, 7)-
geometric.

(C) Cyt42 is not geometric for any positive integer t > 1.

(D) For any positive integer t > 1 and 1 > 2,Cypq3 is (r¥+1,r)-
geometric.

Proof. (A): Suppose, Cy; is (a,a)-geometric. Then by Theorem 4 we get
1 ¢ f(G). This means the number a is obtained as the product of two
distinct numbers a; and as such that neither of them is one. As a prime
number has only two factors 1 and itself, e cannot be a prime. Similarly, as
the square of a prime number p has three factors 1, p and p?, a cannot be
the square of any prime number.

Conversely, suppose that a is a positive integer which is not a prime
number or square of any prime number. Let a = ay.az2, 2 < a; < as.

Define a function f: V(Cg) — N by

a1aC-V2 if i is odd
fu) =< apali=2/2 if i is even and 2<i <2t
aqai’? if i is even and 2t+2 <i <4t

One may then easily verify that f turns out to be a required geometric
labeling of Cjy; in both the cases.
(B) Under the hypothesis, the map f: V(Cyt41) — N defined by

(i—-1)/2 f dd i
r or odd i's
flu) = {r(“'"i)/ 2 for even i's,

can be easily verified to be a geometric labeling of Cys41.

(C) Suppose that Cy42 has an (a,r)-geometric labeling f. Let f(u;) =
zi, 1 < i < 4t+42. Without loss of generality, we may assume that z,. z2 = a.
Then by Theorem 1 we get

4 +2
(931$2)2 I :z;f = gt+2,(2t+1)(4t+1)
1=3
ie.,
a?((z324) (25T6)--(Tat+1 Tar2))? = @t +2p(2F1AEH1)
ie.,

az(azzrm)z _ git+2,(2t1)(at+)
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ie.,

r2m — p(2t+1)dt41)

where m is a positive integer. Hence 2m = (2t+1) (4¢+1), a preposterous
statement, both sides being positive integers.
(D) Under the hypothesis the map f : V(Cys43) — N defined by

G=1/2  for odd i
r or oaati s
flui) = { r@+2+0/2 - for eyen i s,

can be verified to be a required geometric labeling of Cys4.3.
One can also verify that Cy, is (a,7)-geometric when a # r, using the
same labeling given in the proof above for some a and r.¢

4 TRANSFORMED TREES (Tp-TREES)

In this section we prove that a class of trees called T}-trees (transformed
trees) (see Acharya [2]) are geometric. Also, we prove that the subdivision
S(T) of a T)-tree T, obtained by subdividing every edge of T exactly once is
geometric. Note that the subdivision S(T') of a T},-tree T is not necessarily
a T)-tree.

Let T be a tree and up and vp be two adjacent vertices in T'. Let there
be two pendant vertices u and v in T such that the length of ug — u path is
equal to the length of vy — v path. If the edge ugvp is deleted from T and
u , v are joined by an edge uv, then such a transformation of T is called an
elementary parallel transformation (or an ept) and the edge uouvp is called
a transformable edge.

If by a sequence of ept’s T can be reduced to a path then T is called a
Tp-tree (transformed tree) and any such sequence regarded as a composition
of mappings (ept’s) denoted by P, is called a parallel transformation of T'.
The path, the image of T" under P, is denoted as P(T).

A Tp-tree and a sequence of two ept’s reducing it to a path are illustrated
in Figure 7.

Theorem 10. Every T,-tree T is geometric.

Proof. Let T be a T,—tree with n + 1 vertices, where n is a positive integer.
By the definition of a T),-tree there exists a parallel transformation P of T’
such that for the path P(T'), we have

V(P (T)) = V(T)

E(P(T)) = (B(T) — Ea) U By,
where Ey4 is the set of edges deleted from T and E, is the set of edges
newly added through the sequence P = (P, P, ....P;) of the ept’s P; used
to arrive at the path P(T). Clearly E4 and E, have the same number of
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Fig. 7. Ty trees

edges. Denote the vertices of P(T") successively as vy, vs, ..., Up41 Starting
from one pendant vertex of P(T) right up to the other.
Define a function f: V(P(T)) — N by

_ [ alt=1)/2d foroddi, 1<i<n+1
F) =\ ge+@-0a416-2/34  fop eveni, 2<i<n+1

where k and d are positive integers and ¢ is the number of edges of T

Let v;v;be an edge in T for some indices ¢ and j, 1 < i< j < n+1
and let P, be the ept obtained by deleting this edge and adding the edge
v;+¢vj—¢ Where t is the distance of v; from v;;; and the distance of v; from
vj—¢ . Let P be a parallel transformation of T that contains P, as one of
the constituent ept’s. Since v;;;v;_, is an edge in the path P(T') it follows
that i+t+1=j—t = j =i+ 2t + 1. Therefore 7 and j are of opposite
parity.
The value of the edge v;v; is

FX(viv;) = f* (vivigats1)

= f(vi).-f(Vit2e+1) (6)

If iis odd and 1 < i < n, then
F3)-f(vigas1) = alE=1)/2ld_k+(g-1)d+[(i+2t+1-2)/2]d

— ak+(q—l)d+(i+t—l)d. (7)
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If i iseven and 2 < i < n, then
f('Ui)~f (Ui+2£+l) - ak(q—l)d+[(i—2)/2]d.a[(i+2t+l)/2]d
- ak+(q—l)d+(i+t—l)d (8)

Therefore, from (6), (7), (8), we get

fx('Ui'Uj) — ak+((l-1)d+(i+t—l)d. Y. (9)

The value of the edge v ,v;_; is given by

X (irevi-t) = f(vige)-f(vj-t)-
= f(vitt)-f (Vite41) (10)
If i + ¢ is odd, then
f (Wist) .f Wiges1) = glli+t=1)/1d  k+(g-1)d+{(i+t+1-2)/2}d
— ghHa-1)d+(i+t-1)d (11)
If 1 + ¢ is even, then
F (Wise) .f Wiper1) = alGHFI=D/E gkt(a-1)d+{(+t-2)/2]d
= ghtHa-1d+(i+t-1)d (12)
Therefore, from (10), (11), (12) , we get

fx('Ui+t'Uj—t) - ak+(q—l)d+(i+t——1)d. (13)

Thus, from (9) and (13), we get

f"(vivj) = f (Vigevj—t).

Also, one can verify that the labeling as defined by f is a (a(k+(a-1)¢ q).
geometric labeling of T for all positive integers %, d.{

Figure 8 shows a (3!4, 3)-geometric labeling of a Tj-tree, using the
labeling given in the proof of the theorem 10.
Theorem 11. The subdivision tree S(T) of a T},- tree is geometric.
Proof. Let T be a Tp-tree with n vertices and ¢ edges. By the definition
of a Tp- tree there exists a parallel transformation P of T so that we get
P(T). Denote the succession vertices of P(T') as v, va, ...., Uy, starting from
one pendant vertex of P(T) right up to other and preserve the same for
T. Now construct the subdivision tree S(T) of T by introducing exactly
one vertex between every edge v;v; of T and denote the vertex as v; ;. Let
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UmT VnZ, T =1, 2,...,, z be the 2 transformable edges of T with m*® < h®+1
for all z. Let ¢, be the path length from the vertex v,,z to the corresponding
pendant vertex decided by the transformable edge vz vpz of T.

Define a function f : V(S(T')) — N by

flv) =tkta-Dd £ - 19 n.

floi) =t6"D4 §f j£i41.

f(vij) =t if j=i+landi=me,me+1,... . mC+t.—1,
c=1,2,..,z

flvi;) =t0-D9 if 5 =i 4 land i #m® # (mE +1), ...,

#(m+it.—1),c=1,2,...,.2
where k and d are positive integers and 2q is the number of edges of
S(T). Then one can verify that f is a (a*+(9-1)4 g) geometric labeling of
S(T) for all nonnegative integers k, d with k,d not simultaneously zero. ¢

i u
3 3 3

Fig. 8. A (3!, 3)-geometric labeling of a T}, tree.

Figure 9 given below is an illustrative example of a (214, 2) - geometric
labeling of a S(T') using the labeling given in the proof of the theorem 11.

We strongly believe that a tree admits a geometric labeling for at least
one value of a , r and hence propose the following:

Conjecture : All trees are geometric.
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