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Abstract

In this paper we extend the idea of magic labeling to directed graphs. In
particular, a magic labeling of a digraph is the directed analog of a vertex-
magic total labeling. Some elementary results are obtained and some infinite
families of magic digraph labelings are exhibited.

1 Definitions and notation

Digraphs

We assume the standard ideas of graph theory; see, for example, [10]. A digraph
D can be described as a collection V' = V(D) of vertices together with a col-
lection E = E(D) of ordered pairs of vertices called arcs or directed edges; in
the arc (z,y), vertices = and y are called the zail and head respectively. If there
is an arc (z,y), we may write x — y. For our purposes digraphs are finite; the
definition implies that there cannot be two arcs with the same tail and the same
head (“there are no repeated arcs”).

For a given vertex z, A(z) denotes the set of all vertices y such that (z,y) is
an arc (“after "), while B(z) denotes the set of all vertices z such that (z, z) is
an arc (“before z”); in symbols,

Alz)={y:z— vy}, BE)={z:2z—z}.
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|A(z)| and | B(z)| are respectively the outdegree and indegree of =; common no-
tations are od(z) and id(x) respectively. A vertex is a source if B(z) is empty,
and a sink if A(z) is empty; an isolate is both a source and a sink. (Caution: some
writers reserve “source” and “sink” for non-isolates).

It may happen that the digraphs formed from D by deleting an arc are all
isomorphic, whichever arc is deleted. (This will be true if the automorphism group
of D is transitive on the arcs.) In that case, we write D—a for the resulting digraph.

We shall write v = |V(D)|, e = |E(D)|and n = |V(D)U E(D)| = v +e.

Labels

A labeling or valuation ) of a graph or digraph D is a one-to-one mapping from
V(D) U E(D) onto the set of integers {1,2,...n}. Graceful labelings — those
for which the differences A(z) — A(y) are different for different edges zy — were
introduced by Rosa [7] in 1966, and several other labelings and their arithmetical
properties were studied shortly thereafter (a good survey is [4]). In particular,
magic denotes the requirement that certain sums of labels have the same value;
this idea was introduced (with labels ranging over the real numbers) by Sedlacek
[8] in 1963; see also [5], [6] and the survey [9].

Nearly all work on labelings has concentrated on the undirected case. Graceful
labelings of directed graphs were introduced in 1985 [3] and have been studied in
a few papers. Ahmed [2] discusses mappings with a magic property, but the labels
are unrestricted non-negative integers and only arcs are labeled, so those structures
are more closely related to integer network flows. In this note we apply the idea
of magic labeling to digraphs.

Magic labelings of digraphs

We define a magic labeling of a digraph D to be a labeling in which all the sums

ma(z) = |Mz)+ D Az,9)

Yy

and all the sums

mp(z) = |Az) + Z Az, )

are constant, independent of the choice of . A digraph with a magic labeling will
be called a magic digraph.
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2 Necessary conditions

The divisibility condition

If you add the values m 4 (z) (or the values mpg(z)) for all vertices z, you will add
every label exactly once. So

S oma@) = Y male) = Y A@+ Y Az

zeV(D) zeV(D) zeV(D) (z.y)€E(D)

Zz’ = in(n+1).
i=1

i

That is, the two constants are equal. We shall write m()), or simply m, for this
common constant sum. As n must be an integer, we deduce:

Theorem 1 In any magic digraph, 2v must divide (v + €)(v + e + 1).

Small degrees

Suppose z were an isolated vertex in a magic digraph. Necessarily A(z) = m, for
any magic labeling A. This must be the largest label, so n = m. We immediately
see from the uniqueness of labels that there can be no more than one isolate.

Now consider the element with label m — 1. If it were an arc, both endpoints
cannot be labeled 1, so one or other endpoint must have label 2 or greater, yielding
at least one sum greater than m, which is impossible. So it is a vertex, y say. This
vertex cannot be isolated. The sum of labels into y must be 1, so y is the head of
exactly one arc, which receives label 1. But the same reasoning shows that y is
the tail of an arc labeled 1. This repetition is impossible. So there are no isolates.

If z is any vertex, the sum of labels on arcs into z must equal the sum of labels
on arcs out of z. It follows that a magic digraph cannot contain a source (it cannot
be an isolate; but if it is not, m4(z) > Mz) = mp(z)) or a sink.

Finally, if = had indegree and outdegree each equal to 1, the label on the two
arcs touching x would be equal. This is also impossible. In summary:

Lemma 2 In any magic digraph, each vertex lies on at least three arcs, not all
directed into or all directed out of the vertex.

Theorem 3 In any magic digraph, e > 3v/2.
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3 Some small cases

The one-vertex digraph is trivially magic, and Theorem 3 excludes 2-vertex cases.

Three vertices

From Theorem 3, a three-vertex magic digraph must have at least five arcs. As
there are no repeated arcs, the maximum number of arcs is six. So there are two
possible digraphs, and both have magic labelings:

4 7 5 8
3 6 417
1

&) 2

These labelings are conveniently represented by arrays: assuming the vertices
to have been labeled x5, T3, 3 in some order, the (z, ¢) entry shows the label of x;,
while the (7, j) entry shows the label of arc (z;,z;) when i # j. Entry 0 means
there is no link. We shall refer to this array as a labeling matrix.

[ =20
oo
00 =
o W
- 00
O N B

Four vertices

From Theorem 3, a four-vertex magic digraph must have at least six arcs; the
maximum is 12. Taking Theorem 1 into account, there must be 11 or 12 arcs.
Again there are two possible digraphs, and again both are magic. Possible arrays
are

6 3 12 9 7 4 13 10
0 5 10 15 1 6 11 16
11 14 1 4 12 15 2 5
13 8 7 2 4 9 8 3
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Five vertices

In this case, a magic digraph could have 9, 10, 14, 15, 19 or 20 arcs. All cases are
possible:

10 4 0 0 7 1 5 0 0 8
9 11 1 0 O 10 12 2 0 O
0 6 12 3 0 0 7 183 4 0
0 0 8 13 0 0 0 9 14 1
2 0 0 5 14 3 0 0 6 15
9 10 19 0 O 100 11 20 1 8
0 6 1 14 17 0 7 2 15 18

15 0 13 8 2 16 0 14 9 3

11 4 0 16 7 12 5 0 17 8
3 18 5 0 12 4 19 6 0 13
5 3 11 19 22 6 4 12 20 23

26 6 4 12 15 24 7 5 13 16
16 24 7 0 13 17 25 8 1 14
14 17 20 8 1 15 18 21 9 2
2 10 18 21 9 3 11 19 22 1

4 Some families of magic digraphs

We conclude with some infinite families of magic digraphs.

A digraph is regular if every vertex has the same indegree and every vertex
has the same outdegree. Obviously the two common degrees must be equal; if
the common value is d, we have a regular digraph of degree d. Such a digraph
satisfies e = dk.

Suppose D is a regular digraph with a magic labeling, and suppose label 1
appears on an arc: say A(z;,z;) = 1. Subtract 1 from each label. The result
is a magic labeling of the digraph D — (z;, z;) obtained from D by deleting arc
(z:,z;). Several of the examples in the preceding section were obtained by this
method, which we shall call the subtraction technique.
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Complete digraphs

The complete digraph DK, has v vertices and all v(v — 1) possible arcs. The
labeling matrix of a magic labeling of DK, is a vxv array with entries 1,2, . ..., v
in which all row and column sums are equal. Such arrays exist if and only if v > 2;
in fact, one can use a magic square of order v. (The condition here is in fact a little
less stringent, as it is not required that the diagonal sums equal the magic constant;
we only need constant row and column sums.) For more on magic squares, see,
for example, [1].

Suppose A is a labeling matrix for DK,. Permute rows and columns until the
entry 1 is in row %, column j, where ¢ # j. The row and column sums are still
constant. So DK, has a magic labeling with label 1 on an arc, and we can apply
the subtraction technique to obtain a magic labeling of DK, — a.

Double cycles

The double cycle DC, is constructed from a v-cycle by replacing each edge by a
pair of arcs: edge zy gives rise to arcs (z, y) and (y, ). It follows from Theorem
1 that DC,, is not magic when v is even.

Suppose v is odd: say v = 2k + 1. Consider the (2k + 1) x (2k + 1) array A
defined by

ai; = 4k+i1,
Qi it1 2k+2— "—'g—l,i odd,
k+1-— %,ieven,
@iyl 4k + 3 — 1,4 odd,

= 3k+2-3,ieven

(with ay 2x+1 = 3k + 2 and agr41,1 = k + 1), thatis

4k+3 2k+1 0 0 0 3k +2
dk+2 4k+4 k 0 . 0
0 3k+1 4k+5 2k 0 0
A = 0 0 4k +1 4k+6 k-1 0
0 0 0 3k+3 6k+2 1
E+1 0 . 0 2k+2 6k+3

This array contains all the positive integers from 1 to 6k + 3 once each, and has
constant row and column sums 9% + 6. So it is the labeling matrix of a DCog41
with magic constant 9k + 6. Therefore all double cycles of odd order are magic.
The label 1 appears on an arc, so DCox41 — a is also magic.
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Here is an example of this construction:

5
3 8

0
6 7
1 2

Double cycles plus cycles

We have investigated two infinite families of regular digraphs that derive from
double cycles. The first are formed from double cycles of odd order by adding a

directed spanning cycle. If the double cycle has vertices 1,232, ..., Tn, and the
directed cycle is (1, 3, T5, - - - , Tn, T2, T4, - - - , Tn—1), @ Suitable labeling matrix
is
4in 2n+1 1 0 .- cee 0 2n
n+1l 4n-1 3n 2 0 0
0 n+2 4n-2 3n-1 3 0

0 0 n+3 4n-3 In-2 4
2n+ 2 n 0 0 2n—-1 3n+1
For even n with vertices z1, %2, ...,Zn, we form a digraph by adding cycles
(Zn-1,Zn-3,--.,%3,%1) and (Tn,Tn-2,- - -, T4, T2). The matrix
4n 2n+1 0 0 n—1 n+2
n+l 4n—-1 2n+2 0 . 0 n
1 2n 4an—-2 2n+3 0 .- . 0
0 2 2n—-1 4n-3 2n+14 0
3n 0 0 n—-2 n+3 3n+1

provides a labeling. In both cases the subtraction technique may be applied; the
resulting magic digraph is formed by deleting one of the new edges.

Here are examples of these two families:
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