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1 Introduction

Unless otherwise specified, we will follow Chartrand and Lesniak notation [2].

In 1966, Alexander Rosa. [9] introduced graceful labelings and graccful graphs
as follows.

Given a graph G of size g, an injective function f : V(G) — {1,2,...,q} is
called a graceful labeling of G, if the function f: E(G) — Z defined by the rule
f = |f(u) - f(v)| assigns diffcrent labels to the cdges of G. If a graph G admits
a graceful labeling then G is called a graceful graph.

In an unpublished paper, Erdés (sce [G, 8] for further information) proved that
almost all graphs are not graccful.

Later, in 1980, Graham and Sloan (8] dcfined the concepts of harmonious
labelings and harmonious graphs as follows.

Let G be a graph of size g. An injective function f : V(G) — Z, is called a
harmonious labeling of G if the function f : E(G) — Z, defined by the rule

f= () + f(v)) mod q.
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assigns diffcrent labels to the edges of G. If G is a tree then the condition that
[ is injective is relaxed and exactly two vertex labels are allowed to be equal. If
a graph admits a harmonious labeling then it is said to be a harmonious graph.
Once again using a similar idca to the one introduced by Erdds, Graham and
Sloan [8] proved that almost no graphs are harmonious.

In 1986, Acharga and Hedge [1] introduced the concept of strong indexable
graphs, which was much later reintroduced, in 1996, under the name of super
cdge-magic labelings by Enomoto et al. [3]. Since this name has become the most
popular one, we will choose this terminology for the rest of the paper.

Let G be any graph of order p and size g. Any bijective function

f:V(G)UE(G) - {1,2,...,p+4q}
with the properties that
FV(G) ={1,2,...,p} and f(u) + f(wv) + f(v) = k

for every edge uv in E(G) is called a super edge-magic labeling of G. If a graph
admits a super edge-magic labeling we call the graph super edge-magic.

Another definition that will be very useful for the rest of the paper is the one
of super edge-magic deficiency of a graph G by Figueroa-Centeno et al. in {5]. Let
M = {n € NU {0} |G U nk, is super edge-magic}. Then the supcr edge-magic
deficiency of G, denoted by p4(G), is defined to be

_ [ min (M), if M #0
#a(G) = { o, if M = 0.

In 1998, Figueroa-Centcno et al. [8] proved that almost no graphs are super
edge-magic following the steps outlined next. First they proved in [8] that if a
graph is either a tree or its size is at least as large as its order and is super edge-
magic, then such graph is harmonious. Then using a result found by Gilbert (7]
which guarantees that almost all graphs are connected, and the result that states
that almost all graphs arc not harmonious, they concluded that almost no graph
is super edge-magic.

Here, we will provide a different approach in order to show that the following
ratio number of non-isomorphic super edge-magic graphs

number of non-isomorphic graphs

is asymptotically zero. We will also go a little bit further, and study the “condi-
tional probability” that a graph is super edge-magic provided that it is bipartite.
In order to conduct this study, we will recall some well known results about
cnumerative graph theory and mathematical analysis, that we state next. It is
worthwhile to mention that we found out Lemmas 1 and 2 through personal com-
munication with A. J. Schwenk and R. Stanley respectively. Lemma 3 is the well
known Stolz’s Theorem.

Lemma 1. Consider the function

g: (i x (13 - N
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defined by the rule g(i,j)= number of non isomorphic graphs of order i and size
J. Then there exists k € N such that, when p > k, the function

py — N
mx (8

is unimodal, reaching its mazimum at 5 (3) if () is even or at [1 (3)]. [3 (3)]
if (5) is odd.
Lemma 2. Letp € N, and let p1,p2 € N such that p = p1 + p2. Also assume that
G is a bipartite graph with vertez set V = AU B where |V| = p, |A| = p1 and
|B| = p2. Then the function

fX,B :{0,1,...,;mp2} = N
defined by the rule fY p(n)= number of bipartite graphs with vertez set V = AUB
and size n is unimodal, reaching its mazimum at ip1p2 if pip2 is even or at
| 3p1p2], [3P1p2] if Prp2 is odd.
Lemma 3 (Stolz’s Theorem). Let an and b, be two sequences such that

Gn4l — CGn

lim a, = lim b, = c0 and lim =1L,

n—00 n—oo n—o0 bn+l - bﬂ
then a
lim — = L.
n—-00 n
To conclude this section, we will recall the following two results found in (3]
and [5) respectively; and we will introduce Lemma G.

Lemma 4. If Gis a super edge-magic (p, q)-graph then q < 2p - 3.
Lemma 5. If G is a super edge-magic bipartite (p,q)-graph then ¢ < 2p — 5.
Lemma 6. Let G be a (p,q)-graph such that pus(G) = n then ¢ < 2p+2n — 3.

Proof. If G is a super edge-magic (p, g)-graph, then we know by Lemma 4 that
g < 2p — 3. Since us(G) = n, it follows that the graph H & G U nK, is super
cdge-magic. Now, |V (H)| = p + n, and |E(H)| = q. Therefore, ¢ < 2p + 2n — 3.

2 Almost no graph is super edge-magic

In this section, we prove that almost no graphs are super edge-magic by computing

the ratio . . .
number of super cdge-magic non-isomorphic graphs

number of non-isomorphic graphs
in an asymptotic way.

However, in order to accomplish this goal, we need to introduce the following
definitions.

Let p € N and define Sp, to be the set that contains all non-isomorphic graphs
of order less than or equal to p. Also define the set S;, to be the set that contains
all non-isomorphic graphs of order less than or equal to p and size upper bounded
by two times the order minus 3.
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Theorem 1.

Proof. Through this proof, we let g(1,—1) =

Fix p € N. We compute |S}| for each i € {1,2,...,p}.

Fix 4,7 € N and denote the number of non isomorphic graphs of order ¢ and
size j by g(i,j) when i, j are both non negative.

Then,

12—:

p_2i-3 r

151 =" 9(i,5) and [Spl =D Y 904, 5).

i=1 j=0 i=1 j=0

Then,
u — . f:l _1—0 g(l,])
m S T A -

?:1 EJ-—O g(l .7)
Z,_; Eff_'osg( i,7) . Ez—k+l J—O 9(%])

= lim + lim 5
p—oo ' 7’_°°° . .
e Z i=0 9(1 7) ?:1 ZJ’:o g(3,7)
i Z;—k-n E o g(" J)
= unm
p—oo

f:l ZJ_O g(i .7)

Where k is the minimum integer for which the function g(k, j) is unimodal

(see Lemma, 1), hence 3%, ;’;},3 g(i,7) is constant.

Since the function gI (3) is unimodal when ! > k and its maximum
(l)x{J}J-—o
appears either at 1 (3) if (3) is even or at |1 (3)],[3(3)] if (3) is odd, it
follows that

9(3,7) < g(i,2i —2) wheni > k+ 1 and j € {0,1,...,2{ — 2}.

Therefore,
2i-3
> 96i,3) < (2 - 2)g(, 2 - 2),
=0
hence
p 2i-3
> D e < Z (2 — 2)g(i, 2i — 2). (1)
i=k+1 j=0 i=k+1
Also,
ﬁz—_i i2-5i46
STeii = Y g(id)
3=0 j=2i-2
where '—i"— is equal to '— -2i-3.
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Now, if i > k + 1, by unimodality, we have that

i2-5i46
.. P-9%+8 . .
> 96d) 2 — 9,2 - 2)
j=2i-2
then
i2-i
P T3 P .2 .
. T-%+8 .

D Do 9i) 2 Y, ————g(i,2i - 2). (2)
i=k+1 3=0 i=hk+1

Thus, by (1) and (2)

27— - . o .
- 1 o g(i,9) < lim S (26~ 2)g(3,2i - 2)

oo 2 = p P i2-9i48 ¢ o _
T S ik ed) T Theen T g% -2)

i=1

o0
00'

Then, using Stolz’s Theorem, we obtain that the previous limit is 0.
Thus

S‘
lim = I

p—oo |Spl
On the other hand, it is obvious that

<0.

*

p—oo |Sp|

> 0.

Therefore,
*
lim =2 =0
p—oo |Sp|

Now, notice that by Lemma 4, the set of super edge-magic graphs of order
less than or cqual to p, denoted by SEM,, is a subset of S, Hence,

S‘
0< lim |SEMy| < lim M =0.

Thercfore,

. |SEM,]
lim ——— =0
p—oo Syl

A similar argument to the one used in the proof of Theorem 1, together with
Lemma 6, provides the following corollary.

Corollary 1. Letn € N and let SEM,; to be the set of graphs with super edge-
magic deficiency less than or equal to n and order at most p. Then,
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3 Bipartite Graphs

Let p, p1, p2 be positive integers such that p = p; + p2 and p1p2 = o(p?). Denote
by Sp,p1,p2 the set of all non isomorphic bipartitc graphs of order p with vertex
set V and fixed partition sets V1 and V4 such that |Vi| = p; and |V2| = p2 and let

S;»Plﬂ'"z = {G € Sp,p1.p2 : |1E(G)| < 2p - 5}

Theorem 2. For every ¢ > 0, there exists k(¢) € N such that if G is a bipartite
graph with vertez set V, and bipartite sets V1, Va, with the property that

[Vl=p > K(e), |Vil = p: (i=1,2) and pip2 = o(p°).

Then -
|S5.p1.05 <.
|Sp.p1.p2

Proof. The possible sizes of the graphs in Spp, ., range in the set

{0,1,2...,p1p2}. Now, define the function

f:{0,1,2,...,mp2} - N

by the rule f(i) = number of graphs in Sy, p, », of size 7. Then, by Lemma 2, this
function is unimodal, and has its maximum at 22 if p;p; is even or at | 2122 |,
[2122] if prp2 is odd. Also,

2p-5 P1P2
|Sppawa] = D F(3) and (Sppypal = D £(3)
i=0 i=0
thus,
Sopaa| _ Zitg® £5)
[Spmrpal  L07 £(3)
_ Soors” f(@)
257050 f(3) + Tripz == f(3)
_ (22255 (i) + Spugzr-oi f(i))"
250 f(3)
_ (o BB 0N
s F ()
Now,

pip2— (P91t £(i) S [P (p-5+1) - (-0 + 152 - 1)
st F) - (2p-0)f(2p - 1)

i=0
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Hence,

-1

Z?;Pz:@l’-f’)'i‘l @

(2+ 252:_5“1_) —0asp— co.
i=0

Therefore for every ¢ > 0, there exist k(¢) € N, such that if p > k(c) then

*
|S1’:P] sP2 |

<c
Sp.p1 .2

As a corollary, and since the set of super edge-magic bipartite graphs of order
p and fixed bipartite set Vi, V2 such that |Vi| = pi, (¢ = 1,2) and p1p2 = o(p?),
denoted by SEMp, p, ,ps, is a subset of S; 5, 5., We have that for all ¢ > 0, there
cxists k(c) € N such that p > k(¢) implies

EM,
ISEMpmml _
Srims]

4 Conclusions

In light of what it has been exposed in this paper, it seems clear that the correct
scts to compare are not the sct of graphs with the set of super edge-magic graphs,
but the set of graphs with size upper bounded by two times its order minus 3,
with the set of super edge-magic graphs.

We also want to point out that in Theorem 2, the hypothesis that pip2 = o(pz)
cannot be climinated since if we let p1 = 1, and p2 = n, what we get is the set of
stars and stars with isolated vertices, and all these graphs are super edge-magic.

Finally, we want to proposc the following open questions.

— What is the probability that a graph is super edge-magic given that it is
bipartite?

— What is the probability that a graph is super edge-magic given that the graph
is a tree?

— What is the probability that a graph has finite super edge-magic deficiency?
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