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Abstract. By an (a,d)-edge-antimagic total labeling of a graph
G(V, E) we mean a bijective function f from V(G) U E(G) onto
the set {1,2,...,|V(G)| +|E(G)|} such that the set of all the edge-
weights, w(uv) = f(u) + f(uw) + f(v),wv € E(G), is {a,a +d,a +
2d,...,a+ (|E(G)| — 1)d}, for two integers @ > 0 and d > 0.

In this paper we study the edge-antimagic properties for the disjoint
union of complete s-partite graphs.

Keywords: complete s-partite graph, (a,d)-edge-antimagic total la-
beling, super (a,d)-edge-antimagic total labeling.

1 Introduction and Definitions

We assume that G(V, E) is a finite, simple, and undirected graph with p vertices
and ¢ edges. We refer the reader to [12] or {13] for all other terms and notation
not provided in this paper.

By a labeling we mean any mapping that carries a set of graph elements onto
a set of numbers, called labels. In this paper, we deal with labelings with domain
the set of all vertices and edges. This type of labeling belongs to the class of total
labelings. We define the edge-weight of an edge uv € E(G) under a total labeling
to be the sum of the vertex labels corresponding to vertices u, v and edge label
corresponding to edge uv.

An (a,d)-edge-antimagic total labeling on a graph G is a bijective function
f:V(G)UE(G) — {1,2,...,p + g} with the property that the edge-weights
w(ww) = f(u) + f(uwv) + f(v),uv € E(G), form an arithmetic progression {a,a +
d,a+2d,...,a+ (g — 1)d}, where a > 0 and d > 0 are two fixed integers. If such
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a labeling exists then G is said to be an (a, d)-edge-antimagic total graph. Such
a graph G is called super if the smallest possible labels appear on the vertices.
Thus, a super (a,d)-edge-antimagic total graph is a graph that admits a super
(a, d)-edge-antimagic total labeling.

The concept of (a, d)-edge-antimagic total labeling, introduced by Simanjun-
tak et al. in [9], is a natural extension of the notion of an edge-magic labeling,
defined by Kotzig and Rosa [7] (see also [1], [5], [8] and [11]). The super (a, d)-edge-
antimagic total labeling is a natural extension of the notion of a super edge-magic
labeling, which was defined by Enomoto et al. in [4].

In this paper we investigatc the existence of super (a, d)-cdge-antimagic to-
tal labelings for disconnected graphs. Some constructions of super (a,0)-cdge-
antimagic total labelings for nCx U mP; and K. U Ki1,» have been given by
Ivanéo and Luckanicovd in [6], and super (a, d)-edge-antimagic total labelings for
P.UPu41,nP; UP, and nP2 U P42 have been described by Sudarsana et al. in
(10].

We will concentrate on the disjoint union of m copies of complete s-partite
graph, denoted by mKn,n,...,n. Form>2,n>1and s > 2 let

N e’

V(mKn,n,...,n) = U U {z{',- .1 Sisn}

Jj=1t=1

be the vertex set and

m s—=1 n
E(mKn,n,.-.,n)=jL__J“=LJ“=LJ1{x:,ir:+k,,=ISkSs—t,lsrgn}

]

be the edge set of mKn, n,...,n.
N’

Thus, let p = |[V(mKn,n,...,n)] = mns and ¢ = |[E(mKn,n,...,n)| =
N N !

mn“s(s—1

2

2 Main Result

Before beginning this section, we note that super (a, d)-cdge-antimagic total la-
belings for mK, » are studied in (2], and properties of super (a, d)-edge-antimagic
total labelings of disjoint union of multiple copies of complete threepartite graph
mKn nn are investigated in [3]. Therefore, we will study the super edge-anti
magicness of mKn,n,...,n for s > 4.

N’

If the graph mKn, n, ..., n admits a super (a, d)-edge-antimagic total labeling
N’

a
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f:V(mKn,n,... n)UEmKnn,...,n) — {lyz)“'?? (n(s-1) +2)}
then W = w(uww) = f(u) + f(uwv) + f(v) :uwv € E(mKn,n,...,n)p =
N e’

a,a+d,a+2d,...,a+ (w - l) d} is the set of the edge-weights, and
the sum of all the edge-weights in W is

Z w(uv) = mnls(s - 1) [4a + (mns(s— 1) — 2) d] .

8
weE(mKn n,...,n)
———

&

In the computation of the edge-weights of mKn, n, ..., n, each cdge label is
N e’

used once and the label of cach vertex is used (s — 1)n t?imes. The sum of all the
vertex labels and the edge labels used to calculate the edge-weights is thus equal

to
(s = )n ) Flu) + > fluw) =
weV(mKn n, ..., ,n) weEB{mKn, n ..., 1)
‘:—/ \—Y—-/
Zs(s— 1
anzs(s -1+ mn_s(s 1) [4mns + mn®s(s - 1) + 2]. (2)

2 8

The sumn of all the vertex labels and the cdge labels used to calculate the

cdge-weights is equal to the sum of the edge-weights in the set W, under the
labeling f. Thus combining (1) and (2) gives the following equation

da + (mn’s(s — 1) — 2)d = 8mns + mn’s(s — 1) + 6. 3)

At this point, we arc ready to establish an upper bound on the parameter d.
Lemma 1 For the graph mKn,n,...,n, m > 2, n =1 and s = 4, there is no
N —
super (a,d)-edge-antimagic total labeling with d > 3.

Proof. Since the minimum possible edge-weight under the labeling f is at
lcast mns + 4, then from Equation (3) it follows that

Amns - 8

<14 ———. 4

ds +mnzs(s—1)—2 “)

It is casy to verify that 1 < m—;‘% < 2only whenm > 2, n =1 and

s = 4, which completes the proof. a

Since m—;‘,’% <lform>2n>2ands > 4, it follows that (4) gives
d < 2 and we have the following lemma.
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Lemma 2 For the graph mKn,n,...,n, m = 2, n > 2 and s > 4, there is no
N’
super (a, d)-edge-antimagic total labeling with d > 2.

First, we start to deal with super (e, 0)-edge-antimagic total labeling for the
disjoint union of m copies of complete s-partite graph.

Theorem 1 If either s = 0,1 (nod 4), s > 4, m > 2, n > 1, or mn is even,
m>2,n>1,s > 4, then there is no super (a,0)-edge-antimagic total labeling
formKn,n,...,n.

[

=

Proof. Assume that mKn, n,...,n admits a super (a, 0)-edge-antimagic total
N e’
labeling
mns
f:V(mKn,n,...,n)UEmKn,n,...,n)— {1,2,-“,7 (n(s—-1) +2)}.
N— ——

From Equation (3) we have

mnis(s-1) 3

4 Ty %)
If either s= 0,1 (mod 4),s >4, m>2,n>1l,ormniseven, m>2,n>1

and s > 4, then from Equation (5) it is easy to see that the value a is not an

integer, which is a contradiction. u]

a = 2mns +

The minimum edge-weight in Equation (5) is an integer if and only if mn
is odd and s = 2,3 (mod 4). In this case we do not have any answer for super
(@, 0)-edge-antimagicness of mKn,n, ..., n. Therefore, we propose the following

N e

El

open problem.

Open Problem 1 For the graph mKn,n,...,n, mn odd, m > 3, n > 1 and
N —

s = 2,3 (mod 4), s > 6, determine if there is a super (2m'ns + L""(;:—"l)ﬁ,O)-
edge-antimagic total labeling.

From Lemma 1, it follows that the graph mKn, n,...,n may be super (a, 2)-
N e’

s
edge-antimagic total only when m > 2, n = 1 and s = 4. Our next result gives a
negative answer.

Theorem 2 If m > 2, n = 1 and s = 4, then there is no super (a,2)-edge-
antimagic total labeling for the graph mKn,n,...,n.
[
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Proof. Assume to the contrary that for m > 2, n = 1 and s = 4, the graph
mKn,n,...,n has asuper (g, 2)-edge-antimagic total labeling f : V(mKn nn,n)U
e

E(mKnnnn) — {1,2,...,10m}. From Equation (3) we get that 2a = 10m + 5.
This contradicts the fact that a is an integer. =]

Now, we will concentrate on the existence of super (a, 1)-edge-antimagic total
labelings of the disjoint union of m copies of complete 4-partitc graph.

Theorem 3 The graph mKn nn,n has a super (8mn + 2, 1)-edge-antimagic total
labeling for every m > 2 and n > 1.

Proof. If s = 4 and d = 1, then from (3) it follows that a = 8mn+2. Consider
the following bijective function

g:V(mKnnnn)UEMmKpnnn) = {1,2,...,2mn(3n + 2)}, where

gzl )=m@i+t-5)+j for 1<t<4,1<i<n, 1<j<m

( i-2

2mn(3n+8-6i) +6m > (1 +2k) +2m(l—-7) —j+ 1
k=0

o for 1<i<n, 1<r<n-i+1 and 1<j<m,

g(x:{,iz';,r) = < i

2ma(6i - 3n-2)+4m > (1+3k) -2m(r—-2+4)—-j+ 1

k=0
for 2<i<n, n+2—-4i<r<n and 1<j<m

;

i-1
6mn(n+2-2)+2m >, (6k-1)+m(3-2r)—j+1
k=1

o for 1<i<n, 1 <r<n-i+1 and 1<j<m,
g(m?l,im:?i,r) =9 —1—

n i
6mn(2i-n)+12m Y (1+k)-m(2r-5+2)—-j+1
k=0

for 2<i<n, n+2-i<r<n and 1<j<m.

r

i-1
2mn(3n + 4 — i) + 2m T (6k + 1) + m(5 - 2r) — j + 1
k=1

o for 1<i<n, 1<r<n-i+1 and 1<j<m,

o(ehad,) =

at+Adm Y, (2+3k)-m(2r-3+2%)-j+1
k=0

| for 2<i<n, n+2-i<r<n and 1<j<m

( i—1

2mn(3n+4—-6)+2m Y (6k+ 1)+ m(d—2r) —j+ 1
k=1

o for 1<i<n-1, 1<r<n-i and 1<j<m,

g(x?!,ix?i,r) = < ne1ei

a+dm Y (2+3k)-2m(r-1+i)—-j+1
k=0
for 1<i<n, n+l-i<r<n and 1<j<m,

\
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where a = 2mn(6i — 3n + 2).

If 1<i<n,1<r<n—-i4+1 and 1<j<m then
9(= 2 ,) = g(z]2},)-m and
g(x‘;,ia:i,r) = g(x{,ix?;,r) - m.

If 2<i<n,n+2-i1<r<n and 1<j<m then

9(a] ) = g(alw),) -m and

g(x-'l’,ixfi,r) g(x‘;,ixé,r) -m.

It is not difficult to verify by a routine procedure that a system of sets

m 3 n . A .

U U U {96l + o@lielinn) + o(eln) s 1S k< 4-t1 <7 < n}

j=1lt=1i=
consists of consecutive integers of the form 8mn+ 2, 8mn+3,8mn+4,...,6n*m+
8mn, 6n®m + 8mn + 1, which are the required edge-weights of mKn n,n,n under
the total labeling g. Thus g is a super (8mn + 2, 1)-edge-antimagic total labeling.
O

Figure 1 shows a vertex labeling of the graph 4K33,3,3.
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Fig. 1. Vertex labeling of the graph 4K33,3,3
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Under the labeling g defined as above we describe in the following tables the
cdge labels and the edge-weights of the graph 4K3 3 3 3. The values in cells of the

tables are in the format of &, where the value z is the sum of labels of two end

vertices of the corresponding edge, the value y determines the corresponding edge
label and the value z = = + y determines the corresponding total edge-weight.
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4 4 4 4 4 4 4 4 4
T2,1 T332 To3 T3,1 Z3,2 T33 T4,1 T4,2 T4,3
2 —
2% T [ 3%
T1,1| 275 281 288 T1,1| %33 241 a4y T11 |5 4 4L
44 4 2
4 i s |5 B
Ti2| 168 177 137 T1,2( 145 153 161 T1,2( 173 181 7141
44 60 a8 80 52 68 84
4 18 157 4 .| 2L 185 4 | 68 151
T1,3] 113 217 225 T1,3| 105 257 265 T1,3| 117 221 229
4 4 4 4 4 4 4 4 4
T31 32 T3z Tq,1 Ty2 Ty3 Ta1 T4,2 Ty3
4 4 4 % f&h
Z2,1| 197 Z05 213 T2,1|337 2as 355 L31[3T 365 Th
4
4 4 | 505 4 &%
T2,2| 125 133 189 T2,2| 140 157 165 T3.2| 125 Tar 163
2 68 56 72 8 1] 76
4 4 | 5 4 =
T23]| jor 301 309 T2.3| 305 261 269 T3.3| 397 ser S

We can see that the edge labels (values y) are 49, 50, . .., 263, 264 and the edge-
weights under the total labeling (values z) constitute the set {98, 99, 100, ... ,312,
313}. Thus the vertex labeling and the edge labeling of 4K3,3,3,3 combine to super
(98, 1)-edge-antimagic total labeling.

A natural question to ask is whether we can say anything about super (a,1)-
edge-antimagic total labeling for disjoint union of complete s-partite graphs for
s 2> 5. Although we have not yect found the general formulas for vertex and
edge labelings of mKn,n,...,n that will produce a required super (a,1)-edge-

N

antimagic total labeling, the observed antimagic properties of mKn,n, ..., n lead
N s

us to suggest the following

Conjecture 1 There is a super (a, 1)-edge-antimagic total labeling for the graph
mKn,n,...,n for s> 5 and for everym >2 andn > 1.
A ——
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