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Abstract. The term mode graph was introduced by Boland, Kauff-
man and Panrong [2] to define a connected graph G such that, for
every pair of vertices v, w in G, the number of vertices with eccen-
tricity e(v) is equal to the number of vertices with eccentricity e(w).
As a natural cxtension to this work, the concept of an antimode
graph was introduced to describe a graph for which if e(v) # e(w)
then the number of vertices with eccentricity e(v) is not cqual to
the number of vertices with eccentricity e(w). In this paper we de-
termine the existence of some classes of antimode graphs, namely
equisequential and (a, d)-antimode graphs.

Keywords: Mode graph, eccentricity, antimode graph.

1 Introduction

All graphs considered in this paper are finite, simple and undirected. The set of
vertices and edges of a graph G will be denoted by V(G) and E(G), respectively.
The number of vertices in a graph G is known as the order of G, denoted |V (G)|.
The distance between two vertices 4 and v in a graph G, denoted d(u,v), is equal
to the shortest uv-path in the graph. The maximum distance from u to any other
vertex in the graph is called the eccentricity of u, written e(u). The maximum of
all eccentricities is the diameter while the minimum of all eccentricities is called
the radius, denoted 7 or rad(G).

Vertices having eccentricities equal to the diameter make up the periphery of
the graph; those vertices having eccentricities equal to the radius are collectively
known as the centre of the graph. The eccentric sequence of a graph, denoted
ES(G) = (ex, €2,-..,¢en), is the non-decreasing scquence of integers representing
all the eccentricities in the graph. Since most graphs have morc than one vertex
with the same eccentricity, it is common to adopt a short hand notation for the
cccentric sequence, namely ES(G) = (eI*,ez2,...), where m. is the number of
vertices having eccentricity e; and the sequence is strictly increasing in e;.

A graph is said to be self-centered if all vertices have the same eccentricity.
Every vertex in a disconnected graph has eccentricity oo, hence, all disconnected
graphs are self-centered. Boland, Kauffman and Panrong (2] define a mode ver-
tex of a graph G as a vertex whose cccentricity occurs at lcast as often in the
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eccentric sequence of G as the occurrence of the eccentricity of any other vertex.
Furthermore, the authors define the mode of a graph as the subgraph induced by
the mode vertices and a mode graph to be a graph in which all vertices are mode
vertices. In other words, a mode graph is a graph having m; = m; for all 4,j in
the eccentric sequence. For example, the eccentric sequence of an even path P, is
ES(P,) = ((n-1)%,(n—2)%,...,(n/2)?), hence all even paths are mode graphs.
Any other graph terms are consistent with those in [3].

Inspired by Hartsfield and Ringel [4] defining antimagic graphs, Ryan [7]
defined an antimode graph to be a graph having m; # m; for all i, in the
eccentric sequence. Furthermore, following the lcad of Bodendiek and Walther
[1], who defined (a, d)-antimagic graphs, Ryan (7] introduced the term (a,d)-
antimode graph to refer to an antimode graph having the eccentric sequence
(ef, eg"'d, . ,e,':"'(s'l)d), where d is an integer and a is a positive integer. Note
that when d = 0 the graph G is a mode graph, hence, (g, d)-antimode graphs can
be considered to be a generalisation of mode graphs.

In some cases it may be important to identify the length of the eccentric
sequence. In such cases, if the number of unique eccentricities in a graph, that is,
the length of the eccentric sequence, is N, where 1 < N < diameter of G we may
refer to a graph as an (a, d; N)-antimode graph.

In the next section we consider antimode graphs in which the number of
vertices having eccentricity e(v) is equal to e(v) for all v € V(G). In Section 3 we
examine the more general (a, d)-antimode graphs.

2 Equisequential antimode graphs

Graphs with eccentric sequences of the form (ej!,e3?,...,e5") are referred to as
equisequential antimode graphs. In other words, the eccentricity of the centre (re-
spectively, periphery) determines the size of the centre (respectively, periphery)
and likewise for the intervening eccentricities. The unique vertex of K has ec-
centricity zero and so it is not an equisequential antimode graph. Our first result
shows that there are no (finite) graphs of the form (ef!).

Lemma 1. There are no self-centered equisequential antimode graphs.

Proof. Consider a graph with = vertices each having eccentricity z, then there
must be at least one path of length z. However the longest path on a connected
graph of z vertices has length x — 1.

Boland, Kauffiman and Panrong [2] proved that the only trees that are mode
graphs are the even paths. Seeking a corresponding result for antimode graphs,
we investigated equisequential antimode graphs and discovered that K 2 and the
unique tree on five vertices with maximum degree A = 3, denoted T5, pictured
in Figure 1, are the only equisequential antimode trees.

Lemma 2. There are no equisequential antimode trees except for Ki2 and Ts.
(See Figure 1).
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Proof. Applying the result by Jordan [6], that is, that any tree T has cither one
or two vertices in the centre, the only possible equisequential antimode tree, apart
from K2 and Ts, must have eccentric sequence (22,33, 4%). Since the centre of a
tree is always the samc as the centre of the longest path in the tree [6], the path
on five vertices, Ps, must be have two vertices in the centre, which is impossible.

Fig. 1. Equiscquential antimode trees.

In Theorem 2 we prove that the equisequential antimode trees given in Lemma
2 are the only equisequential antimode graphs with cccentric sequence length
cqual to two. To do this we require Theorem 1 by Haviar, Hrnéiar and Monoszova
(5]-

Theorem 1. [5] If a graph G satisfies the conditions

1. rad(G) = r, where rad(G) is the radius of G,

2. diam(G) < 2r — 2, where diam(G) is the diameter of G,
3 V(@) £ 3r -2,

then G contains a geodesic cycle of length 2r or 2r + 1.

Theorem 2. There are no equisequential antimode graphs with eccentric sequence
of length two ezcept for (1,2) and (2,3).

Proof. Assume that there exists an cquiscquential antimode graphs, G, with
|[ES(G)| = 2. The cccentric sequence can be written (7, (r+1)"+1), note that the
graph has radius 7 and diameter r + 1 and |V(G)| = 2r + 1. Applying Theorem
1, G contains a cycle of length 2r or 2r + 1, when 7 > 3.

The cycles Car and Car41 have the eccentric sequences of length one, namely
ES(Csr) = (r*") and ES(Car41) = (r*"*1). If the graph contains the cycle Car41
all vertices are contained in the cycle. If the graph contains the cycle Ca, one
vertex, ver+1, remains. This vertex can be added to the cycle to create the cycle
Car41, or added as an isolated vertex in which casc ES(G) = (c0?*!) or alter-
natively we can add a pendent vertex, as shown in Figure 2. This will induce
two vertices to have cccentricity r -+ 1, thus resulting in an eccentric scquence of
length two, namely (727!, (r + 1)?). This scquence is not cquisequential.
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Therefore, equisequential antimode graphs with sequence length two, exist
only in the case r < 3, which are the trees in Lemma 2.
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e(v;)=r,1<i<2r+1 e(v)) =7, 1<i<2r

Fig. 2. Sketch of proof for Theorem 2.

Since there are no equisequential antimode graphs with sequence length one
or two, other than K, 2 and 75 (Lemma 2), we consider the existence of equise-
quential antimode graphs with sequence length three. Figure 5 depicts an example
equisequential antimode graphs for r = 2.

Since there are no trees which are equisequential antimmode graphs excepting
those in Lemma 2 we counsider the next sparsest set of graphs, namely unicyclic
graphs. For larger values of r and the additional constraint that the graph be uni-
cyclic, we found the following constructions for the even and odd cases. Examples
of these constructions are shown in Figure 3 and Figure 4.

For even 7 > 4, a unicyclic (r,r + 1,7 + 2)-equisequential antimode graph on
3r + 3 vertices can be constructed using the following algorithm:

1. Construct a cycle of length 2r.

2. Label the vertices on the cycle consccutively from v; to vor.

3. Append K3 graphs to the vertices labeled vr_2: and vr4+142:i on the cycle, for
i=0,1,2, ..., | 7] — 1 by creating an edge between the vertex on the cycle
and one of the vertices of the K2 graph.

4. If 7 = 2 (mod 4) connect additional K2 graphs to the vertices vgi2 and
LETINP Append the remaining isolated vertex to v,.

;.,’\

If » = 0 (mod 4) append a P2 graph by adding an edge from the central
vertex in the path to v- on the cycle.

For odd r > 5, a unicyclic (v, 7 + 1, r + 2)-equisequential antimode graph on 3r+3
vertices can be constructed using the following algorithm:

1. Construct a cycle of length 2r + 1.
2. Label the vertices on the cycle consecutively from v; to var41.
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Fig. 3. Unicyclic (r,7 + 1,7 + 2)-equisequential antimode graphs, r = 10, 12.

3. Append K> graphs to the vertices labeled v,4)-2:; and vr4+142: on the cycle,
fori=0,1,2, ..., [%1] — 2 by creating an edge hetween the vertex on the
cycle and one of the vertices of the K2 graph.

4. If r = 1 (mod4) connect K) graphs to the vertices U )+2i and
Var—z(§)-2i+2 fori=1,2,...,[5] - 2
5 If r = 3 (nod4) comnect K; graphs to the vertices VL §)+2i and

for i = Il -1

'U2r—2[§j—2i+l or 1= 1,2,...,[3] -

6. Append onc of the remaining vertices to the vertex labeled vr41 on the cycle
by adding an cdge.

7. Creatc edges between any remaining vertices and the vertex that is not on
the cycle and is at distance one from the vertex labeled vr41.

Having found all cquiscquential antimode graphs with eccentric sequence
lengths two and constructions for equisequential antimode graphs with eccen-
tric sequence lengths three, we consider the existence of cquisequential antimode
graphs with the longest possible eccentric sequence. Figure 5 includes a (22,32, 44)
and a (3%,44, 5%, 6%)-cquisequential antimode graph which can be uscd as a basis
for the construction of equisequential antimode graphs having eccentric sequence
of the form (r,7 + 1,...,27) as demonstrated in Theorem 3.
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Fig. 4. Unicyclic (r,7 4 1,7 + 2)-equisequential antimode graphs, r = 11, 13.

Fig. 5. Equisequential antimode graphs.

Theorem 3. There erists an equisequential antimode graph for any eccentric
sequence of the form (r,7 +1,...,2r).
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Proof. The proof is by construction. Figure 5 gives the constructions for r = 2 and
r = 3. We can add as many degree two vertices to the central Cy as we like and,
likewise as many degree two vertices to the inner Cs as we like. The remainder of
the eccentric sequence is made up of the required number of pendant vertices, such
that there is at least one vertex from each of the eccentricities (r + 2,...,2 x )
on cach side of the centre (see Figure 6).

2r

r+2 r+2
r+1

Fig. 6. Maximal equisequential antimode graphs.

3 (a,d)-antimode graphs

Having found equisequential antimode graphs with maximal and minimal eccen-
tric sequence lengths, we consider (a,d)-antimode graphs, where the cardinali-
ties of cceentricities form a more general arithmetic sequence, namely ES(G) =
(e2,ea%?, .. 2t * D) where d is an integer and a is a positive integer. Note
that an equisequential antimode graph is an (a, d)-antimode graph having e; = a
and d = 1. Even when the superscripts are restricted to a consecutive scquence
of integers, the freedom to choose a allows for trees and self-centered graphs to
be included.

One of the first considerations, when exploring (a, d)-antimode graphs is to
find any forbidden configurations. That is, to find any subgraph whose existence
would prevent the construction of an (a, d)-antimode graph. Our first theorem of
this scction shows that no such configuration exists.
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Theorem 4. Any graph G can appear as an induced subgraph of an (a,d)-antimode

graph M, with the set of eccentricities in G the same as the set of eccentricities
in M.

Proof. For d = 1 let G be a graph with ES(G) = {e}*,eb?,...,el'}. Choose
¢ = max;{p; — j} (or the first such j that attains this maximum), then for cach
ei, add 7 + ¢ — p; vertices so that the superscripts form a consecutive sequence of
numbers beginning from 1+ c. To demonstrate the method of adding new vertices,
choose e; such that p; — ¢ < ¢. Then add a vertex v to G by creating an edge
between v and a vertex u with cccentricity e; and edges between v and all other
vertices adjacent to u. Now e(v) = i and the eccentricities of all other vertices
remain the same. This process can be repeated i + ¢ — pi times for each 7 until
we obtain a (a, 1)-antimode graph.

For d > 1 choose ¢ = max;{p; — dj} and repeat the above process adding the
required number of vertices.

As a consequence of Theorem 4, there arc no subgraphs that would impede
the construction of an (a,d)-antimode graph. The technique in Theorem 4 can
also be used to construct (e, d; 2)-antimode graphs by simply adding |d| vertices
to the periphery (or centre if d < 0) of any bimodal graph.

In Theorem 6 we give conditions under which the Cartesian product of two
graphs forms an (a, d)-antimode graph. In order to do this we require Theorem
5 by Boland, Kauffman and Panrong 2] which employs the Cartesian product of
two graphs. The Cartesian product G = G x Gz, has V(G) = V(G1) x V(G2),
and two vertices (u1,u2) and (v1,v2) of G are adjacent if and only if either
u; =v1 and upvz € E(G2) or uz = v2 and wyvy € E(G1).

Theorem 5. [2] If ec(u) = a and en(v) = b, then the eccentricity of the vertez
in G X H corresponding to v in V(G) and v in V(H) isa+b.

Theorem 6. The Cartesian product of two graphs, G1 X G2 is an (a,d)-antimode
graph if and only if G1 is an (@', d)-antimode graph and G2 is self-centered.

Proof. (<) Let G1 be a graph with eccentric sequence ES(G1)= e}?, ..., eh" such
that the p;’s form an arithmetic progression with common difference d, and let G2
be a self-centered graph with ES(G2)=f*. Then using Theorem 5, ES(G1 x G2)=
(e1 + F)P1H*, ..., (ea + F)P"** so that the superscripts of the eccentricities form
an arithmetic progression beginning with p; + k and with common difference d.

(=) Case 1: Suppose G is not an (¢, d)-antimode graph and G: is self-
centered of order p. Then ES(G)) = e';’ ,e';?, ...,e¥* such that the superscripts
do not form an arithmetic progression, that is, there is some k; where ki1 —k;: # d.
By Theorem 5, ES(G1 XG2) = f{'kl,f{,’kz, v ,ffk‘ and pk,‘+1—pk; -',f dso Gl XGz
is not an antimode graph.

Case 2: Suppose neither G1.nor Gy is self-centered. Let the respective eccen-
tric sequences be

ES(G1) = €™, (e+ 1)™,...,(e+7)" and
ES(Gz) = f*,(f +1)",....(f + H)V.
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Consider the Cartesian product Gi1 x G2. By Theorem 5, the set of vertices with
cecentricity e + f has cardinality po + go while the set of vertices with cccentricity
e + f + 1 has cardinality po + @1 + go + p1. Since all exponents are positive,
d must also be positive and the sequence of cardinalities must be increasing.
Iowever, the cardinality of the set of vertices with eccentricity (e +i+ f+ 7 — 1)
is pi—1 + ¢; + pi -+ gj—1 and the cardinality of the sct of vertices with cccentricity
(e +4+4 f +j) is pi + g; indicating that the sequence is decreasing.

Clearly there can be no sequence that is both increasing and decreasing, so
G1 x Ga is not an (a, d)-antimode graph.

Boland et al. {2] gave conditions under which a graph is a (1,2)-mode graph.
In Theorem 7 we usc a similar technique to characterise (a, 1;2)-antimode graphs
with unit radius. For this we requirc the following definition of the join of a
graph from [3]. The join G = G1 + G2 has V(G) = V(G1) UV (G2) and E(G) =
E(G1)U E(G2) U{uv|u € V(G1) and v € V(G2).

Theorem 7. A graph G is an (a, 1;2)-antimode graph with unit radius if and
only if it is the join of a complete graph, G1, and a second graph G2 with radius
rad(Gz) > 2 and |V(G2)| = |[V(G1)| + L.

Proof. (=) Suppose G is an (a, 1;2)-antimode graph with unit radius. Then G
has a vertices with eccentricity onc and a + 1 vertices with eccentricity two. Let
G be the induced subgraph on the centre, then G} must be a complete graph.
Let G2 be the induced subgraph on the periphery, then for v € V(G2), ec, (v) > 2
since eg(v) = 2. It is easy to see that G is the join of G; and Ga.

(«=)Let G be the join of K, and G2 where rad(G2) > 2 and the order of
G2 is a + 1. So for cvery vertex v € V(Ka),ex,(v) = 1 and for cach vertex
u € V(G2),eq,(u) > 2. Hence ex,(v) = 1 and eg,(u) = 2. Hence G is an
(a, 1;2)-antimode graph with unit radius.

Corollary 1. A graph G is a (a, —1;2)-antimode graph with unit radius if and
only if it is the join of a complete graph, G1, and a second graph Go with radius
rad(Gz) > 2 and |V(G2)| = |[V(G1)| - 1.
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