Edge-antimagic total labeling of disjoint union of caterpillars

Martin Bača¹, Dafik^{2,4}, Mirka Miller^{2,3} and Joe Ryan²

Department of Appl. Mathematics Technical University, Košice, Slovak Republic Martin.Baca@tuke.sk

² School of Information Technology and Mathematical Sciences University of Ballarat, Australia

joe.ryan@ballarat.edu.au

Department of Mathematics

University of West Bohemia, Plzeň, Czech Republic

m.miller@ballarat.edu.au

Department of Mathematics Education Universitas Jember, Indonesia ddafik@students.ballarat.edu.au

Abstract. Let G=(V,E) be a finite graph, where V(G) and E(G) are the (non-empty) sets of vertices and edges of G. An (a,d)-edge-antimagic total labeling is a bijection β from $V(G) \cup E(G)$ to the set of consecutive integers $\{1,2,\ldots,|V(G)|+|E(G)|\}$ with the property that the set of all the edge-weights, $w(uv)=\beta(u)+\beta(uv)+\beta(v), uv\in E(G)$, is $\{a,a+d,a+2d,\ldots,a+(|E(G)|-1)d\}$, for two fixed integers a>0 and $d\geq 0$. Such a labeling is super if the smallest possible labels appear on the vertices. In this paper we investigate the existence of super (a,d)-edge-antimagic total labelings for disjoint union of multiple copies of a regular caterpillar.

1 Introduction

All graphs considered in this paper are finite, simple and undirected. The graph G has vertex set V(G) and edge set E(G) and we let p = |V(G)| and q = |E(G)|. The general references for graph theoretic notions are [16] and [17].

A vertex labeling of G is a bijection $\alpha: V(G) \to \{1, 2, ..., p\}$ and the associated edge-weight $w_{\alpha}(uv)$ of an edge uv in G is $w_{\alpha}(uv) = \alpha(u) + \alpha(v)$. A total labeling of G is a bijection $\beta: V(G) \cup E(G) \to \{1, 2, ..., p+q\}$ and the associated edge-weight $w_{\beta}(uv)$, $uv \in E(G)$, is $w_{\beta}(uv) = \beta(u) + \beta(uv) + \beta(v)$.

The vertex labeling α of G is (a,d)-edge-antimagic vertex labeling if the set of all the edge-weights, $\{w_{\alpha}(uv): uv \in E(G)\}$, is $\{a,a+d,a+2d,\ldots,a+(q-1)d\}$, for two integer a>0 and $d\geq 0$. In his Ph.D thesis, Hegde called this labeling a strongly (a,d)-indexable (see Acharya and Hegde [1]).

An (a,d)-edge-antimagic total labeling of G is the total labeling β with the property that the edge-weights $w_{\beta}(uv)$, $uv \in E(G)$, form an arithmetic progression $a, a+d, a+2d, \ldots, a+(q-1)d$, where a>0 and $d\geq 0$ are two fixed integers. Such a labeling is super if $\beta(V)=\{1,2,\ldots,p\}$.

These labelings, introduced by Simanjuntak et al. in [12], are natural extensions of the concept of magic valuation, studied by Kotzig and Rosa [9] (see also [11],[15]), and the concept of super edge-magic labeling, defined by Enomoto et al. in [5] (see also [6],[7]).

Assume that the graph G has a super (a,d)-edge-antimagic total labeling $\beta:V(G)\cup E(G)\to \{1,2,\ldots,p+q\}$. The minimum possible edge-weight under the labeling β is at least 1+2+(p+1)=p+4. On the other hand, the maximum possible edge-weight is at most (p-1)+p+(p+q)=3p+q-1. So we have $a\geq p+4$ and $a+(q-1)d\leq 3p+q-1$. The last inequality gives an upper bound for the difference d, i.e.

$$d \le \frac{2p+q-5}{q-1}.\tag{1}$$

In this paper we investigate the existence of super edge-antimagicness for disconnected graphs. Ivančo and Lučkaničová [8] described some constructions of super edge-magic (super (a,0)-edge-antimagic total) labelings for $nC_k \cup mP_k$ and $K_{1,m} \cup K_{1,n}$. Baskoro and Ngurah [4] described super edge-magic total labelings for nP_3 . The super (a,d)-edge-antimagic total labelings for $P_n \cup P_{n+1}$, $nP_2 \cup P_n$ and $nP_2 \cup P_{n+2}$ have been described by Sudarsana et al. in [13] and (a,d)-edge-antimagic total labeling of mC_n can be found in [10].

We are studying super (a, d)-edge-antimagic total labeling for the disjoint union of multiple copies of a regular caterpillar. The paper concludes with a list of open problems and conjecture.

2 Disjoint union of caterpillars

A caterpillar is a graph derived from a path by hanging any number of leaves from the vertices of the path. We denote the caterpillar as $S_{t_1,t_2,...,t_n}$, where $x_1,x_2,...,x_n$ are vertices of the path and $x_{i,k}$, $1 \le k \le t_i$, are leaves from the vertex x_i , for $1 \le i \le n$. In [14], it is proved that all caterpillars $S_{t_1,t_2,...,t_n}$ have a super (a,d)-edge-antimagic total labeling for $d \in \{0,1,2\}$.

Any caterpillar is bipartite; thus we denote by $\{A, B\}$ the bipartition of its vertex set. As a consequence of the results, which have been proved for edge-antimagicness of trees in [3], it follows that any caterpillar with $|A| - |B| \le 1$ admits a super (a,3)-edge-antimagic total labeling.

Now, we will study the super edge-antimagicness of a disjoint union of m copies of a caterpillar denoted by $mS_{t_1,t_2,...,t_n}$. It is the disconnected graph with vertex set

$$V(mS_{t_1,t_2,\ldots,t_n}) = \bigcup_{j=1}^m \bigcup_{i=1}^n \left\{ x_i^j \right\} \bigcup \bigcup_{j=1}^m \bigcup_{i=1}^n \left\{ x_{i,k}^j : 1 \le k \le t_i \right\}$$

and edge set

$$E(mS_{t_1,t_2,...,t_n}) = \bigcup_{j=1}^{m} \bigcup_{i=1}^{n-1} \left\{ x_i^j x_{i+1}^j \right\} \bigcup \bigcup_{j=1}^{m} \bigcup_{i=1}^{n} \left\{ x_i^j x_{i,k}^j : 1 \le k \le t_i \right\}$$

. If every vertex of the path of caterpillar S_{t_1,t_2,\ldots,t_n} has the same number of leaves, i.e. $t_1 = t_2 = \cdots = t_n$, then the caterpillar is said to be a regular.

If the disjoint union of m copies of a regular caterpillar $mS_{t_1,t_2,...,t_n}$, $t_1 =$ $t_2 = \cdots = t_n = t$, has a super (a, d)-edge-antimagic total labeling then, for p = mn(t+1) and q = mn(t+1) - m, it follows from (1) that $d \le 3 + \frac{2m-2}{mn(t+1)-m-1}$. If $m \geq 2$, $n \geq 2$ and $t \geq 1$ then $\frac{2m-2}{mn(t+1)-m-1} < 1$ and thus d < 4.

The following theorem describes an (a, 1)-edge-antimagic vertex labeling for the disjoint union of m copies of a regular caterpillar.

Theorem 4 If mn is odd, $m, n \geq 3$, then the graph $mS_{t_1,t_2,...,t_n}$, for $t_1 = t_2 =$ $\cdots = t_n = t \ge 1$, has a $(\frac{mn+2m+3}{2}, 1)$ -edge-antimagic vertex labeling.

Proof. For mn odd, $m \ge 3$, $n \ge 3$ and $t_1 = t_2 = \cdots = t_n = t \ge 1$, we define a vertex labeling $\alpha_1: V(mS_{t_1,t_2,\dots,t_n}) \to \{1,2,\dots,mn(t+1)\}$ as follows

$$\alpha_1(x_i^j) = \begin{cases} \frac{m(i-1)+j+1}{2}, & \text{if } 1 \leq i \leq n-2 \text{ is odd, and } j \text{ is odd} \\ \frac{mi+1+j}{2}, & \text{if } 1 \leq i \leq n-2 \text{ is odd, and } j \text{ is even} \\ \frac{(n+i+1)m}{2} - j+1, & \text{if } i \text{ is even, and } 1 \leq j \leq m \\ \frac{mn+j}{2}, & \text{if } i = n, \text{ and } j \text{ is odd} \\ \frac{m(n-1)+j}{2}, & \text{if } i = n, \text{ and } j \text{ is even} \end{cases}$$
 and for $1 \leq j \leq m$ and $1 \leq k \leq t$
$$\begin{cases} \frac{mn(2k+1)+j}{2} + \frac{m(i-1)}{2} + 1, & \text{if } 1 \leq i \leq n-2 \text{ is odd} \\ \text{and } j \text{ is odd} \end{cases}$$

$$\alpha_1(x_{i,k}^j) = \begin{cases} \frac{mn(2k+1)+mi+j}{2} + 1, & \text{if } 1 \leq i \leq n-2 \text{ is odd} \\ \text{and } j \text{ is even} \end{cases}$$

$$kmn + \frac{m(i+1)+3}{2} - j, & \text{if } i \text{ is even} \\ kmn + \frac{j+1}{2}, & \text{if } i = n, \text{ and } j \text{ is odd} \end{cases}$$
 The vertex labeling α_1 is a bijective function. The edge-weights, unpoliting α_1 are constitute the costs.

The vertex labeling α_1 is a bijective function. The edge-weights, under the labeling α_1 , constitute the sets

labeling
$$\alpha_1$$
, constitute the sets
$$W_{\alpha_1}^1 = \{w_{\alpha_1}^1(x_i^j x_{i+1}^j) = \frac{m(n+2i+1)+3-j}{2} : \text{ if } 1 \leq i \leq n-2, \text{ and } j \text{ is odd} \},$$

$$W_{\alpha_1}^2 = \{w_{\alpha_1}^1(x_i^j x_{i+1}^j) = \frac{m(n+2i+2)+3-j}{2} : \text{ if } 1 \leq i \leq n-2, \text{ and } j \text{ is even} \},$$

$$W_{\alpha_1}^3 = \{w_{\alpha_1}^3(x_{n-1}^j x_n^j) = \frac{3mn+2-j}{2} : \text{ if } j \text{ is odd} \},$$

$$W_{\alpha_1}^4 = \{w_{\alpha_1}^4(x_{n-1}^j x_n^j) = \frac{m(3n-1)+2-j}{2} : \text{ if } j \text{ is even} \},$$

$$W_{\alpha_1}^5 = \{w_{\alpha_1}^5(x_i^j x_{i,k}^j) = \frac{m(3n-1)+2-j}{2} : \text{ if } j \text{ is even} \},$$

$$W_{\alpha_1}^5 = \{w_{\alpha_1}^5(x_i^j x_{i,k}^j) = \frac{mn(2k+1)+3}{2} + m(i-1) + j : \text{ if } 1 \leq i \leq n-2 \text{ is odd}, 1 \leq k \leq t, \text{ and } j \text{ is even} \},$$

$$W_{\alpha_1}^6 = \{w_{\alpha_1}^6(x_i^j x_{i,k}^j) = \frac{mn(2k+1)+3}{2} + mi + j : \text{ if } 1 \leq i \leq n-2 \text{ is odd}, 1 \leq k \leq t, \text{ and } j \text{ is even} \},$$

$$\begin{split} W_{\alpha_1}^7 &= \{w_{\alpha_1}^7(x_{i,k}^j) = \frac{mn(2k+1)+5}{2} + m(i+1)-2j: \text{ if } 2 \leq i \leq n-1 \text{ is even}, 1 \leq k \leq t, \text{ and } 1 \leq j \leq m\}, \\ W_{\alpha_1}^8 &= \{w_{\alpha_1}^8(x_n^jx_{n,k}^j) = \frac{mn(2k+1)+1}{2} + j: \text{ if } 1 \leq k \leq t, \text{ and } j \text{ is odd}\}, \\ W_{\alpha_1}^9 &= \{w_{\alpha_1}^9(x_n^jx_{n,k}^j) = \frac{mn(2k+3)+1}{2} - m + j: \text{ if } 1 \leq k \leq t, \text{ and } j \text{ is even}\}. \\ \text{It is not difficult to see that the set } \bigcup_{r=1}^9 W_{\alpha_1}^r = \{\frac{mn+2m+3}{2}, \frac{mn+2m+5}{2}, \dots, \frac{mn(2t+3)+1}{2}\} \\ \text{ contains an arithmetic sequence with the first term} \\ \frac{mn+2m+3}{2} \text{ and common difference } 1. \text{ Thus } \alpha_1 \text{ is a } (\frac{mn+2m+3}{2}, 1)\text{-edge-antimagic vertex labeling.} \end{split}$$

For extending edge-antimagic vertex labelings to edge-antimagic total labelings we can use the following theorem that appeared in [2].

Theorem 5 [2] If a graph G with p vertices and q edges has an (a,d)-edge-antimagic vertex labeling, then

- (i) G has a super (a + p + 1, d + 1)-edge-antimagic total labeling,
- (ii) G has a super (a + p + q, d 1)-edge-antimagic total labeling.

If we consider the $(\frac{mn+2m+3}{2}, 1)$ -edge-antimagic vertex labeling α_1 from Theorem 4 then applying Theorem 5 we obtain the following result.

Theorem 6 If mn is odd, $m \geq 3$ and $n \geq 3$, then the graph $mS_{t_1,t_2,...,t_n}$, for $t_1 = t_2 = \cdots = t_n = t \geq 1$, has a super $\left(\frac{mn(4t+5)+3}{2},0\right)$ -edge-antimagic total labeling and a super $\left(\frac{mn(2t+3)+5}{2}+m,2\right)$ -edge-antimagic total labeling.

The next Lemma, which appeared in [14], will be useful for proving the existence of a super (a, 1)-edge-antimagic total labeling.

Lemma 3 [14] Let $\mathfrak U$ be a sequence $\mathfrak U=\{c,c+1,c+2,\ldots c+k\}$, k even. Then there exists a permutation $\Pi(\mathfrak U)$ of the elements of $\mathfrak U$ such that $\mathfrak U+\Pi(\mathfrak U)=\{2c+\frac{k}{2},2c+\frac{k}{2}+1,2c+\frac{k}{2}+2,\ldots,2c+\frac{3k}{2}-1,2c+\frac{3k}{2}\}.$

For the disjoint union of m copies of a regular caterpillar we obtain the following result.

Theorem 7 If the product mnt is odd, $m \ge 3$, $n \ge 3$ and $t \ge 1$, then the graph mS_{t_1,t_2,\ldots,t_n} , for $t_1 = t_2 = \cdots = t_n = t$, has a super $\left(\frac{mn(3t+4)+m}{2} + 2,1\right)$ -edge-antimagic total labeling.

Proof. Consider the vertex labeling α_1 from Theorem 4, which is $\left(\frac{mn+2m+3}{2},1\right)$ -edge-antimagic vertex, where the set of edge-weights gives the sequence $\mathfrak{U}=\{c,c+1,c+2,\ldots,c+k\}$ for $c=\frac{mn+2m+3}{2}$ and k=mn(t+1)-m-1. If mnt is odd then k is even. According to Lemma 3, there exists a permutation $\Pi(\mathfrak{U})$ of the elements of \mathfrak{U} , such that

$$\mathfrak{U}+[II(\mathfrak{U})-c+mn(t+1)+1]$$

 $= \left\{ \frac{mn(3t+4)+m}{2} + 2, \frac{mn(3t+4)+m}{2} + 3, \dots, \frac{mn(5t+6)-m}{2}, \frac{mn(5t+6)-m}{2} + 1 \right\}.$

If $[II(\mathfrak{U})-c+mn(t+1)+1]$ is an edge labeling of the considered disconnected graph with labels $p+1, p+2, \ldots, p+q$, then $\mathfrak{U}+[H(\mathfrak{U})-c+mn(t+1)+1]$ determines the set of the edge-weights under the resulting total labeling. This implies that the resulting total labeling is super $\left(\frac{mn(3t+4)+m}{2}+2,1\right)$ -edge-antimagic total. \Box

The next theorem gives a super (a, 1)-edge-antimagic total labeling for m even and n odd.

Theorem 8 If m is even, $m \geq 2$, and n is odd, $n \geq 3$, then the graph $mS_{t_1,t_2,...,t_n}$, for $t_1 = t_2 = \cdots = t_n = t \ge 1$, has a super (a, 1)-edge-antimagic total labeling.

Proof. Let us consider three cases.

Case 1. n = 3.

For m even, n = 3 and t odd, define the bijection $\beta_1 : V(mS_{t,t,t}) \cup E(mS_{t,t,t}) \rightarrow$

$$\{1,2,\ldots,m(6t+5)\} \text{ in the following way:}$$

$$\beta_1(x_i^j) = \begin{cases} \frac{m(i-1)}{2} + j, & \text{if } i = 1,3 \text{ and } 1 \leq j \leq m \\ 2m+j, & \text{if } i = 2 \text{ and } 1 \leq j \leq m \end{cases}$$
and for $1 \leq j \leq m$ and $1 \leq k \leq t$, as follows

$$\beta_1(x_{i,k}^j) = (3k - i + 3)m + j$$
, if $i = 1, 2$ and 3.

$$\beta_1(x_{i,k}^j) = (3k - i + 3)m + j, \text{ if } i = 1, 2 \text{ and } 3.$$

$$\beta_1(x_i^j x_{i+1}^j) = \begin{cases} (6t + 5)m + 1 - j, \text{ if } i = 1\\ \frac{(9t + 7)m}{2} + 1 - j, \text{ if } i = 2 \end{cases}$$

$$\beta_1(x_i^j x_{i,k}^j) = \begin{cases} \frac{(9t - 3k + 8)m}{2} + 1 - j, & \text{if } i = 1 \text{ and } k \text{ odd} \\ \frac{(12t - 3k + 2i + 5)m}{2} + 1 - j, & \text{if } i = 2, 3 \text{ and } k \text{ odd} \\ \frac{(12t - 3k + 2i + 3)m}{2} + 1 - j, & \text{if } i = 1 \text{ and } k \text{ even} \\ \frac{(9t - 3k + 2i + 3)m}{2} + 1 - j, & \text{if } i = 2, 3 \text{ and } k \text{ even}. \end{cases}$$
The adaptive the part we then the belong β_1 constitute the part.

The edge-weights under the labeling β_1 constitute the sets

$$W_{\beta_1}^1 = \{w_{\beta_1}^1(x_i^j x_{i+1}^j) = (6t+7)m+j+1 : \text{ if } i=1 \text{ and } 1 \leq j \leq m\},$$

$$W_{0,i}^2 = \{w_{0,i}^2(x_i^j x_{i+1}^j) = \frac{(9t+13)m}{9} + i + 1 : \text{ if } i = 2 \text{ and } 1 < i < m\},$$

$$\begin{array}{c} W_{\beta_1}^1=\{w_{\beta_1}^1(x_i^jx_{i+1}^j)=(6t+7)m+j+1: \text{ if } i=1 \text{ and } 1\leq j\leq m\},\\ W_{\beta_1}^2=\{w_{\beta_1}^2(x_i^jx_{i+1}^j)=\frac{(9t+13)m}{2}+j+1: \text{ if } i=2 \text{ and } 1\leq j\leq m\},\\ W_{\beta_1}^3=\{w_{\beta_1}^3(x_i^jx_{i,k}^j)=\frac{(9t+3k+12)m}{2}+j+1: \text{ if } i=1, \ k \text{ odd}\\ 1\leq j\leq m\}, \end{array}$$

$$W_{\beta_1}^4 = \{ w_{\beta_1}^4(x_i^j x_{i,k}^j) = \frac{(12t+3k+14)m}{2} + j + 1 : \text{ if } i = 1, k \text{ even and } 1 \le j \le m \},$$

and
$$1 \le j \le m$$
, $W_{\beta_1}^5 = \{w_{\beta_1}^5(x_i^j x_{i,k}^j) = \frac{(12i+3k-2i+19)m}{2} + j + 1 : \text{ if } i = 2,3, k \text{ odd} \}$ and $1 \le j \le m$, $(2i+3k-2i+17)m$

and
$$1 \le j \le m$$
, $W_{\beta_1}^6 = \{ w_{\beta_1}^6(x_i^j x_{i,k}^j) = \frac{(9t+3k-2i+17)m}{2} + j + 1 : \text{ if } i = 2, 3, k \text{ even and } 1 \le j \le m \}.$

Hence, the set $\bigcup_{r=1}^6 W_{\beta_1}^r = \left\{ \frac{(9t+13)m}{2} + 2, \dots, \frac{(15t+17)m}{2} + 1 \right\}$ consists of consecutive integers. Thus the labeling β_1 is a super $\left(\frac{(9t+13)m}{2} + 2, 1 \right)$ -edge-antimagic total labeling.

When t is even and n=3, we consider the total labeling $\beta_2:V(mS_{t,t,t})\cup$ $E(mS_{t,t,t}) \to \{1, 2, \dots, m(6t+5)\}$ such that

$$\beta_2(x_i^j) = \beta_1(x_i^j), \ \beta_2(x_{i,k}^j) = \beta_1(x_{i,k}^j), \ \beta_2(x_{i+1}^j) = \beta_1(x_i^j x_{i+1}^j),$$

 $\beta_2(x_i^j x_{i,k}^j) = \beta_1(x_i^j x_{i,k}^j)$ for all i, k and j without the case when i = 2, k = t and $\frac{m}{2} + 1 \le j \le m$.

If i=2, k=t and $\frac{m}{2}+1 \leq j \leq m$ then we put $\beta_2(x_i^j x_{i,k}^j) = \frac{9m(t+1)}{2}+1-j$. By direct computation we obtain that the set of edge-weights consists of the arithmetic sequence $\left\{\frac{(9t+13)m}{2}+2,\frac{(9t+13)m}{2}+3,\ldots,\frac{(15t+17)m}{2}+1\right\}$ and therefore the total labeling β_2 is super $\left(\frac{(9t+13)m}{2}+2,1\right)$ -edge-antimagic total.

Case 2. n = 5.

Let us consider a total labeling $\beta_3:V(mS_{t_1,t_2,\ldots,t_n})\cup E(mS_{t_1,t_2,\ldots,t_n})\to \{1,2,\ldots,2mn(t+1)-m\}$, for $t_1=t_2=\cdots=t_n=t$, where

$$\beta_3(x_i^j) = \begin{cases} j, & \text{if } i = 1 \text{ and } 1 \le j \le \frac{m}{2} \\ (n-i+1)m+j, & \text{if } 2 \le i \le n \text{ and } 1 \le j \le \frac{m}{2} \\ \left(\frac{n-1}{2}-i\right)m+j, & \text{if } 1 \le i \le \frac{n-1}{2} \text{ and } \frac{m+2}{2} \le j \le m \\ \left(\frac{3n-1}{2}-i\right)m+j, & \text{if } \frac{n+1}{2} \le i \le n \text{ and } \frac{m+2}{2} \le j \le m \end{cases}$$

$$\beta_{3}(x_{i}^{j}x_{i+1}^{j}) = \begin{cases} \frac{mn}{2}(4t+3) + \frac{m}{2} + 1 - j, & \text{if } i = 1 \text{ and } 1 \leq j \leq \frac{m}{2} \\ mn(2t+1) + \frac{m}{2}(2i-1) + 1 - j, & \text{if } 2 \leq i \leq n-1 \text{ and } 1 \leq j \leq \frac{m}{2} \\ 2mn(t+1) + (2i-n+2)\frac{m}{2} + 1 - j, & \text{if } 1 \leq i \leq \frac{n-3}{2} \\ & \text{and } \frac{m+2}{2} \leq j \leq m \\ \frac{mn}{2}(3t+2) + m+1 - j, & \text{if } i = \frac{n-1}{2} \text{ and } \frac{m+2}{2} \leq j \leq m \\ \frac{mn}{2}(4t+1) + m(i+1) + 1 - j, & \text{if } \frac{n+1}{2} \leq i \leq n-1 \\ & \text{and } \frac{m+2}{2} \leq j \leq m \end{cases}$$

and for $1 \le k \le t$ in the following way

$$\beta_{3}(x_{i,k}^{j}) = \begin{cases} (nk+n-i)m+j, & \text{if } 1 \leq i \leq n \text{ and } 1 \leq j \leq \frac{m}{2} \\ \left(\frac{n-3}{2}+nk-i\right)m+j, & \text{if } 1 \leq i \leq \frac{n-3}{2} \text{ and } \frac{m+2}{2} \leq j \leq m \\ \left(\frac{3n-3}{2}+nk-i\right)m+j, & \text{if } \frac{n-1}{2} \leq i \leq n \text{ and } \frac{m+2}{2} \leq j \leq m \end{cases}$$

$$\beta_{3}(x_{i}^{j}x_{i,k}^{j}) = \begin{cases} \frac{mn}{2}(3t-k+2)+m+1-j, & \text{if } i=1 \text{ and } 1 \leq j \leq \frac{m}{2} \\ \frac{mn}{2}(4t+2-k)+\frac{m}{2}(2i-1)+1-j, & \text{if } 2 \leq i \leq \frac{n+1}{2} \text{ and } 1 \leq j \leq \frac{m}{2} \\ \frac{mn}{2}(3t+1-k)+mi+1-j, & \text{if } \frac{n+3}{2} \leq i \leq n \text{ and } 1 \leq j \leq \frac{m}{2} \\ \frac{mn}{2}(3t-k+3)+1-j, & \text{if } 1 \leq i \leq \frac{n-3}{2} \\ & \text{and } \frac{m+2}{2} \leq j \leq m \\ \frac{mn}{2}(3t-k+2)+m+1-j, & \text{if } i = \frac{n-1}{2} \text{ and } \frac{m+2}{2} \leq j \leq m \\ \frac{mn}{2}(4t+1-k)+m(i+1)+1-j, & \text{if } \frac{n+1}{2} \leq i \leq n \\ & \text{and } \frac{m+2}{2} \leq j \leq m. \end{cases}$$

The reader can easily verify that the labeling β_3 uses each integer $1, 2, \ldots, 2mn(t+1) - m$ exactly once and the edge-weights of all the edges constitute the

set $\{\frac{mn}{2}(3t+4)+\frac{m}{2}+2,\frac{mn}{2}(3t+4)+\frac{m}{2}+3,\ldots,\frac{mn}{2}(5t+6)-\frac{m}{2}+1\}$. So the labeling β_3 is super $(\frac{mn}{2}(3t+4)+\frac{m}{2}+2,1)$ -edge-antimagic total labeling.

Case 3. n > 7.

Let us construct a total labeling β_4 from $V(mS_{t_1,t_2,...,t_n}) \cup E(mS_{t_1,t_2,...,t_n})$, for $t_1 = t_2 = \cdots = t_n = t$, to the set of consecutive integers $\{1, 2, \ldots, 2mn(t+1) - m\}$ as follows

$$\begin{array}{l} \beta_4(x_i^j) = \beta_3(x_i^j) \text{ for } 1 \leq i \leq n \text{ and } 1 \leq j \leq m, \\ \beta_4(x_i^j x_{i+1}^j) = \\ \\ \begin{cases} \frac{mn}{2}(4t+3) + \frac{m}{2} + 1 - j, & \text{if } i = 1 \text{ and } 1 \leq j \leq \frac{m}{2} \\ mn(2t+1) + \frac{m}{2}(2i-1) + 1 - j, & \text{if } 2 \leq i \leq n-1 \text{ and } 1 \leq j \leq \frac{m}{2} \\ 2mn(t+1) + (2i-n+2)\frac{m}{2} + 1 - j, & \text{if } 1 \leq i \leq \frac{n-3}{2} \\ & \text{and } \frac{m+2}{2} \leq j \leq m \\ \\ 2mnt + m + 1 - j, & \text{if } i = \frac{n-1}{2} \text{ and } \frac{m+2}{2} \leq j \leq m \\ \\ \frac{mn}{2}(4t+1) + m(i+1) + 1 - j, & \text{if } \frac{n+1}{2} \leq i \leq n-1 \\ & \text{and } \frac{m+2}{2} \leq j \leq m \end{array}$$

and for $1 \le k \le t$ in the following way

$$\beta_4(x_{i,k}^j) = \beta_3(x_{i,k}^j),$$

 $\beta_4(x_i^j x_{i,k}^j) =$

$$\beta_4(x_i^j x_{i,k}^j) = \begin{cases} \frac{mn}{2}(4t-k) + m+1-j, & \text{if } i=1 \text{ and } 1 \leq j \leq \frac{m}{2} \\ \frac{mn}{2}(4t+2-k) + \frac{m}{2}(2i-1) + 1-j, & \text{if } 2 \leq i \leq \frac{n+1}{2} \text{ and } 1 \leq j \leq \frac{m}{2} \\ \frac{mn}{2}(4t-1-k) + mi+1-j, & \text{if } \frac{n+3}{2} \leq i \leq n \text{ and } 1 \leq j \leq \frac{m}{2} \\ \frac{mn}{2}(4t-k) + \frac{m}{2}(2i+3) + 1-j, & \text{if } 1 \leq i \leq \frac{n-3}{2} \\ & \text{and } \frac{m+2}{2} \leq j \leq m \\ \frac{mn}{2}(4t-k) + m+1-j, & \text{if } i = \frac{n-1}{2} \text{ and } \frac{m+2}{2} \leq j \leq m \\ \frac{mn}{2}(4t+1-k) + m(i+1) + 1-j, & \text{if } \frac{n+1}{2} \leq i \leq n \\ & \text{and } \frac{m+2}{2} \leq j \leq m. \end{cases}$$

$$\frac{mn}{2}(4t-k) + \frac{m}{2}(2i+3) + 1 - j, \quad \text{if } 1 \le i \le \frac{n-3}{2}$$

and
$$\frac{m+2}{2} \le j \le m$$

 $\frac{mn}{2}(4t-k) + m+1-j$, if $i = \frac{n-1}{2}$ and $i = \frac{m+2}{2} \le j \le m$
 $i = \frac{n-1}{2}$ and $i = \frac{m+2}{2} \le j \le m$
 $i = \frac{n-1}{2}$ and $i = \frac{m+2}{2} \le j \le m$

There is no problem in seeing that the labeling β_4 uses each integer $1, 2, \ldots$ 2mn(t+1)-m exactly once and this implies that the labeling β_4 is a bijection. We can observe that under the labeling β_4 the edge-weights of all the edges constitute the sets

$$\begin{array}{l} W_{\beta_4}^1 = \{w_{\beta_4}^1(x_i^jx_{i+1}^j) = \frac{mn}{2}(4t+5) - \frac{m}{2} + 1 + j: \text{ if } i = 1 \text{ and } 1 \leq j \leq \frac{m}{2}\}, \\ W_{\beta_4}^2 = \{w_{\beta_4}^2(x_i^jx_{i+1}^j) = mn(2t+3) + \frac{m}{2}(1-2i) + 1 + j: \text{ if } 2 \leq i \leq \frac{n+1}{2} \text{ and } 1 \leq j \leq \frac{m}{2}\}, \end{array}$$

 $\begin{array}{l} \frac{1}{2}\},\\ W_{\beta_4}^3 = \{w_{\beta_4}^3(x_i^jx_{i+1}^j) = mn(2t+3) + \frac{m}{2}(1-2i) + 1 + j : \text{ if } \frac{n+3}{2} \leq i \leq 1 \text{ and } 1 \leq j \leq \frac{m}{2}\},\\ W_{\beta_4}^4 = \{w_{\beta_4}^4(x_i^jx_{i+1}^j) = \frac{mn}{2}(4t+5) - m(i+1) + 1 + j : \text{ if } 1 \leq i \leq \frac{n-3}{2} \text{ and } 1 \leq j \leq m\}, \end{array}$

$$W^{5}_{eta_4} = \{w^{5}_{eta_4}(x^j_ix^j_{i+1}) = mn(2t+1)+1+j: \text{ if } i = rac{n-1}{2} \text{ and } rac{m+2}{2} \leq j \leq m\},$$

 $W^6_{\beta_4}=\{w^6_{\beta_4}(x^j_ix^j_{i+1})=\frac{mn}{2}(4t+7)-m(i+1)+1+j: \text{ if } \frac{n+1}{2}\leq i\leq n-1 \text{ and } \frac{m+2}{2}\leq j\leq m\},$

 $W_{\beta_4}^7 = \{ w_{\beta_4}^7(x_i^j x_{i,k}^j) = \frac{mn}{2}(4t+k+2) + 1 + j : \text{ if } i = 1 \text{ and } 1 \le j \le \frac{m}{2} \},$

 $W^8_{\beta_4}=\{w^8_{\beta_4}(x^j_ix^j_{i,k})=\frac{mn}{2}(4t+k+6)+\frac{m}{2}(1-2i)+1+j: \text{ if } 2\leq i\leq \frac{n+1}{2} \text{ and } 1\leq j\leq \frac{m}{2}\}.$

 $W^9_{\beta_4}=\{w^9_{\beta_4}(x_i^jx_{i,k}^j)=\frac{mn}{2}(4t+k+3)+m(1-i)+1+j: \text{ if } \frac{n+3}{2}\leq i\leq n \text{ and } 1\leq j\leq \frac{m}{2}\},$

 $W_{\beta_4}^{10} = \{w_{\beta_4}^{10}(x_i^j x_{i,k}^j) = \frac{mn}{2}(4t+k+2) - \frac{m}{2}(2i+1) + 1 + j : \text{ if } 1 \leq i \leq \frac{n-3}{2} \text{ and } \frac{m+2}{2} \leq j \leq m\},$

$$\begin{split} W_{\beta_4}^{11} &= \{w_{\beta_4}^{11}(x_i^j x_{i,k}^j) = \frac{mn}{2}(4t+k+2)+1+j: \text{ if } i = \frac{n-1}{2} \text{ and } \frac{m+2}{2} \leq j \leq m\}, \\ W_{\beta_4}^{12} &= \{w_{\beta_4}^{12}(x_i^j x_{i,k}^j) = \frac{mn}{2}(4t+k+7) - m(i+1)+1+j: \text{ if } \frac{n+1}{2} \leq i \leq n \text{ and } \frac{m+2}{2} \leq j \leq m\}, \end{split}$$

The set $\bigcup_{r=1}^{12} W_{\beta_4}^r = \{mn(2t+1) + \frac{m}{2} + 2, mn(2t+1) + \frac{m}{2} + 3, \ldots, mn(3t+2) - \frac{m}{2} + 1\}$ consists of consecutive integers, which implies that β_4 is a super $(mn(2t+1) + \frac{m}{2} + 2, 1)$ -edge-antimagic total labeling.

The next theorem describes an (a, 2)-edge-antimagic vertex labeling for the disjoint union of m copies of a regular caterpillar when t = 2.

Theorem 9 There is (m + 2, 2)-edge-antimagic vertex labeling for $mS_{t_1,t_2,...,t_n}$, for $t_1 = t_2 = \cdots = t_n = 2$ and every $m, n \geq 2$.

Proof. For $t_1 = t_2 = \cdots = t_n = 2$ and $m, n \geq 2$, define the bijection $\alpha_2 : V(mS_{t_1,t_2,\ldots,t_n}) \to \{1,2,\ldots,3mn\}$ as follows

 $\alpha_2(x_i^j) = (3i-2)m + j$, if $1 \le i \le n$ and $1 \le j \le m$

$$\alpha_2(x_{i,k}^j) = \begin{cases} (3i-3)m+j, & \text{if } 1 \leq i \leq n, \ 1 \leq j \leq m \text{ and } k=1 \\ (3i-1)m+j, & \text{if } 1 \leq i \leq n, \ 1 \leq j \leq m \text{ and } k=2. \end{cases}$$

Then for the edge-weights we have

 $\begin{array}{l} W_{\alpha_{2}}^{1} = \{w_{\alpha_{2}}^{1}(x_{i}^{j}x_{i+1}^{j}) = (6i-1)m+2j: \text{ if } 1 \leq i \leq n-1 \text{ and } 1 \leq j \leq m\}, \\ W_{\alpha_{2}}^{2} = \{w_{\alpha_{2}}^{2}(x_{i}^{j}x_{i,k}^{j}) = (6i-5)m+2j: \text{ if } 1 \leq i \leq n, \ 1 \leq j \leq m \text{ and } k=1\}, \\ W_{\alpha_{2}}^{3} = \{w_{\alpha_{2}}^{3}(x_{i}^{j}x_{i,k}^{j}) = (6i-3)m+2j: \text{ if } 1 \leq i \leq n, \ 1 \leq j \leq m \text{ and } k=2\} \text{ and } \\ \text{the set } \bigcup_{r=1}^{3} W_{\alpha_{2}}^{r} = \{m+2, m+4, \ldots, 6mn-m\} \text{ contains an arithmetic sequence } \\ \text{with the first term } m+2 \text{ and common difference } 2. \text{ Thus } \alpha_{2} \text{ is a } (m+2,2)\text{-edge-antimagic vertex labeling.} \\ \square \end{array}$

With respect to Theorem 5, the (m+2,2)-edge-antimagic vertex labeling α_2 can be extended to a super edge-antimagic total labeling. Thus for p=3mn and q=3mn-m the following theorem holds.

Theorem 10 The graph $mS_{t_1,t_2,...,t_n}$, for $t_1 = t_2 = \cdots = t_n = 2$, has a super (6mn + 2, 1)-edge-antimagic total labeling and a super (3mn + m + 3, 3)-edge-antimagic total labeling, for every $m \ge 2$ and $n \ge 2$.

3 Conclusion

We summarize that the graph $mS_{t_1,t_2,...,t_n}$, for $t_1=t_2=\cdots=t_n=t$, has a super (a,d)-edge-antimagic total labeling for

- (i) $d \in \{0, 2\}$, if mn is odd and $t \ge 1$,
- (ii) d = 1, if either mnt is odd, or m is even and n is odd, $t \ge 1$, or t = 2 and $m, n \ge 2$,
 - (iii) d = 3, if $m, n \ge 2$ and t = 2.

Constructions that will produce a super (a, d)-edge-antimagic total labelings of

 $mS_{t_1,t_2,...,t_n}$, for $t_1=t_2=\cdots=t_n=t$, $d\in\{0,1,2\}$ and every $m,n\geq 2$, have not been found yet. Nevertheless, we suggest the following conjecture.

Conjecture 2 There is a super (a,d)-edge-antimagic total labeling of the graph $mS_{t_1,t_2,...,t_n}$, for $t_1=t_2=\cdots=t_n=t\geq 1,\ d\in\{0,1,2\}$ and for every $m\geq 2$ and n>2.

For the graph $mS_{t_1,t_2,...,t_n}$, for $t_1 = t_2 = \cdots = t_n = t \neq 2$, so far we have not found any super (a,3)-edge-antimagic total labeling. So, we propose the following open problem.

Open Problem 2 For the graph $mS_{t_1,t_2,...,t_n}$, for $t_1 = t_2 = \cdots = t_n = t$, determine if there is a super (a,3)-edge-antimagic total labeling, for every $m \geq 2$, $n \geq 2$ and $t \neq 2$.

In the case when graph $mS_{t_1,t_2,...,t_n}$ does not have any restriction for the values of $t_1,t_2,...,t_n$, the problem to find a super (a,d)-edge-antimagic total labeling seems to be difficult. For further investigation it leads us to suggest the following

Open Problem 3 Find, if possible, some structural characteristics of a graph $mS_{t_1,t_2,...,t_n}$ which make a super (a,d)-edge-antimagic total labeling impossible.

Acknowledgement

The authors wish to thank the referee for his/her thoughtful suggestion.

References

- B.D. Acharya and S.M. Hegde, Strongly indexable graphs, Discrete Math. 93 (1991), 275-299.
- M. Bača, Y. Lin, M. Miller and R. Simanjuntak, New constructions of magic and antimagic graph labelings, *Utilitas Math.* 60 (2001), 229-239.
- M. Bača and C. Barrientos, Graceful and edge-antimagic labelings, Ars Combin., to appear.
- E.T. Baskoro and Λ.Λ.G. Ngurah, On super edge-magic total labeling of nP₃, Bull. ICA 37 (2003), 82-87.

- H. Enomoto, A.S. Lladó, T. Nakamigawa and G. Ringel, Super edge-magic graphs, SUT J. Math. 34 (1998), 105-109.
- R.M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, The place of super edge-magic labelings among other classes of labelings, *Discrete Math.* 231 (2001), 153-168.
- R.M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, On super edge-magic graph, Ars Combin. 64 (2002), 81–95.
- J. Ivančo and I. Lučkaničová, On edge-magic disconnected graphs, SUT J. Math. 38 (2002), 175–184.
- A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970), 451-461.
- 10. A.A.G. Ngurah, E.T. Baskoro and R. Simanjuntak, On (a, d)-edge-antimagic total labeling of mC_n , Bull. ICA 48 (2006), 35–44.
- G. Ringel and A.S. Lladó, Another tree conjecture, Bull. ICA 18 (1996), 83–85.
- R. Simanjuntak, F. Bertault and M. Miller, Two new (a, d)-antimagic graph labelings, Proc. of Eleventh Australasian Workshop on Combinatorial Algorithms (2000), 179-189.
- I.W. Sudarsana, D. Ismaimuza, E.T. Baskoro and H. Assiyatun, On super (a, d)-edge-antimagic total labeling of disconnected graphs, JCMCC 55 (2005), 149–158.
- K.A. Sugeng, M. Miller, Slamin and M. Bača, (a, d)-edge-antimagic total labelings of caterpillars, Lecture Notes in Computer Science 3330 (2005), 169– 180
- W. D. Wallis, E. T. Baskoro, M. Miller and Slamin, Edge-magic total labelings, Austral. J. Combin. 22 (2000), 177-190.
- 16. W.D. Wallis, Magic Graphs, Birkhäuser, Boston Basel Berlin, 2001.
- 17. D.B. West, An Introduction to Graph Theory, Prentice-Hall, 1996.