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Abstract. Let G be a connected graph. For a vertex v € V(G)
and an ordercd k-partition I/ = {51, S2, ..., Sk} of V(G), the repre-
sentation of v with respect to IT is the k-vector r(v|{T) = (d(v, S1),
d(v, Sz), ...,d(v, Sx)) where d(v,S;) = 1Lréig‘lv(:r:,w)(l < i < k). The

k-partition /7 is said to be resolving if the k-vectors r(v|I7), v €
V(G), arc distinct. The minimum k for which there is a resolving
k-partition of V(G) is called the partition dimension of G, denoted
by pd(G). A resolving k-partition II = {81, 85,...,5x} of V(G)
is said to be connccted if cach subgraph < S; > induced by S:
(1 <% < k) is connected in G. The minimum & for which there is
a connected resolving k-partition of V(G) is called the connected
partition dimension of G, denoted by cpd(G). In this paper, the
connccted partition dimension of the unicyclic graphs is calculated
and bounds are proposed.

Keywords: unicyclic graph, resolving partition, partition dimension,
connected partition dimension.

1 Introduction

If G is a connected graph, the distance d(u,v) between two vertices u and v
in G is the length of a shortest path between them. The diameter of G is the
largest distance between two vertices in V(G). For a vertex v of a graph G and
a subset S of V(G), the distance between v and § is d(v, §) = min{d(v,z)|z €
S}. Let II = {S1,S52,...,Sk} be an ordered k-partition of vertices of G and
let v be a vertex of G. The representation r(v|/I) of v with respect to I7 is
the k-tuple (d(v, S1),d(v, S2), ..., d(v, Sk)). If distinct vertices of G have distinct
rcpresentations with respect to I7, then /7 is called a resolving partition for G.
The cardinality of a minimal resolving partition is called the partition dimension
of G, denoted by pd(G) ({1],[2]). A resolving partition I7 = {S1,92,...,Sk} of
V(G) is called connected if each subgraph < S; > induced by 8 (1 < i < k)
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is connected in G. The minimum k for which there is a connected resolving k-
partition of V(G) is called the connected partition dimension of G, denoted by
cpd(C) [9].

The concepts of resolvability have previously appeared in the literature (see
[1]-[4], [6]-9]). These concepts have some applications in chemistry for repre-
senting chemical compounds (3] or to problems of pattern recognition and image
processing, some of which involve the use of hierarchical data structures [5).

If d(z, S) # d(y, S) we shall say that the class S separates vertices z and y. If
a class S of IT separates vertices z and y we shall also say that IT separates z and
y. From these definitions it can be observed that the property of a given partition
IT of the vertices of a graph G to be a resolving partition of G can be verified by
investigating the pairs of vertices in the same class. Indeed, every vertex = € S;
(1 £ i< k) is at distance 0 from S;, but is at a distance different from zero from
any other class S; with j # i. It follows that = € S; and y € S; are separated
cither by S; or by S; for every i # j.

A connected graph with exactly one cycle is called unicyclic graph. Every
unicyclic graph that is not a cycle is decomposable into a cycle and onc or more
trees, the connected partition dimension of whose are known[9]. In this paper,
we divide the unicyclic graphs that are not cycles into two types and prove that
the connected partition dimension of unicyclic graphs of type 1 is 3 and propose
bounds for the connected partition dimension of unicyclic graphs of type 2.

2 The connected partition dimension of the Unicyclic
graphs

In (6], metric dimension of unicyclic graphs was given. An identification graph
was defined and was given as G = G[G1, G2, u, v] which is obtained from G; and
G2 by identifying v and v where G and G2 are non-trivial connected graphs with
u € V(G1) and v € V(Gz). Therefore u = v in G. We name the vertex u = v
in G, junction vertex. The identification is said to be of type 1 if an end vertex
of a path is identified with a vertex of degree two of a cycle in a graph or an
end vertex of a path is identified with a vertex of degree 1 of a graph otherwise
identification is said to be of type 2. We use this terminology given in [6] to find
the connected partition dimension of unicyclic graphs. A unicyclic graph can be
obtained by the addition of a single edge between two vertices of a tree. Also a
unicyclic graph that is not a cycle can be obtained from a cycle and one or more
tree by identifying some specified vertices on the cycle and on the trees.

We calculate the connected partition dimension of unicyclic graph by establishing
the relationship between the connected partition dimension of a unicyclic graph
and those of its cycles and rooted trees. Here we present two lemmas which will
be used in finding the connected partition dimension of unicyclic graphs.

Lemma 1. Let G; and G2 are nontrivial connected graphs with v € V(G1) and

v € V(G2) and let G = G|G1, G2, u,v]. If identification is of type 1, then cpd(G) =
cpd(Gh)
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Proof. Let G1 be any non-trivial connected graph and G2 be a path on n(> 2)
vertices. We suppose that cpd(G1) = k and in [9], it was shown that cpd(G) = 2
if and only if G = P, for n > 2 so ¢pd(G2) = 2. Then there exists resolving
partitions /1y = {51,S2,...,Sk} where S; C V(G1) fori = 1,2,...,k and [l =
{T1, T2} where T; C V(G2) fori = 1,2.

Let v be the junction vertex and let v € Sk in I7; and v € T} in IT2. We define a
new partition /1, = {51,52,...,S: UT1 UT:2}. Now, we shall prove that this is a
resolving partition of V(G). We shall discuss three cases.

(a). Suppose v1,v2 € V(G1) where v1 and vz arce distinct. Then r(v1|IT,) #
r(v2|iI,) because vy and v2 will be at same distances in G as in G; from S, Sz, ...,
Si—1 and also d(vi, Sk) = d(vi, Sk UT1 UT}) for i = 1,2. Since /1, is resolving
partition, this means 7, is also resolving partition for all vertices in G;.

(b). Suppose v1,v2 € V(G2) where v1 and v2 are distinct then d(v1,v) # d(vz2,v)
where v is the end vertex. This means that 7(vi|11,) = (d(vs, v)+d(v, S1), d(vi, v) +
d(v,S2),...,0) for i = 1,2. This means /1, resolves all vertices of Ga.

(c). Suppose v; € V(G1) and v2 € V(G2) and belong to Sx UT; UT: then there
arc two cases to be discussed.

Case 1: If the identification is such that an end-vertex of a path is identified with
a vertex of degree 1 of a graph then d(v1,S:) < d(v2,8:)(1 < ¢ < k — 1) which
yields r(n|1ly) # r(v2|IT,).

Case 2: If the identification is such that an end-vertex of a path is identified with a
vertex of degree 2 in a cycle of a graph then as the the vertices of cycle arc divided
into at least three classes it is easy to sec that v1 and v, are different distance from
a class containing the vertices of the cycle which implies r(v1|11,) # r(v2}iT,).
This means [T, is a resolving partition for all the vertices of G which implies

cpd(G) < cpd(Gh) + cpd(G2) - 2.

Now, we show that cpd(G) > ¢pd(G1) + cpd(G2) — 2. Suppose that this is not. the
casce, then ¢pd(G) < cpd(G1)+cpd(G2)—3 which means that cpd(G) < cpd(G1)-1.
This suggests that vertices of G can be resolved with fewer connected classes than
k which is a contradiction. So cpd(G) > cpd(G1) + cpd(G2) - 2.

Hence

cpd(G) = cpd(G1) + cpd(G2) - 2.

Now, we present a lemma, for the connected partition dimension of a graph G
when the identification is of type 2.

Lemma 2. Let Gy and G2 are nontrivial connected graphs with v € V(G1) and
v € V(Gz) and let G = G|G1, G2, u,v|. If identification is of type 2, then cpd(G) <
cpd(Gi1) + cpd(G2) - 1.

Proof. Let G1 and G2 be non-trivial connected graph with ¢pd(G1) = k and
cpd(G2) = I. Then there exist resolving partitions 1/, = {51,852,...,5k} where
Si CV(Gy) fori = 1,2,...,k and If; = {T,T>,..., Tt} where T; C V(G3) for
j=1,2,... L

Let v be the junction vertex and let v € Sk in 1f; and v € T} in 2. We define
a new partition I/, = {81, 52,...,5: UT, T2,...,Ti}. Now, we shall prove that
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this is a resolving partition of V(G). We shall discuss three cases.

(a). Suppose v1,v2 € V(G1) where v; and vy are distinct. Then r(v1|/T,) #
7(v2|{Ty) because v; and v2 will be at same distances in G as in G; from 81, Sa, ...,
Sk—1 and also d(vi, Sx) = d(vi, Sk UTh) for ¢ = 1,2. And d(v;, Tj) = d(vi,v) +
d(v,T;) where i = 1,2 and j = 2,3,...,l. Since IT1 is a resolving partition for
V(G1). This means I1, is also a resolving partition for all vertices in G;.

(b). Suppose v1,v2 € V(G2) where vy and v, are distinct then similar situations
for vertices of G2 follows as does in the ahove case for vertices of G1. So r(v1|1,) #
r(v2|11y) for all v1,v2 € V(G2) where v1 and v, are distinct.

(c). Suppose v1 € V(G1) and v2 € V(G2) and belong to S, UT: then d(v1, Si) #
d(v2,8:)(1 < i < k — 1) which yields r(v|11,) # r(v2|il,).

This means IT, is a resolving partition for all the vertices of G. This implies
cpd(G) < cpd(Gh) + cpd(G2) — 1.

But the inequality cpd(G) > cpd(G1) + cpd(G2) — 1 is not true in general.
For example, consider the graph shown in figure below with connected partition
dimension 3. If we identify a path at vz, vs or v4 then again connected partition
dimension of the identified graph is 3 which is not consistent with this inequality.

w
O0—O0—0—0 I—o
v % % %

Y Y

Fig. 1. A tree with connected partition dimension 3

Now, we state the terminology as given in [6]. Let G be the unicyclic graph
and let Cn be the unique cycle of G. Let uy, u2,. .., ur be the distinct vertices of
C with deg(u;) > 3 where 1 <1 < k, and let T; be the subtree of G rooted at u;.
A unicyclic graph G is said to be of type 1 if and only if every tree T; of G is a
path, one of whose end-vertex is u; € V(C) otherwise unicyclic graph is of type
2.

Now, we present theorem that states that the connected partition dimension
of unicyclic graphs of type 1 is 3.

Theorem 21 Let G be a unicyclic graph of type 1 with unique cycle Cn of order
n then cpd(G) = 3.

Proof. Let G be a unicyclic graph of type 1 and let C : v1,v2,...,vn,v1 be the
unique cycle on n vertices. Let u1,u2,...,ur be the distinct vertices of Cn at
which k paths arc rooted. We know that cpd(Cn) = 3 where n > 3 and in [9],
it was shown that cpd(Pn) = 2(m > 2). We first assume that k& = 1. Let G1 be
the unicyclic graph obtained from the cycle C, and a path P; by identifying a
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vertex in C,, and a vertex of degree onc in Py and labeling it u;. By lemma 2.1
cpd(G1) = cpd(C,). Now let G2 be the unicyclic graph obtained from G; and
a path P2 by identifying a vertex in Cn in Gy and a vertex of degree one in P,
and labeling it u2. By lemma 2.1, ¢pd(G2) = ¢cpd(Cr). Repeating this procedure
for k > 3, we let G = G be obtained from Gi_; and a path Px by identifying
a vertex in Cn in Gi—; and a vertex of degree one in Pj; and labeling it ux. By
lemma 2.1, ¢pd(G) = cpd(C,). Hence if G is a unicyclic graph of type 1, then
cpd(G) = 3.

Now, we present the theoremn that gives the connected partition dimension of
unicyclic graph of type 2.

Theorem 22 Let G be a unicyclic graph of type 2 with unique cycle Crn of order
n then 4 < cpd(G) < 3+ Xk, opd(T3) - k.

Proof. Let G be a unicyclic graph of type 2. Since G is a unicyclic graph of type
2 then it has at lcast onc identification of type 2. This means by lemma 2.2 that
cpd(G) > 4. Hence lower bound is verified.

We now prove that ¢pd(G) < 3 + Zf’:l cpd(T:) — k. Let Crn : v1,v2,...,Un, 01
be the unique cycle of G on n vertices. Let u1,uz,...,u, be the distinct vertices
of Cp at which k trees are rooted. We first assume that & = 1. Let G1 be the
unicyclic graph obtained from the cycle Cn and a tree T1 by identifying a vertex
in Cn and a vertex of degrce onc in T} and labeling it u;. By lemma 2.1 and 2.2,
cpd(G1) < 3 + cpd(T1) — 1. Now let G2 be the unicyclic graph obtained from G,
and a trec T2 by identifying a vertex in Cr of G) and a vertex of degree one in T2
and labeling it u2. By lemma 2.1 and 2.2, ¢pd(G2) < 3+cpd(T1) — 1+ cpd(T2) — 1.
Repeating this procedure for k > 3, we let G = G« be obtained from Gi_; and
a tree Tk by identifying a vertex in Cpn in Gi—1 and a vertex of degree one in Tk
and labeling it ux. By lemma 2.1 and 2.2, cpd(G) = cpd(Gx) < 3+ cpd(T1) — 1+
cpd(T2) — 1 + ... + cpd(T}) — 1. This mecans

k
1< cpd(G) <3+ Y epd(T:) - k.

i=1

It is frequent question in graph theory that how the value of a graphical
parameter is affected when a small change is made in a graph. In this context, we
answer the question in the case of connected partition dimension when a single
edge is added to a trce. Now we present a theorem that gives the bounds for the
connected partition dimension of unicyclic graphs when a single edge is added
to a trce. We show that the connected partition dimension can increase by 1 or
decreasc by 2 analogous to metric dimension[3]. For this purpose, we follow the
terminology given in [3] and [9]. A vertex of degree at least 3 in a graph G will
be called a major vertex of G. Any end-vertex u of G is said to be a terminal
vertex of a major vertex v of G if d(u,v) < d(u,w) for every other major vertex
w of G. The terminal degree ter(v) of a major vertex v is the number of terminal
vertices of v. A major vertex v of G is an exterior major vertex of G if it has
a positive terminal degree. Let o(G) denote the sum of terminal degrees of the
major vertices of G, let ex(G) denote the number of exterior major vertices of
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G. In [9], connccted partition dimension of a tree of order n > 4 was given as
cpd(T) = o(T) — ex(T)+ 1 and it was also shown that cpd(G) > ¢(G) —ex(G) + 1.

Theorem 23 If T is a tree of order at least 3 and e is an edge of T, then
cpd(T) — 2 < cpd(T + €) < cpd(T) + L.

Proof. It was shown in [9] that cpd(G) > ¢(G) — ex(G) + 1 and cpd(T) = o(T) -
ex(T) + 1. It is casy to scc that o(T +€) > o(T) — 2 and ex(T + ¢€) < ez(T) from
where it follows that (T +e)—ex(T+e)+1 > o(T) - ex(T) -2+ 1 = cpd(T) - 2.
This means cpd(T + e) > cpd(T) - 2.
It remains to show that cpd(T + €) < ¢pd(T) + 1. Suppose that T contains p cx-
terior major vertices v, v2,...,vp. For each i with 1 < < p, let wa,ui2, ..., uik,
be the terminal vertices of v;. For each ¢ with 1 < ¢ < p, let Pi; be the v; — uij
path in T for all 1 < j < k: and let zi; be a vertex in Pi; that is adjacent to vi.
Then let Qs; be the z;; — u;; subpath of P forall 1 <i<pand1<j <k
Let U = {v1,u11,u21,...,up1 } and let T1 be the subtree of T of smallest size such
that T1 contains U. Let So = V(T1) and Si; = V(Qi;) forall 1 <i<pand 2 <
J < ki. Define a k-partition I7 of V(T) by /T = {So, S12, 513, ..., S1k;, S22, S23, - - -,
S2kys+++18p2,5p3, .- -, Spip }- Then [T is connected and resolving as was shown in
Theorem 3.3 of [9]. It is noted that the vertices in one class are separated by more
than one class. Let C denote the unique cycle of T + e. We consider two cases.
Case 1. If C contains at least two major vertices v and w then resolving partition
for T is also a resolving partition for T + e. So cpd(T + e) < /1| < cpd(T).
Case 2. If C contains only onec major vertex v then there are two subcases to be
discussed.
Subcase 2a. If the edge is between two paths incident at v then resolving par-
tition for T is also a resolving partition for T + e. So cpd(T + €) < |11| < cpd(T).
Subcase 2b. If the edge is between two vertices of a path with more than 3
vertices incident at v then we define a new partition by putting any vertex of
the path other than the major vertex in a new class. This will be a resolving
partitions for T + e. So cpd(T + ) < || +1 < cpd(T) + 1.
Hence

cpd(T) - 2 < cpd(T + €) < cpd(T) + 1.
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