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Abstract. For any given graphs G and H, we write F — (G, H)
to mean that any red-blue coloring of the edges of F' contains a red
copy of G or a blue copy of H. Graph F is (G, H)-minimal (Ramsey-
minimal) if F' — (G, H) but F* = (G, H) for any proper suhgraph
F* C F. The class of all (G, H)-minimal graphs is denoted by
R(G, H). In this paper we will determine the graphs in R(K,2, Ca).

1 Introduction

We consider simple graphs, namely finite undirected graphs without loops and
multiple edges. Let G = (V, E). We say that G contains H if G contains a sub-
graph isomorphic to H. The subgraph of G isomorphic to Cj is defined as a basic
cycle.

Let G and H be graphs. We say that F — (G, H) if any red-blue coloring
of the edges of F' contains a red copy of G or a blue copy of H. Graph F is (G,
H)-minimal (Ramsey-minimal) if F — (G, H) but F* - (G, H) for any proper
subgraph F* C F. The class of all (G, H)-minimal graphs is denoted by R(G, H).
In general we follow the terminology in [7]. Recent results on Ramsey numbers
can be found in [11].

Here are some previous results dealing with the problem of finding graphs in
R(G, H). Burr, Erdés and Lovasz [6] proved that R(2K2,2K:) = {3K2,Cs} and
R(K1,2, K1,2) = {K1,3,C2nt1} for n > 1. Furthermore, Burr et.al [5] determined
all graphs in R(2K>, K3). Later, Burr et.al [4] showed that R{(Ki,m,Ki,n) =
{K1,m4n-1} for odd m and n.

In [10] Mengersen and Oeckermann characterized all graphs in R(2K2, K1,n)
for n > 3. Another result is the characterization of all graphs in R(K1,2, K1,m) for
m > 3 by Borowiccki et.al in {2]. Then Borowiecki ct.al [3] determined all graphs
in R(K1,2, K3). Recently, Baskoro ct.al [1] showed that Waey1 € R(Ps, C3), where
W3s41 is a wheel with 6t+2 cdges and C§ is a windmill graph, i.e. a graph obtained
by connecting a vertex ¢ (called a hub) to all vertices of K.
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The problem of characterizing pairs of graphs (G, H) for which the set R(G, H)
is finite or infinitc has also been investigated in numerous papers. In particular, all
pairs of two forests for which the set R(G, H) is finitc are specified in a theorem
of Faudree (8]. Then Luczak [9] stated that if G is a forest other than a matching
and H is a graph containing at least one cycle then R(G, H) is infinite. It follows
that the set R(K1,2, C4) is infinite. In this paper we will determine the graphs in
R(K1,2,C4).

2 Some classes of graphs

We define some classes of graphs needed to prove our main results.
Let k be positive integer, k > 2. A graph G with

V(G) = {wi |1<i<k}U{u: |1 <i<k}U{v; |1 <j<k+1}
EG) = {vwwi |1 <i <k} U {vini |1 i<k} U {wivigr |1 < i< k)
U{w.-v,-+1|1$i$k}

is called the Cj-path. We define vertices v; and vkt as the end vertices of the
Cs-path.

A Cjs-cycle is constructed by identifying two end vertices of Cs-path. The
length of a Cy-path (a Cy-cycle) is the number of basic cycles in the C4-path (the

Cy-cycle).
Sron & 2>
Coyce

Fig. 1. C4-path and Cs-cycle

We use Cy-path and Ca-cycle (Figure 1), graphs L; and L. (Figure 2) to
define some classes of graphs below.

L

Fig. 2. L, with root  and L2 with root y

Let A be a family of graphs which contains
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(1) A1, A: and As (Figure 3),

Fig. 3. A1, A2 and A3

(2) A4(k), k > 0. This graph consists of two copics of L; with a Cs-path of
length % joining two roots of L (if £ = 0 then we have two copics of Ly with
a common root),

(3) As(k), k > 0. This graph consists of a L, and a L with a Cs-path of length
k joining the root of L and the root of La,

(1) Ae(k), k& > 0. This graph consists of two copies of L, with a Cy-path of
length k joining two roots of Lz (for k = 0 we have two copies of L with a
common root).

Let B be a family of graphs which contains

(1) Bi(k,t), k>0, t > 2. This graph consists of a Cs-cycle of length £ and a L,
with a Cy-path of length & joining the root of L; and an arbitrary vertex of
degree 4 of Cy-cycle,

(2) Ba(k,t), k>0, t > 2. This graph consists of a Cy-cycle of length ¢t and a L2
with a Cs-path of length & joining the root of L2 and an arbitrary vertex of
degree 4 of Cy-cycle,

(3) Bs(k,t), k>0, t > 2. This graph consists of a Cy-cycle of length t and a L,
with a Cy-path of length k joining the root of L, and an arbitrary vertex of
degree 2 of Cy-cycle,

(4) Bas(k,t), k>0, t > 2. This graph consists of a C4-cycle of length ¢t and a Lo
with a Cs-path of length k joining the root of Ly and an arbitrary vertex of
degree 2 of Cy-cycle.

Let D be a family of graphs which contains

(1) Di(k,t1,t2), £ > 0, t1 > 2, t2 > 2. This graph is constructed by joining
two copies of Cs-cycles of length ¢; and {2 and a Cs-path of length k. One of
the end vertices of Cs-path is identified with an arbitrary vertex of degree 4
of the first Cs-cycle and the other end vertex is identified with an arbitrary
vertex of degree 4 of the second Cs-cycle,

Dy(k,t1,t2), k> 0, t; > 2, t > 2. This graph is constructed by joining
two copies of Cs-cycles of length ¢; and ¢z and a Cs-path of length k. One of
the end vertices of Cy-path is identified with an arbitrary vertex of degree 4
of the first C4-cycle and the other end vertex is identified with an arbitrary
vertex of degree 2 of the seccond Cy-cycle,

(2

~—
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(3) Ds(k,t1,t2), K > 0, t1 > 2, t2 > 2. This graph is constructed by joining
two copies of Cy-cycles of length t; and 2 and a Cy-path of length k. Onc of
the end vertices of Cs-path is identified with an arbitrary vertex of degree 2
of the first Cs-cycle and the other end vertex is identified with an arbitrary
vertex of degree 2 of the second Cs-cycle.

Let T = {I(t,k1,k2), t > 2, k1 20, kz > 0} where I(t, k1, k2) is constructed
by joining a Cy-cycle of length ¢t with two copies of Cys-paths of length k; and k».
Two of the end vertices of the C4-paths are identified with two arbitrary vertices
of Cy-cycle (the Cys-paths are attached to different vertices of Cs-cycle).

3 Main Results

The distance d(u,v) between two (not necessary distinct) vertices v and v in a
graph G is the length of a shortest path between them. When ¢ and v are identical,
their distance is 0. When u and v are unreachable from each other, their distance
is defined to be oo. The diameter of G, diam(G), is the greatest distance between
any two vertices in that graph. In Theorems 1, 2 and 3 we present a collection of
graphs that belongs to R(K1,2,C4).

Theorem 1. If Ry = {F € R(K1,2,C4) | diam(F) = 1} then Ry = {A1}.

Proof. It can be easily scen that A; ~ K4. Consider any red-blue coloring of A,
that implies an edge-decomposition A; = A1 @ A12. Let Ay 2 Ki,2. Then An
contains at most one edge. Therefore A;2 2 Cs. Consequently A — (Ki,2,Cs).

To prove the minimality of A;, let V(A1) = {v: | 1 < < 4}. Consider A] ~
A1\{e} for any fixed edge e € E(A,). Without loss of generality, we assume that
e = v1v2. Then the edges of A] can he partitioned into two classes, namely E; and
E,, with E, = {1121)4,1111)3} and E; = {1)11)4,‘02'03,1)31)4} such that A;[Ell ?_5 Kl,z
and Aj[Ez] 2 Cs. Thus A] - (K1,2,C4). Therefore Ay € R(Ka,2,Cy).

Since F has diameter 1, F must be a complete graph. Furthermore for n > 5,
K., always contain A;. Thus K, cannot be a (Ki,2,Cs)-minimal for n > 5.0

Theorem 2. If Ry = {F € R(K1,2,Ca) | diam(F) = 2} then {A2, A3} C Ra.

Proof. Case 2.1 Graph A,.
To show that A2 € R2, we consider any red-blue coloring of A2 that implies an
cdge-decomposition A2 = Az @ Azz. Let A2y B Ki 2. Thus A2 consists of at
most two disjoint edges. Thercefore, Az2 D Cy. It follows that A2 — (K1,2,Ca).
To prove the minimality of A2, let V(Az2) = {vi |1 <i<4}ufu; |1 <5 <2}
such that v; is the vertex of degree 2 and u; is the vertex of degree 4. Con-
sider A3 ~ Aj\{e} for any fixed cdge e € E(Az). Wlo.g we assume that
e = viuy. Then the edges of A3 can he partitioned into two classes, namely
E; and E,, with By = {voui,vauz} and E2 = {viuz,vzuz,v3uz,vau1,vatt1}
such that A3[E1] 2 K, 2 and A3|E2] 2 Cs. Thus A3 - (Ki,2,Ca). Therefore
Az € RQ(K1,2,04).
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Case 2.2 Graph As.
A3z is a wheel Wapny with odd number of spokes. We define

V(Wang1) = {c}U{wi |1 <i<2n+1},
E(W2n+1) = E) U E,, where ’
Ei = {ev:i|1£i<2n+ 1} and

Ex = {vjvj41 |1 <7< 2n}U{venyinn}.

To show that Az € Rz, we consider any red-blue coloring of A that implies an
cdge-decomposition Az = Az © Asz. Let As1 2 Ky,2. Thus A3; contains at most
one spoke. If A3; contains onc spoke, say cv; for some 4,1 < 7 < 2n + 1, then
{¢, vi—1,vi,vit1} forms a blue Cy. In casc that A3; contains no spoke, the parity
of |C2n41] in Wapn41 forces two incident edges in Czn41 to be in Asz. Therefore,
Azz D Cy. It follows that Az — (Ki,2,Ca).

Let us consider the graph A3 ~ Wan41\{e} for any fixed edge e € E(Wanq41).
Consider the following two cases.

Case 2.2.1 e € F,.

W.lo.g let e = cv;. If n = 1 then color cv2 by red and other edges by blue.
Therefore, W3\{cv1} has no red K 2 neither blue C4. If n > 2 then the edges of
A3(k) can be partitioned into two classes, namely E3 and Ej, as follows

Esz = {cvz2} U {v2sv2541 | 2 < s < m},
Es = (Ei\{cv2}) U {vans1v1,v102, 0203, V304 } U {v2r—1v2e | 3 <t < n}.

Color the edges of E3 by red and E4 by blue. Under this coloring A3[Fs] 2 Ki,2
and A3(Es) 2 Ca.

Case 2.2.2 e € Es.
Wlo.g let e = v1v2. The edges of A3(k) can be partitioned into two classes,
namely Es and Es, as follows

Es = {en1} U {vzpvzpt1 |1 < p <},
Fg (El\{cul }) U] {1)2"+11)]} U {v2q—1'02q I 2<¢g< n}'

Color the edges of Es by red and Eg by blue. Consequently, A3[Es] 2 Ki,2 and
Aj[Es] 2 Cs. Thus we have that A3 » (K1,2,Ca). Therefore As € Ra2(K1,2,Ca).
(]

Theorem 3. If Rz = {F € R(K1,2,C4) | diam(F) > 4} then
Ra 2 {As(k), As(k), Ae(k), B1(k, 1), Ba(k, t), D1(k, t1,t2)}.

Proof. Case 3.1 Graph A4(k).

Consider any red-blue coloring of A4(k) that implies an cdge-decomposition
As(k) = Aq(k) © Ag2(k). Let Aq(k) B Ki2. Observe that if there exists a
blue Cj in the Cs-path that belongs to As2(k) then the proof is complete. So now
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we assume that in each basic cycle in Cs-path there is an edge belongs to A4 (k).
We call such an edge as a red edge.

Define the end cycles as the basic cycles that are attached to Li. Thus the
end vertices of the Cy-path belong to the end cycles. We claim that one of the
end vertices, say v1, is incident to a red edge. The claim is easy to justify by
noting that if the end vertex is not incident to that red edge then the condition
As(k) 2 K2 forces the other end vertex, say wvr41, to be incident to a red
cdge (See Figure 4). Then there is a blue Cy in one of the L;s. It follows that
A42(k) 2 C4. Thus Aq(k) - (K1,2,04).

Bl

A

Fig. 4. Aq(k)

‘We denote the set. of vertices of the Lishy {z: |1 <i<4}u{y; |1 <j <6}
where z; is the vertex of degree 3 and y; is the vertex of degree 2. The root of the
first L;, x2, is identified with v; and the root of the second L;, z3, is identified
with Vk+1-

To prove the minimality of A4(k), let us consider the graph A7 ~ A4\{e} for
any fixed edge e € E(A4). Consider the following two cases.

Case 3.1.1 e is an edge of one of the L;s.
W lo.g assume that e is in the first L1s, say e = z1y1. The edges of Aj(k) can
be partitioned into two classes, namely E; and E3, as follows
B = {z1y2,23ys, Taya} U {viw: | 1 < i < K},
Ey = {z1y3, %291, T2Y2, T2Y3, T3Ys, T3Y6, TaYs, Tale}
U{viw |1 <i<k}U{uvip |1 <i<k}U{wivig1 |1 <i <k}

Color the edges of E) by red and E2 by blue. Under this coloring A3[E1] 2 Ki,2
and AZ[Ez] 2 C4.

Case 3.1.2 e is an edge of the C4-path.
W.lo.g assume that e = viw). Then the edges of Aj(k) can be partitioned into
two classes, namely F3 and E4, as follows

B3 = {z1y2,z2y1, Z3ys, Taya} U {vsw; | 2 < 5 < k),

Es = {ziy1, T1y3, T2y2, T2Y3, T3Y4, T3Y6, T4Y5, TaYo }

U{viui | 1 <1<k} U{uiviqr |1 i< k}U{wivigr | 1 <4 < k)

Color the edges of E3 by red and E; by blue. Under this coloring A3[Es} 2 K1,2
and A3[Es] 2 Cs. Thus A7 » (K12, Ca). Therefore Ag € R2(K1,2,Ca).
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Case 3.2 Graph As(k).
The proof is similar with the above case. Consider any red-blue coloring of As(k)
that implies an edge-decomposition As(k) = As1(k) ® As2(k). Let Asi(k) 2 K2
If there is no blue Cy in the Cy-path that helongs to As2(k) then we claim that a
red cdge is incident to one of the end vertices of the Cs-path (in this case we define
the end cycles as the basic cycles that arc attached to Ly and L2). Then there is
a blue C4 in Ly or Lz (depends on whether the red cdge is incident to the root
of Ly or the root of Lz). It follows that As2(k) 2 C4. Thus As(k) — (Ki1,2,Ca).

Let V(L1) = {z: | 1 €1 < 2}U{y; | 1 £j < 3}, where z; is the vertex of
degree 3 and y; is the vertex of degree 2. The root of Ly, z2, is identified with
vi. Let V(L2) = {p; | 1 <7 <3}U{g: | 1 <i<2}uU{r1} where p; is the vertex
of degree 3, ¢; is the vertex of degree 2 and r is the vertex of degree 4. The root
of L2, p1, is identified with ve41.

It can be proved similarly that As(k)\{e} - (Ki,2,Cs) for any fixed edge
e € E(As(k)). Therefore As(k) € Ra2(K1,2,Ca).

Case 3.3 Graph Ag(k).
The proof is similar with two cases above. Consider any red-blue coloring of Ag(k)
that implies an cdge-decomposition Ag(k) = Ae1 (k) ® As2(k). Let Aei(k) 2 Ki,2.
If there is no blue Cjy in the Cy-path that belongs to Ag2(k) then we claim that a
red edge is incident to onc of the end vertices of the Cy-path (in this case we define
the end cycles as the basic cycles that are attached to Lgs). Then there is a blue
C4 in one of the Las. It follows that Ag2(k)[E2] 2 Cs. Thus Ag(k) — (K12, Cs).

We denote the set of vertices of the Las hy {p; | 1 < j<6}U{q: |1 <1<
4} U {r. | 1 <t < 2} where p; is the vertex of degrce 3, ¢; is the vertex of degree
2 and 7; is the vertex of degree 4. The root of the first Lo, p1, is identified with
v1 and the root of the second Lo, p4, is identified with vey:.

It can be proved similarly that Ag(k)\{e} - (K1,2,Cs) for any fixed edge
e € E(Ag(k)). Therefore Ag(k) € Ra(K1,2,C4).

Case 3.4 Graph Bi(k,t).

Consider any cdge-decomposition By(k,t) = Bii(k,t) © Bia2(k,t) by a red-blue
coloring. Let Bii(k,t) 2 K1,2. If there is no blue Cy in the Cy-path that belongs
to Bi2(k,t) then we claim that a red edge is incident to one of the end vertices
of the Cs-path. If the red edge is incident to v, then we have a blue Cy4 in one
of the basic cycles of Cy-cycle. If the red cdge is incident to vx41 then thereis a
bluc C;4 in L;. It follows that Bi2(k,t) D Cs. Thus Bi(k,t) — (K1,2,Cs).

The vertices of Cy-cycle of length ¢ are denoted by {z, | 1 < s < t}U {as |
1<s<t}u{bs |1 < s<t}, where 2, is the vertex of degree 4, a, and b, are the
vertices of degrees 2. For Ly, the notation of their vertices is similar with the L,
in Ag4(k). W.lo.g, we assume that the first end vertex of Cy-path, vy, is identified
with z, for an arbitrary s, 1 < s < ¢ and the sccond cnd vertex, vi41, is identified
with z2, the root of L,.

To prove the minimality of Bi(k,t), we consider Bj(k,t) = Bi(k,t)\{e} for
any fixed edge e € E(Bi1(k,t)). Consider the following cases.
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Case 3.4.1 e is an edge in Cy-cycle.
W .lo.g we assume that e = z:a;. Then the edges of Bj(k,t) can be partitioned
into two classes, namely E; and E», as follows

Ey = {apzps1 |1 S p<t =1} U{viw: | 1 i< kYU {zaye, zam },
E; = E(Bi(k,t)) \ E1.

Color the edges of E) by red and E2 by blue. Under this coloring B; [F1) 2 Ki,2

Case 3.4.2 ¢ is an edge in Cy-path.
W lo.g we assume that e = viw;. Then the edges of Bj(k,t) can be partitioned
into two classes, namely E3 and Ej4, as follows

Es = {zsa: |1 <5< t}U{vjw; |2 < <k}U {z1y1,z22},
E4 = E(Bi(k,t)) \ Es.

Color the edges of E3 by red and E4 by bluc. Under this coloring By [E3) 2 Ki,2
and Bl' [E4] 2 Cq.

Case 3.4.3¢e€ L;.
W .lo.g we assume that e = z1y1. Then the edges of Bj(k,t) can be partitioned
into two classes, namely Es and Eg, as follows

Es = {zsa, | 1 < s <t}U{wivip1 |1 < i < k}U {m1y2},
Eg = E(Bj(k,t)) \ Es.

Color the edges of Es by red and Eg by blue. Under this coloring Bi|Es] 2 K1,2
and Bi[Eg] 2 Cs. Thus Bj(k,t) -» (K1,2,C4). Therefore Bi(k,t) € R(K1,2,C4).

Case 3.5 Graph Bz(k,t).

The notation for Cys-cycle is similar with the above case, while the notation for
Lo is similar with the notation of L2 in As(k). W.l.o.g we assume that the first
end vertex of Cy-path, vy, is identified with 2z, for an arbitrary s, 1 < s <t and
the second end vertex, vr+1, is identified with py, the root of L.

The proof is similar with Casc 3.4 above. We consider any cdge-decompo
sition Ba(k,t) = Bai(k, t) ® Baz(k, t) by a red-bluc coloring. Let Bz (k,t) 2 Ki,2.
If there is no blue Cj in the Cs-path that helongs to B22(k, t) then we claim that
a red edge is incident to one of the end vertices of the Cy-path. If the red edge
is incident to v; then we have a blue Cy in onc of the basic cycles of Cs-cycle.
If the red edge is incident to vk then there is a blue Cy in Lo. It follows that
Baa(k,t) 2 Cs. Thus Ba(k,t) — (K1,2,C4).

It can be proved similarly that Ba(k,t)\{e} » (K1,2,C4s) for any fixed cdge
e € E(Bz(k,t)). Thercfore Ba(k,t) € R(K1,2,Cs).

Case 3.6 Graph D, (k,11,12).
We denote the set of vertices of Cy-cycle of length ¢ by

{zmy [1<m <t} U{@my [ LSm <t} U{bme, |1 <m <t}
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and the set of vertices of the Cy-cycle of length t3 by
{znt, |1 <n<t2}U{ant, |1 Sn <t} U{bne, | 1 <71 < 1o}

The degrees of zme, and zne, are 4, while the vertices ame;, bme; and @nty, bne,
are of degrees 2. W.lo.g we identify one of the end vertex of Cy-path, vy, with
z1t; and the other end vertex, ve41, is identified with zye,.

Consider amy cdge-dccomposition D (k,t1,t2) =  Dui(k,t1,t2) ©
Di2(k, t1,t2) by a red-blue coloring. Let Dii(k,t1,t2) 2 Ki2. If there is no blue
Ca in the Cy-path that belongs to Diz2(k, ¢1,22) then we claim that a red edge is
incident to one of the end vertices of the Cs-path. If the red edge is incident to v,
then we have a blue Cy in one of the basic cycles of the first Cy-cycle. If the red
cdge is incident to vk+1 then there is a blue Cjy in the second Cy-cycle. It follows
that Dia(k,t1,t2)) 2 Cs. Thus Ds(k, t1,t2) — (K1,2, Ca).

To prove the minimality of Di(k,t1,t2), we consider Dj(k,t1,t2) =
D1 (k,t1,t2)\{e} for any fixed edge e € E(D1(k,t1,t2)). Consider the following
cases.

Case 3.6.1 e is an edge of onc of the Cs-cycles.
W.lo.g we assume that e = 2j¢,a1t,. Then the edges of Dj(k,t1,t2) can be
partitioned into two classes, namely E1 and Ea, as follows

Ey = {zptyapt, |2<p< i} U{viwi |1 <i <k}
U {@atp2(st1)ty | 1 € 8 < k2 — 1} U {aryep21¢,}
E;, = E(Dj(k,t1,t2)) \ E1.

Color the edges of E; by red and E2 hy blue. Under this coloring Dy (k,t1,%2)"
[E1] 2 K12 and Dj(k,t1,t2)[E2] 2 Ca.

Case 3.6.2 e is an edge in Cy-path.
W.lo.g we assume that e = viwi. Then the edges of Dj(k,t1,¢2) can he parti-
tioned into two classes, namely E3 and Ejy, as follows

E3 = {ar,; 241y, |1 ST <t — 1} U{vjw; [2< 5 < k}
U {@stzZ(ar1)t, | L S8 < B2 = 1} U {arpp210 }

E, E(Di(kvtlrtz)) \ Es.

Color the edges of E3 by red and E4 by blue. Under this coloring Dj(k,t1,t2)
[E3] 2 K12 and Dj (k,t1,t2)[Es) 2 Ca. Therefore Dy(k,t1,t2) € R(K1,2,Cq). O

Theorem 4. Bs(k,t), Ba(k,t) € R(K1,2,Cs).
Proof. Case 4.1 Graph Bj(k,t).
The notation of V(Bs(k,t)) is similar with notation of V(Bi(k,t)). Wlo.g we

assume that the first end vertex of Cs-path, v, is identified with a; and the
sccond end vertex, vk, is identified with x2, the root of L;.
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The edges of Bs(k,t) can be partitioned into two classes, namely E) and E»,
as follows
Ey = {2:bs |1 < s <t}U{viwi |1 <3 <k}U{z1y1, 2292},
E; = E(Bj(k,t)) \ Ei.
Under this coloring Bs(k, t)[E1| 2 K1,2 and Bs(k,t)[E2} 2 Ca.
;f:?’:, t) -» (K1,2,C4). Therefore Bs(k,t) ¢ R(K1,2,Ca).

Case 4.2 Graph Bi(k,t).
The notation of V(B4(k,t)) is similar with notation of V(B2(k,t)). W.lo.g we
assume that the first end vertex of Cys-path, v, is identified with a1 and the
sccond end vertex, vk+1, is identified with py, the root of Lo.

Similar with Case 4.1 above, the edges of Bs(k,t) can be partitioned into two
classes, namely E; and FE2, as follows

Ey = {2:b: |1 < s <t}U{viw;i | 1 <1< k}U{pmps,p2q1,q2m1},
E, E(B4(k,t)) \ Ea.

Under this coloring Ba(k,t)[E1] 2 Ki2 and Bs(k,t)[E2] 2 Cs. Thus
Ba(k,t) -» (K1,2,Cs). Therefore By(k,t) ¢ R(K1,2,C4). O

Theorem 5. Dz(k, tl,tz),Ds(k, tl,t'z) 4 R(K1'2,04).

Proof. Case 5.1 Graph Da(k,t1,t2).
The notation of V(D2 (k,t1,t2)} is similar with V(D (k,t1,t2)). W.l.o.g we assume
that v; is identified with 21,, and vi4; is identified with a;,.

The edges of D2(k,t1,t2) can be partitioned into two classcs, namely E) and
FE, as follows

By = {ar,2(r41y, |1 <7< 8~ 1} U {ag 1y 210 }
U {w;v.-+1 | 1<i<L k} U {zngzbm? | 1<n< tz},
E; E(Dz(k,tl,tz)) \ Er.

Under this coloring Da(k,t1,t2)[E1] 2 Ki2 and Da(k,t1,t2)[E2] 2 Cs. Thus
Dy (k,t1,t2) » (K1,2,C4). Therefore Da(k,t1,t2) € R(K1,2,Ca)-

Case 5.2 Graph Ds(k, 1, ¢2).
The notation of V(D3 (k, t1,t2)) is similar with V(D (%, t1,t2)). W.l.o.g we assume
that v; is identified with a1, and vr4 is identified with aye,.

The edges of D3(k,t1,t2) can be partitioned into two classes, namely F; and
FE», as follows

Ei = {zmyamy |1 <m < i} U{wivipr |1 < i<k}
U {b8¢22(8+1)12 [1<s<t2— 1} U {blztzzltz}a
Ey, = E(Ds(k,t1,t2)) \ E1.

Under this coloring Ds(k,tl,tz)[Ell 2 Ki2 and D3(k,t1,t2)[E2] ;é C4. Thus
D3(k,t1,t2) -» (K1,2,Ca). Therefore D3(k,t1,t2) € R(K1,2,Cs). O
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Theorem 6. I(t, ki, k2) & R(K1,2,C4).
Proof. We denote the set of vertices of Cy-path of length k; by

{vpry |1 Sp<kr+1}U{wge, [1 g1} U{uge, |1 <qg< ki)
and the set of vertices of Cy-path of length k2 by

{Veky | 1 S 7 < ko + 1} U{wWaky | 1 <5< ka} U {tary | 1 < 5 <k}

The notation of the vertices of Cy-cycle of length ¢ are similar with its notation
in Case 3.4. Consider these following cases.

Case 6.1 v(k,+1)k, and vix, arc identificd with two vertices of degrees 4 of the
Cjy-cycle.

W.lo.g we assume that v(k, +1yx, is identified with 2; and vy, is identified with
z:. Then the edges of I(t,k;, k2) can be partitioned into two classes, namely E;
and E», as follows

Er = {vig,wiry | 1 <4 < ki U{wikavi4nyng | 1 <5 < K2}
U {aszs41| 1 <s<t—1}U{atz1},
E2 = E(I(t, k1, k2)) \ E1.

Under this coloring I(2, k1, k2)[E1] 2 K2 and I(t, k1, ko) [ E2) ;é Cs.

Case 6.2 v(x, 41)k, is identified with a vertex of degrees 4 and vy, is identified
with a vertex of degree 2 of the Cy-cycle.

W.lo.g we assume that v(g, 1)k, is identified with 2; and vy, is identified with
a¢. Then the edges of I(t, k1, k2) can be partitioned into two classes, namely Es
and F4, as follows

B3 = {vie, Wik, | 1 <4<k} U{WinaVg)ng | 1 <5 < k2}
U {aszs“ | 1 S 8 S t— l} u {atz,},
Es = E(I(t,k1,k2)) \ Es.

Under this coloring I(t, k1, k2)[Es] 2 Ka1,2 and I(t, ki, k2)[Ea] 2 Cs-

Case 6.3 vk, +1)%, and vk, arc identified with two vertices of degrees 2 of the
Cy-cycle.

W.lo.g we assume that v(x, 41)5, is identified with a; and vy, is identified with
a:. Then the edges of I(t, k1, k2) can be partitioned into two classes, namely Es
and Eg, as follows

Es = {vic,wik, | 1 i<k} U{Wiky Va1, | 1 <5 < k2}
U{aszs41 |1 <s<t-1}U{az1},
Eg E(I(t, k1, k2)) \ Es.

Under this coloring I(t, k), k2)|Es| 2 K1,2 and I(t, k1, k2)[Eg] 2 Cs. Thus I(t, k1, k2) =
(K1,2, Cs). Thercfore I(t, k1, k2) € R(K1,2,Cs). O
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As a final remark, we present some problems that are raised from this paper.

(1) Characterize all graphs F € R(K),2,C4) with diam(F) = 2,
(2) Does there exist a graph F such that F € R(K1,2,Cy) with diam(F) = 37
(3) Characterize all graphs F € R(K1,2,Cs) with diam(F) > 4.
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