Diagram-based verification of parameterized
systems

Cccilia E. Nugraheni

Computer Science Dept., Fac. of Mathematics and Natural Sciences,
Parahyangan Catholic University, Bandung, Indonesia
cheni@home.unpar.ac.id

Abstract. A paramctcrized system consists of several similar pro-
cesses whose number is deternined by an input parameter. A chal-
lenging problem is to provide methods for the uniform verification
of such systems, i.c. to show by a single proof that a system is
correct for any value of the parameter.

This paper presents a method for verifying parameterized systems
using predicate diagrams*. Basically, predicate diagrams* arc graphs
whose vertices arc labelled with first-order formulas, representing
scts of system states, and whose cdges represent possible system
transitions. These diagrams arc used to represent the abstractions
of parameterized systems described by specifications written in
temporal logic.

This presented method integrates deductive verification and algo-
rithmic techniques. Non-temporal proof obligations establish the
correspondence between the original specification and the diagram,
whereas model checking is used to verify properties over finite-state
abstractions.

Keywords: parameterized systems, diagram-based verification, pred-
icate diagrams.

1 Introduction

Reactive systems are systems that are expected to maintain an ongoing inter-
action with their environment. Verification of reactive systems consists of estab-
lishing whether a system satisfies somec property, that is, whether all possible
behaviors of the system are included in the property specified. There are basi-
cally two approaches to formal verification, which are the deductive approach
and the algorithmic approach. The deductive approach is based on verification
rules, which reduce the system validity of a temporal property to the general va-
lidity of a set of first-order verification conditions. The most popular algorithimnic
verification method is model checking. Although this method is fully automatic
for finitc-state systems, it suffers from the so-called state-ezplosion problem. The

JCMCC 65 (2008), pp. 91-102

size of the state space is typically exponential in the number of components, and
therefore the class of systems that can be handled by this method is limited.

The need for a more intuitive approach to verification leads to the use of
diagram-based formalisms. Usually, these diagrams are graphs whose vertices are
labelled with first-order formulas, representing sets of system states, and whose
edges represent possible system transitions. This approach combines some of the
advantages of deductive and algorithmic verification: the process is goal-dirccted,
incremental and can handle infinite-state systems.

A parameterized system is a class of reactive systems which consists of sev-
cral similar processes whose number is determined by an input parameter. Many
interesting systems are of this form, for example, mutual exclusion algorithms for
an arbitrary number of processes wanting to use a common resource. To provide
methods for the uniform verification of such systems is a challenging problem.
The ability to conduct a uniform verification of a parameterized system is one
of the striking advantages of the deductive method for temporal verification over
algorithmic techniques such as model-checking techniques. Generally, nothing can
be concluded about the property holding for any value of n from the fact that
it holds for some finite sct of values. In comparison, the deductive method es-
tablishes in one fell swoop the validity of the property for any value of n [13,
7}

This paper proposcs a diagram-based verification technique for parameter-
ized systems. In [4] CANSELL et.al presented a class of diagrams called predicate
diagrams and showed how the diagrams used in formal verification. We investi-
gate the use of these diagrams in verification of paramecterized systems [16). We
made a little modification on the definition of the original predicate diagrams, in
particular the definition related to the actions. Instead of actions, we concentrate
only on parameterized actions which arc actions of the form A(k). This form of
actions is usually used in modelling actions of a particular process in the system.
This new class of diagrams is called predicate diagrams*. We use TLA* [14] to
formalize our approach and use TLA+ style [12] for writing specifications.

This paper is structured as follows. We begin with a brief description of the
specification of paramctcrized system in TLA*. Section 3 describes the definition
and the use of predicate diagrams in the verification of parameterized systems. As
illustration we take the parameterized reader-writer algorithm as case study [10].
This is explained in Scction 4. Some related work is given in Section 5. Finally,
conclusion and future work will be given in Section 6.

2 Specification of Parameterized Systems

In this work, we restrict on the parameterized systems which are interleaving
and consist of finitely, but arbitrarily, discrete components. Let M denotes a
finite and non-empty sct of processes running in the system being considered. A
parameterized system can be describe as a formula of the form:

parSpec = Init AO[3k € M : Next(k)], AVk € M : L(k) (1)
where

92

Init is a state predicate that describes the global initial condition,

Next(k) is an action that characterizes the next-state relation of a process k,
v is a state function representing the variables of the system and

L(k) is a formula stating the liveness conditions expected from the process

k.

Formulas such as Next(k) and L(k) are called parameterized actions.

3 Predicate diagrams*

Now we present a class of diagrams that can be used for the verification of pa-
rameterized systems. The underlying assertion language, by assumption, contains
a finite set O of binary relation symbols < that are interpreted by well-founded
orderings. For < € O, its reflexive closure is denoted by <. We write OF to denote
the set of rclation symbols < and < for <€ O.

3.1 Definition of predicate diagrams*

A predicate diagram* is a finitc graph whose nodes are labelled with sets of
(possibly negated) predicates, and whose edges are labelled with parameterized
actions as well as optional annotations that assert certain expressions to decrcase
with respect to an ordering in O=. Intuitively, a node of a predicate diagram
represents the set of system states that satisfy the formulas contained in the
node. An edge (n,m) is labelled with a parameterized action A(k) if A(k) can
causc a transition from a statc represented by n to a state represented by m.
A parameterized action A(k) may have an associated fairness condition; fairness
conditions apply to all transitions labelled by the action rather than to individual
cdges.

Formally, the definition of predicate diagrams* is relative to finite sets P and
A that contain the statc predicates and the paramecterized actions of interest; we
will later use T to denote a special stuttering action. We write P to denote the sct
of literals formed by the predicates in P, that is, the union of P and the negations
of the predicates in P.

Definition 1. Assume given two finite sets P and A of state predicates and
parameterized actions. A predicate diagram™ G(N, 1,4,0,() over P and A consists

of:

— a finite set N C 2% of nodes,

— a finite set I C N of initial nodes,

- afamily Of() = (JA(k))A(k)e.A Of relations d‘Am C N x N,

— an edge labelling o that associates a finite set {(t1, <1),- .., (ta, 1)}, of terms
ti paired with a relation <€ OF with every edge (n,m) € 4, and

— a mapping { : A — {NF,WF,SF} that associates a fairness condition with
every parameterized aclion in A; the possible values represent no fairness,
weak fairness, and strong fairness.

93

We say that the parameterized action A(k) can be taken at node n € N iff
(n,m) € A holds for some m € N, and denote by En(A(k)) C N the set of nodes
where A(k) can be taken. We say that the parameterized action A(k) can be taken
along an edge (n,m) iff (n,m) € daqny-

We now define runs and traces through a diagram as the set of those behaviors
that correspond to fair runs satisfying the node and edge labels. To evaluate the
fairness conditions we identify the enabling condition of a parameterized action
A(k) with the existence of A(k)-labelled edges at a given node.

Definition 2. Let G = (N, I,d,0,() be a predicate diagram* over sets P and A.
A run of G is an w-sequence o(so,no, Ao)(s1,11, A1) ... of triples where s is a
state, n; € N is a node and A; is a paramelerized action such that all of the
following conditions hold:

— ng € I is an initial node.

— sifni] holds for allie N.

— For alli € N, either A; = 7 and ni = ni41 or A; € A and (ni,nit1) € da;.

— If A; € A and (t, <) € o(ni,nit1), then siv1ft] < s:t].

— If Ai = 7 then siq1[t] < si[t] holds whenever (t,<) € o(ni,m) for some
meEN.

— For every parameterized action A(k) such that ((A(k)) = WF there are in-
finitely many i € N such that either A; = A(k) or ni ¢ En(A(K)).

— For every parameterized action A(k) such that ((A(k)) = SF, either A; =
A(k) holds for infinitely many i € N or n; € En(A(k)) holds for only finitely
many ¢t € N.

We write runs(G) to denote the set of runs of G. The set tr(G) of traces through
G consists of all behaviors o = sos1 ... such that there ezists a run n(so, n0, Ao)
(s1,m1,A1) ... of G based on the states in a.

Informally, o = 5051 ... is a trace through the predicate diagram* G if we can
find a sequence of nodes n; whose associated formulas are true at s; and that are
related by transitions whose edge labels, including the ordering aunotations, arc
satisfied by consecutive statcs. In addition to the transitions that are explicitly
represented by edges of the diagram, we allow stuttering transitions that remain
in the source node.

Fairness conditions arc used to prevent infinite stuttering. Their interpretation
is standard, based on the intuition that the cnabledness of actions with non-trivial
fairness requirements is reflected in the diagram.

3.2 Verification using predicate diagrams*

The verification process using predicate diagrams is done in two steps [4]. The
first step is to find a predicate diagram that can be proven to be the correct
representation of the system to be verified, i.c. the diagram conforms to the
system specification. For proving whether a diagram conforms to a specification

94

or not, the so-called conformance theorem is used. Thus the first step is done
deductively.

With the current setting, i.c. the using of parameterized actions, some mod-
ifications should be done on the conformance theorem. In particular, the con-
ditions related to the fairness conditions should be treated slightly differently
from non-parametcrized ones. We need to address onc important issuc that will
be used later, which is the issue about fairness. Note that in the specification
the fairness condition is represented as a conjunction of formulas of the forms
Vk € M : WF,(A(k)) and/or Vk € M : SF,(A(k)), i.c. for every process k
in M and for some paramctcrized action A(k), we associate weak and strong
fairness, respectively, with A(k). Let’s turn to the definition of predicate dia-
grams, in particular the definition of {. In the context of parameterized systems,
¢ : A - {NF,WF,SF} is now a mapping that associates a fairness condition
with every paramecterized action A(k) in .A. For cxample, for some parameterized
action A(k), if {(A(k)) = WF then we mean {(3k € M : A(k)) = WF.

We say that a predicate diagram* G conforms to a paramcterized program
parSpec if every behavior that satisfies parSpec is a trace through G.

Theorem 1. Let G = (N,1,4,0,¢) be a predicate diagram* over P and A and
let parSpec = Init AO[3k € M : Next(k)]o AVk € M : Ly(k) be a parameterized
system. If all the following conditions hold then G conforms to parSpec:

1. E Init — v n.
nel
2. for allknA[3k € M : Next(k)]y — n'V V (GkeM:A®K) Am.
(m,A(k)):(n,m)€d 4 (1)

3. For alln,m € N and all (¢, <) € o(n,m)

(a) RnAm' A V Bk e M:Ak))y — t' <t

A(k):(n,m)€d 5(py

(b)) EnA[Fke M : Next(k)].An —t' <t.
4. For every action A(k) € A such that ((A(k)) # NF

(a) If ((A(k))=WF then |= parSpec— WF,(3k € M : A(k)).

(b) If C(A(k)) = SF then |= parSpec — SF,(3Ik € M : A(k)).

(c) kn— 3k € M : ENABLED(A(k))w holds whenever n € En(A(k)).

(d) |= nA(3k € M : A(k))y — —~m' holds for all n,m € N such that

(n,m) & dagy.

Proof. This theorem is a direct consequence of the conformance theorem. Notice
that 3k € M : Ay(k) V...V An(k) is equivalent to (Jk € M : A1(k)) V...V (3k €
M : Aa(k)). Thus, we can usc the proof for the conformance theorem which is
given in [4] and [14] as reference in order to prove Theorem 1.

Assume that parSpec and G are such that all the conditions hold that o =
S051 - .. is a behavior that satisfies parSpec. We want to show that o € tr(G) hy
constructing the corresponding run through G for o:

95

1. We inductively define a sequence ng, ni,... of nodes n; € N and a sequence
AgA; . .. of sets of parameterized actions @ # A; C AU {7} such that for all
i € N the following conditions hold:
(i)noel
(i) sifni]
(iii) Ai = {A(k) € A: (ni,nig1) € day, sil(Fk € M : A(k))u)sisr} U
T N4l =T
(iv) si+1[t] < si[t] whenever (¢, <) € o(ni,nit1) and
(v) sit1[t] 2 sift] whenever niy1 =n; and (t,<) €o(ni, m) for some m € N.

Induction base: We choose some node no € I such that so[no] holds. By
assumption, so[Init] holds (Theorem 1 condition 1), therefore some such
node exists.

Induction step: We assume that no, n; ... n: and Ap, A; ... Ai—1 have already
been defined such that conditions (i)-(ii) hold for all j < 7 and conditions
(iii)-(v) hold for all § < i — 1. In particular, we have si[n:]. Moreover, the
assumption that o |= parSpec implies that s;[3k € M : ([Next(k)]v]si4+1, and
condition 2 in Theorem 1 ensures that either there exist some parameterized
action A(k) € A and some m € N such that (ni,m) € dak) and s:[(3k €
M : A(k)}s A m']siy1 holds, or si41[n:]. In the first case, choose some such
node m as ni41; in the sccond case, choose nit1 = ni. In either case, define
A; as described in condition (iii). These choices imply that siy1fni+1] and
that A; # 0. Conditions (iv) and (v) now follow from the choices of n:4; and
A;i with the help of conditions 3a and 3b in Theorem 1.

2. To complete the proof, we pick a sequence AgA; ... of parameterized actions

such that the last two conditions of definition 2 that concern the fairness
annotations in G are satisfied. Choose a sequence such that A; = A holds
for infinitely many ¢ € N if A; € A; holds for infinitely many 7 € N. Such
a choice is possible by a standard combinatorial argument since the set A is
finite.
Assume that A(k) € A is a paramcterized action such that {(A(k)) = WF
and that n; € En(A(k)) holds for all but finitely many ¢ € N (otherwise the
condition is trivially satisfied). Because we already know that s;[n:] holds
for all 2 € N, condition 4c implies that s;{3k € M : ENABLED(A(k)).]
holds for all but finitely many ¢ € N. Moreover, since o satisfies parSpec
and = parSpec — WF,(3k € M : A(k)) by condition 4a, it follows that
si[(3k € M : A)]si+1 holds for infinitely many ¢ € N. For every such ¢,
we have A(k) € A;; otherwise, condition 4d would imply that si41[-ni41],
contradicting assertion (ii) above. But then, the choice of the parameterized
action sequence implies that A; = A(k) holds for infinitely many i € N, which
completes the proof.

3. For paramcterized action A(k) € A such that ((A(k)) = SF, the proof is
analogous, replacing ”all but finitely many” by ”infinitely many” and using
4b instead of 4a.

a

Condition 1 asserts that every initial state of the system must be covered
by some initial node. This ensures that every run of the system can start at

96

some initial node of the diagram. Condition 2 asserts that, from every node, cvery
transition, if it is enabled then it must have a place to go, i.e., there is a successor
node which represents the successor state of the transition. It proves that every
run of the system can stay in the diagram. Condition 3 is related to the ordering
annotations and Condition 4 is related to the fairness conditions.

The second verification step is to prove that all traces through a predicate
diagram satisfy some property F. On this case, we view the diagram as a finite
transition system that is amenable to model checking. All predicates and actions
that appcar as labels of nodes or edges arc then viewed as atomic propositions.

Regarding predicate diagrams* as finite labelled transition systeis, their runs
can be encoded in the input language of standard model checkers such as SPIN
[11]. Two variables indicate the current node and the last action taken. The
predicates in P are represented by boolcan variables, which arc updated according
to the label of the current node, nondeterministically, if that label contains neither
P nor P. We also add variables by, <), for every term ¢ and relation <€ @ such
that (¢, <) appears in some ordering annotation o(n, m). These variables arc sct
to 2 if the last transition taken is labelled by (¢, <), to 1 if it is labelled by (¢, <)
or is stuttering transition and to 0 otherwisc. Whereas the fairness conditions
associated with the actions of a diagram are casily expressed as LTL (Linear
Temporal Logic) assumptions for SPIN.

4 Reader-writer algorithm: a case study

The protocol is cxpressed in terms of four scts that contain (the identitics of)
currently active rcaders, waiting readers, active writers and waiting writers. All
the sets arc initially cmpty. Assume there are M processes running in the systems.
Every process in the system can perform the following actions:

— ImmRd(k): Process k signals its desire to read. If there are no active or
waiting writers, then it is iinmediately proceed to rcad the data.

— RegRd(k): Process k requests rcading access, but there are active or waiting
writers. It is added to the set of waiting rcaders.

— GrRd(k): Waiting reader k is allowed to rcad data when there arc no active
writers.

— EndRd(k): Active rcader k signals that it has finished reading and exists the
protocol.

— ImmWr(k): Process k signals its desire to write. If there are neither active
or waiting writers nor active or waiting readers, it may immediately proceed
to write the data.

— ReqWr(k): Process k signals that it wants to write data, but the precon-
ditions of action ImmWr(k) arc not met. It is added to the sct of waiting
writers.

— GrWr(k): Waiting writer & is allowed to write when there are neither active
or waiting readers nor active writers.

— EndWr(k): Active writer k signals that it has finished writing and exits the
protocol.

97

The fairness conditions are chosen such that no process that has cntered the
system is persistently neglected. In particular, there is a strong fairness condition
on the action DoWr(k), for all k € M, prcsumably implemented using a queue
rather than a set of waiting readers.

Our objective is to prove that the algorithm satisfies the following properties:

1. Mutual-exclusion among writers, i.c. cvery time there is only maximal one
writing process.

2. Mutual-exclusion among readers and writers, i.e. every time whenever there
are active readers then therc arc no active writers and vice versa.

The specification of parameterized reader-writer algorithm is given in Figure
1. There are four variables, which are ar, wr, aw, and ww, representing the sct
of active readers, waiting readers, active writers and waiting writers.

I inodule Reader- Writer
VARIABLES ar, wr, aw, wvw

' ImmBd{k) =A kd urVurUaw) ue A aw =@ A unn = §
A ar’ = arJ {k} AUNCHANGED {wr, aw, ww)
RegRd(K) =A kd ar VurVuw U ww A ~{law = QA ww = @)
A wr' = wrU {(k} A GNCHANGED {ar. aw. wur)
GrRd{k) =A ke urAaw =9
Aar =arU{k}Auwr’ = wr \{k} AUNCHANGED {aw, uun)
BndRd{k) = k € ar A’ =ar \ {k} A UNCHANGED (wr, ow, ww)
ImmWr(k)=A kdarSurUawUuwe AarYuwrJaw Juw =0
A aw' = aw U {k} AUNCHANGED (ar, wr, wu)
ReqWr(k) =A kd ar VwrUaw Dune A wr Sunr U aw Duw =
A we' = wwU {k} A UNCHANGED (ar, wr, ow)
Gririky=A ke vwAurJurUaw =0
A aw' =awU {k} A ww' = ww \ {k} A UNCHANGED {ar.wr)
EndWr(k) =k € aw A aw’ = aw \ {k} A UNCHANGED (ar.uwr, wu)

it =ar =BAur =0 Aaw =0 A =0

Next (k) =V lnmBRd{k\V ReqRd(k}V GrRd{k) V EndItd(k)
V hinmWr (k) V ReqWr(k) v GrWr{k) vV EndWr(k)

v = {ar, wr, aw, v)
I{E) = WF (GrRA(F) AWVF (EndRd () ASF (GrWr (k) AWF (EndWr(k))
ParRW =Vke 1.M . Init AONeat{ k)], A L{K)
THEOREM parBW — O(jaw] < 1)
THEOREM purRW — O{law] =1 = jwr} =0)
THEOREM parRW — Oar] > 0 - jaw] =0)

1

Fig. 1. Specification of rcader-writer algorithm.

98

Figure 2 shows a suitable predicate diagram* for the parameterized reader-
writer algorithm. We set P to contain the eight predicates, which are: |ar| = 0,
lar| > 0, |wr|0, |wr| > 0, |aw| = 0, |aw| = 1, lww| = 0, and |ww| > 0. It is
assumed that the following conditions hold: ~(|ar| = 0) < |ar| > 0, ~(jur| =
0) & Jwr| > 0,~(law] = 0) & |aw| = 1, and ~(Jaw| = 0) < Jew| > 0.
It can be argued that —(lew| = 0) « |aw| = 1 holds, since the mumber of
the active writers is always at most 1. IR, RR,GR, ER,IW,RW,GW, and EW
stands for ImamRd(k), ReqRd(k), GrRd(k), EndRd(k), ImmWr(k), ReqWr(k),
GrWr(k), and EndWr(k), respectively.

Using Theorem 1 it can be shown that the predicatc diagram in Figure 2
conform to the specification in Figurc 1. For example, we have:

— Init — lar| = 0A |lwr| = 0A |aw| = Olww| = 0

= lar| =0Awr| =0Aaw| =0A|ww| =0A[3k € M : Next(k)]s —
lar| = 0A |wr| = 0A |aw| = 0Aww| =0 V
{3k € M : ImmRd(k)}u Alar] > 0A |wr] = 0A law| = 0A Jww| =0 V
(3k € M : ImmWr(k)), Alar] = 0A |wr| = 0A jaw| = lww| =0

The next step is to encode the predicate diagram* in Promecla, the input
language of SPIN. To do this, six variables arc used which arc action, node, ar,
wr, aw, and ww. action and node arc used to indicate the last action taken and
the current node; whereas ar, wr, aw, and ww arc used to represent the predicates
that hold on every node, for example, if ar = 1 then the predicate |ar| > 0 holds
and if ar = 0 then the predicate |ar] = 0 holds. action = 1 if ImmRd(k) is taken,
action = 2 if ReqRd(k) is taken and so on.

The properties to be verified are now can be written as O(aw =0V aw = 1),
Of(aw = 1 — ar = 0), and O(ar = 1 — aw = 0). Last, by using SPIN we
model-checked the resulted transition system. As result, we concluded that the
algorithm satisfics all the properties we want to prove.

5 Related work

Verification of parameterized systems is often done by hand, or with the guid-
ance of a theorcm prover [15,13,9]. Several methods have been proposed that,
to various degrees, automate this verification process. Methods based on manual
construction of a process invariant are proposed in [5, 17]. However, as the general
problem is undecidable (1], it is not in general possible to obtain a finite-statc pro-
cess invariant. For classes of parameterized systems obeying certain constrains,
for example [8, 6] , there exists algorithms for model checking the parameterized
systems.

In this work we have restricted to a class of parametcrized systems that are
interleaving and consist of a finitely, but arbitrarily, discrete components. The
paramcterized systemns are represented as parameterized TLA* specifications. The
verification is done deductively and algorithmically by means of diagrams. The
diagrams can be viewed as the abstract representation of parameterized systems,
i.c. a family of processes is represented in a single diagram. The same spirit

99

but using different formalism is the work from BAUKUS et.al. [2]. They proposed
a method for the verification of universal properties of parameterized networks
based on the transformation of an infinite family of systems into a single WS1S
[3] transition system and applying abstraction techniques on this system.

6 Conclusion and future work

‘We have defined a new class of diagrams for the verification of parameterized sys-
tems called predicate diagrams*. These diagrams are a modification of predicate
diagrams proposed by CANSELL et.al. [4]. The modification has been done, in par-
ticular, on the definition rclated to the actions. Instead of actions, we concentrate
only on parameterized actions.

Using the reader-writer algorithm as case study, it can be shown that predicate
diagrams* can be used to verify the properties of parameterized systems.

In this work, we restrict on the parameterized systems which are interleaving
and consist of finitely, but arbitrarily, discrete components. It is planned to inves-
tigate the applicability of predicate diagrams* in the verification of parameterized
systems which are not interleaving.

References

1. K. Apt and D. kozen. Limits for automatic verification of finite-state concur-
rent systems. Information Processing Letters, Vol. 15, pp. 307-309. 1986.

2. Kai Baukus, Saddek Bensalem, Yassine Lakhnech and Karsten Stahl. Ab-
stracting WS1S Systems to Verify Parameterized Networks. In Proceeding of
the 6th International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS 2000), Volume 1785 of Lecture Notes
in Computer Science, pages 188-203. Springer, 2000.

3. J.R. Biichi. Weak second-order arithmatic and finitc automata. Z. Math.
Logik Grundl. Math., 6:66-92, 1960.

4. Dominique Cansell, Dominique Méry and Stephan Merz. Predicate diagrams
for the verification of reactive systems. In 2"¢ Intl. Conf. on Integrated For-
mal Methods (IFM 2000), vol. 1945 of Lectures Notes in Computer Science,
Dagstuhl, Germany, November 2000. Springer-Verlag.

5. E.M. Clarke and O. Grumberg. Avoiding the state explosion problem in tem-
poral logic model checking. Proceedings of the 6th annual ACM Symposium
on Principles of Distributed Computing, pp. 294-303. Columbia, Canada,
August 1987.

6. E.A. Emerson and K.S. Namjoshi. Automatic verification of parameterized
synchronous systems. In Proceeding of 8th Conference on Computer Aided
Verification. Vol. 1102 of Lecture Notes in Computer Science, pp. 87-98.
Springer, 1996. v

7. E.A. Emerson and K.S. Namjoshi. Verification of a parameterized bus ar-
bitration protocol. Volume 1427 of Lecture Notes in Computer Science, pp.
452—-463. Springer,1998.

100

feari==0 {wrj=0
fawl=1 |wn=0

Jear}z=0 {wr=Q
law|=0 |ywif=0

4 RR
iwri>0
IR l;:R l\VN’g_()
IR !("’%—0
\ jaw]=0
ler{=0 lwr{=0 IR. GR | ER. IR, GR
{ae|=0 [nne}=0 3
g
“ farl>0 jnr>0
RIF law|=0 |n1{=0
ER.RW R ERRR.RW
¥

3 9
Jari0 hwri=0\ KR ferrizeQ >0
w0 a0

law|=0 Jwni>0

4

RW ER ER GR
L 4 A 4

10
Jari=0 jwrf—0 =0 w0
f@w]~0 =0 w0 w0

! 1 aw tew

RR,RW ' i ;

,@-. =) =0

ienwl= 1w ()

RR.RW trr

F e : -
ST ur;w(=0
= w1 w0

G

Fig. 2. predicate diagram for the reader-writer algorithm.

101

9.

10.

11.

12.

13.

14.

16.

17.

S. German and A_P. Sistla. Reasoning about systems with many processes.
Journal of the ACM, Vol. 39, Number 3, July 1992.

K. Havelund and N. Shankar. Experiments in thcorem proving and model
checking for protocol verification. FME. Vol. 1051 of Lecture Notes in Com-
puter Science, pp. 662-681. Springer, 1996.

Hermann Hellwagner. Scalable readers/writers synchronization on shared-
memory machines. Technical report, Siemens AG, ZFE ST SN 2, 1993.

G. Holzmann. The SPIN model checker. IEEE Trans. on software engineer-
ing, 16(5):1512-1542. May 1997.

Leslie Lamport. The Temporal Logic of Actions. ACM Transactions on Pro-
gramming Languages and Systems, 16(3) : 872-923, May 1994.

Zohar Manna and Amir Pnucli. Verification of parameterized programs. In
Specification and Validation Methods (E. Borger, ed.), Oxford University
Press, pp. 167-230, 1994.

Stephan Merz. Logic-based analysis of reactive systems: hiding, composi-
tion and abstraction. Habilitationsschrift. Institut fiir Informatik. Ludwig-
Maximillians-Universitdt, Munich Germany. December 2001.

. J. Misra and K.M. Chandy. Parallel program design: a foundation. Addison-

Wesley Publishers, 1988.

Cecilia E. Nugraheni. Predicate diagrams as basis for the verification of re-
active systems. PhD Thesis. Institut fiir Informatik. Ludwig-Maximillians-
Universitdt, Munich Germany. February 2004.

P. Wolper and V. Lovinfose. Verifying propertics of large sets of processed
with network invariants. In J. Sifakis (ed), Automatic Verification Mcthods
for Finite State Systems. Vol. 47 of Lecture Notes in Computer Science, pp.
68-80. Springer-Verlag, 1990.

102

