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Abstract Let G be a graph with vertex set V(G) and edge set E(G), and let A =
{0, 1}. A labeling f: V(G) — A induces a partial edge labeling f* : E(G) - A
defined by f*(xy) = f{x), if and only if f{(x) = R(y), for each edge xy € E(G). For
i € A, let v(i) = card{v € V(G) : f{v) = i} and en(i) = card{e € E(G) : f*(e) = i}.
A labeling f of a graph G is said to be friendly if | v{(0) — v(1) | < 1. If| ep(0) -
en(1) | <1 then G is said to be balanced. Balancedness of the Cartesian product

and composition of graphs is studied in [19]. We provide some new families of
balanced graphs using other constructions.

1. Introduction.

A graph on n vertices is said to be cordial if there exists a labeling f of the
vertex set using zeros and ones that are as equal as possible in number, so that
the numbers of induced edge labels that are zero and one differ by at most one.
Here the edge label induced by vertices u and v is defined by | f{u) — f(v) |.

The concept of cordial graph labeling was introduced by Cahit {3] in 1986.
Cahit proved the following: every tree is cordial; K, is cordial if and only if n <
3; Kmp is cordial for all m and n; the wheel W, is cordial if and only if n # 3
(mod 4); C, is cordial if and only if n # 2 (mod 4); and an Eulerian graph is not
cordial if its size is 2 (mod 4). Several constructions of cordial graphs, in
particular, the Cartesian product, composition and tensor product are considered
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in[l,3,4,5,10, 11, 15, 18, 22). Kircherr considered more general constructions
of cordial graphs in [16]. Other studies can be found in [13, 17, 18, 23].

Cairnie and Edwards [6] have determined the computational complexity of
cordial labeling. They proved that to decide whether a graph admits a cordial
labeling is NP-complete. Even the restricted problem of deciding whether a
connected graph of diameter 2 has a cordial labeling is NP-complete. For more
known results and open problems on cordial graphs, see [5, 7].

Liu, Tan and the second author [19] considered a new labeling problem of
graph theory. Let G be a graph with vertex set V(G) and edge set E(G). A
vertex labeling of G is a mapping f from V(G) into the set {0, 1}. For each
vertex labeling f of G, we can define a partial edge labeling f* of G in the
following way. For each edge {u, v} in E(G), we define

0 iffu)y=fv)=0,
PHu,v) = {
1 iffu)=fiv)=1.

Note that if f(u) # f{v), then the edge {u, v} is not labeled by f*. Thus f*isa
partial function from E(G) into the set {0, 1}, and we refer to f* as the induced
partial function of f. Let v¢(0) and v¢(1) denote the number of vertices of G that
are labeled by 0 and 1 under the mapping frespectively. Likewise, let ex(0) and
ep(1) denote the number of edges of G that are labeled by 0 and 1 under the
induced partial function f* respectively. With these notations, we now introduce
the notion of a balanced graph.

Definition. Let G be a graph. G is said to be a balanced graph or balanced if
there is a vertex labeling f of G such that | v(0) ~v{(1) | £ 1 and | ex(0) — ep(1) |
<l1.

A graph G is said to be strongly vertex-balanced if G is a balanced graph
and v(0) = v¢(1). Similarly a graph G is strongly edge-balanced if itis a
balanced graph and ex(0) = ep(1). If G is a strongly vertex-balanced and
strongly edge-balanced graph, then we say that G is a strongly balanced graph.

We will drop the subscripts f and f* when the context is clear.

Example 1. Figure 1 shows a graph with two distinct balanced labelings.

Figure 1.



Example 2. Figure 2 shows that the wheel Ws, up to isomorphism, has two
balanced labelings. They are strongly vertex-balanced but not strongly edge-
balanced.

W; le(1)-e(0)=1 le(1)-e(0)=1
Figure 2.

Example 3. Figure 3 depicts a strongly balanced graph.

Figure 3.

The following graphs are studied in [19]:

(1) The path P, is balanced; it is strongly balanced if n is even.
(2) The cycle C, is balanced; it is strongly balanced if n is even.
(3) The complete graph K, is strongly balanced if and only if n is even.
(4) The complete bipartite graph K., , is balanced if and only if one of the
following conditions holds,

(a) m, n are even,

(b) m,nare odd and jm —n| <2,

(c) one of m and n, say m, is odd, n=2tand t=-1, 0 or 1 mod (jm — n).
(5) If G is k-regular with p vertices, then

(a) G is balanced if p is odd and k = 2;

(b) G is strongly balanced if p is even.



Though the concept of balanced graph labeling is similar to that of cordial
graph labeling, the two theories are completely different. In this paper, we use
different product constructions to build up significant classes of strongly
balanced graphs. We show that the balancedness is not well-behaved under
these graph operations.

2. Balancedness of mK,,.

Kuo et al [17] investigated the cordiality of the disjoint union of m copies of
the complete graph K;. In this section we consider the balanced problem for
mK,.

First of all, we establish the following general results,

Theorem 2.1. For any graph G, the graph mG is strongly balanced for all even
m

Proof. Label the vertices of the first component of mG by 0 , those of the
second component by 1, and so on alternately for the rest of the graph. It is
clear that this labeling is strongly balanced.

Theorem 2.2. If G is strongly balanced and H is balanced, then the disjoint
union G U H is balanced.

Theorem 2.3. If G is balanced, then mG is balanced for allm 2 1.

Notation. Suppose G is a balanced graph under the labeling f, and v{0) — v{(1)
=i, ep(0) —ep(1) =j. We say that G is (i, j)-balanced.

Lemma 2.4. If G is (i, j)-balanced under f, then the mapping * defined by f*(u)
=1 — f{u) gives a (=i, —j)-balanced labeling for G.

We have the following result
Theorem 2.5. If G is (1, 1)-balanced and H is (-1, —1)-balanced, then G U H is
strongly balanced.

Theorem 2.6. The graph mK; is balanced for all m > 0, and is strongly
balanced if and only if m is even.

Proof. Note that K3 is (1, 1)-balanced with vertex labeling {0, 0, 1} and (-1,
—1)-balanced with vertex labeling {1, 1, 0}. The results follow from Theorems
22 and 2.5.

However the situation is quite different for mK; whenn 2 4.
Theorem 2.7. The graph mK, is not balanced for any odd m > 0 and odd n 24,



Proof. For simplicity we denote the i-th copy of mK, by G;.

Let fbe a labeling of mK,, and let x;, where 0 < x; < n, be the number of 0-
vertices in G;. Restricting f'to this G;, we have v(0) = x;, v(1) = n — x;, and e(0) =
C(x;, 2), (1) =C(n —x;, 2).

Letm=2t+1,n=2s+1,andx; + x5+ ... +xm=rmn/2].

As C(x;, 2) — C(n — x;, 2) = —(25” + s — 25X;), €(0) —e(1) = Z(C(x;, 2) - C(n —
Xi, 2))=-s=—(n-1)/2.

Thus if n > 3, mK,, cannot be balanced.0

Summarizing the above results, we conclude that
Theorem 2.8. The graph mK, is balanced if and only if
(@) n=3andm>0, or
(b) mn is even.

3. Balancedness of the Cartesian product of graphs.

The Cartesian product G x H of two graphs G and H is the graph with
vertex set V(G) x V(H), and edge set {{(a, x), (b, x)} : {a, b} € E(G)} v {{(a,
x), (a, y)} : {x, y} € E(H)}.

For each vertex of G, we will call the corresponding copy of H its cross
section, or a G-cross section. Similarly, for each vertex of H, we will call the
corresponding copy of G its cross section, or an H-cross section.

Theorem 3.1. Let H be a strongly balanced graph, and G be any graph. Then

G x H is strongly balanced.

Proof. Consider a strongly balanced labeling of H. For each vertex of G, use
this labeling for its cross section. Thus each G-cross section has v(0) = v(1) and
e(0) = e(1). Then obviously v(0) = v(1) for the Cartesian product. For each
vertex of H, if it is labeled 0, all the vertices in its cross section are labeled 0,
and if it is labeled 1, all the vertices in its cross section are labeled 1. Thus all
the edges in this H-cross section are labeled 0 or 1 accordingly. Then the
combined values of ¢(0) and the combined values of e(1) are the same when all
the H-cross sections are taken together.(]

Remark. The Cartesian product does not preserve balancedness. For example,
C; is balanced. However, C; x C; is not balanced. Up to isomorphism C; x C;
has the following three friendly labelings. However, they are not balanced.
(Figure 4)
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Corollary 3.2. For any graph G and any positive even n, G x P, is strongly
balanced.

Corollary 3.3. For any graph G and any positive even n, G x C, is strongly
balanced.

Corollary 3.4. For any graph G and any positive even n, G x K, is strongly
balanced.

Corollary 3.5. Every graph is an induced subgraph of a strongly balanced
graph.

The Cartesian product of two paths is frequently called a grid graph. These
graphs are very nicely balanced.

Theorem 3.6.
¢)) If one of m or n is even, Py, x P, is strongly balanced.
2) If both m and n are odd, Py, x P, is balanced, strongly edge-balanced
but not strongly vertex-balanced.
Proof. (1) follows from Corollary 3.2.

For (2), label the vertices alternately by 0°s and 1°s. Then e(0) = (1) = 0,
and jv(0)-v(1)|=1.0

4. Balancedness of the composition of graphs.

Given two graphs G and H, the composition of G and H, denoted by G[H], is
the graph with vertex set V(G) x V(H), with (u,, v;) adjacent to (u, v2)
whenever {u;, u;} € E(G) or (u; = u; and {v;, v,} € E(H)). It is also called the
graph lexicographic product.
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It is shown in [19] that

Theorem 4.1. For any graph G and strongly balanced graph H, the composition
G[H] is strongly balanced.

Corollary 4.2. For any graph G and any positive even n, G[P,] is strongly
balanced.

Corollary 4.3. For any graph G and any positive even n, G[C;] is strongly
balanced.

Corollary 4.4. For any graph G and any positive even n, G[K,] is strongly
balanced.

Remark. Theorem 4.1. is not true if “strongly balanced" is replaced with
"balanced". By a result of [19], a k-regular graph with an odd number of
vertices is balanced if and only if k =2. Though K; is balanced, K;[K;] is 8-
regular of odd order and it is not balanced.

Corollary 4.5. For any graph G and any positive even n, the composition of G
with the null graph N,,, i.e., G[N,], is strongly balanced.



Remark. The above result is not true if n is odd. The graph K3[N;] has order 9,
and is regular with degree 6. Any friendly labeling will give |e(1) — e(0)| = 3.

le(1)-e(0)| =3
Figure 6.

Theorem 4.6.

(1) Ifoneofm ornis even, then P,[P,] is strongly balanced.

(2) Ifboth m and n are odd, P,,[P,] is balanced, strongly edge-balanced but
not strongly vertex-balanced.

Example 4. Figure 7 shows that P;[P;] is balanced, strongly edge-balanced but
not strongly vertex-balanced.
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Figure 7.
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5. Balancedness of the tensor product of graphs.

The tensor product G = G, ® G, of graphs G, and G, with disjoint point sets
V) and V; and edge sets E, and E, is the graph with vertex set V|, x V, such that
(uy, u,) is adjacent to (v, v2) whenever {u,, v;} € E; and {u,, v,} € E;. We see
that if G, is (p1, 1)-graph and G; is (p», q2)-graph, then G, ® G is a (pip,,
2q,q,)-graph. The construction was originally introduced by Weischel [26]. It
is also called the Kronecker product, weak product, direct product, categorical
product and conjuction in the literature. The tensor product of graphs was
considered in Borowicki [2], Culik [9], Miller [21], and Weichel [26] under
different terminologies.

W, vi) (V)

vy Vi
® =
V2 V2
v v)) (Vv
Figure 8.

Weichel [26] showed that the tensor product of two connected graphs is
connected if and only if one of the factors has an odd cycle. For other results of
tensor products, the reader is referred to [2, 7, 9].

Theorem S.1. If G is bipartite, then G ® K, is strongly balanced.
Proof. G ® K; =2G, by Weichel's result. Thus the graph is strongly balanced
by labeling one component of 2G by 0 and the other by 1.0

Example 5. P, ® K, is strongly balanced.

11
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The tensor product of two balanced graphs can be balanced. For example the
graph P; ® P; is balanced. However, there exist tensor products with balanced
components that are themselves not balanced. As an example, consider the
graph K; ® K;. The graph is 4-regular with 9 vertices. By a result in [19], a k-
regular graph with an odd number of vertices is balanced if and only if k = 2.
We therefore conclude that K; ® K is not balanced.

For a function f: X —» X and a subset A of X, define the inverse image of A
asthe set f'(A) = {x € X | f(x) € A}.
Consider graphs G and H, and their tensor product G ® H. We define the
projection functions ng: V(G ® H) = V(G) and ny: V(G ® H) = V(H) by
(X, y) = x and my(X, y) = y.

Lemma §.2.

() 167 ({xi}) N n6~'({x}) =@ if i #k and ' ({y;}) N mw~ ({N}) = O if j£ 1.
(ii) | 7' ({xi}) | = [V@D| and | m~'({y;}) | = [V(G)!.

Proof.

(i) Suppose @ € n~({xi}) N 7' ({X,}). Then @ = (X;, ¥)) = (x4, y;) for some y;
andy; € V(H). By the property of ordered pairs, x; = X, contradicting the
hypothesis. A similar argument applies for the second statement.

@) 1167 (x) | =1 {0 YD) |y; € H) | = [V(HD),

and | = '({y)) | = | {6 ¥ | % € G} | =[V(G)|.0

Lemma §.3.
(i) For distinct edges {y;, y1} and {yp, yo} of H,

{{(xi, ¥), (% Y} € G ® H| {x;, x} € E(G)} and
{{(%, Yp), (% ¥o)} € G ® H| {x;, X} € E(G)} are disjoint.

12



(ii) For distinct edges {x;, xx} and {x,. Xq} of G,

{{(xi ¥i)s (X, YO} € G® H| (yj, y1) € E(H)} and

{(Xp> Y» (% Y0} € G @ H| (¥;, y3) € E(H)} are disjoint.

Proof. It immediately follows from the property of ordered pairs that (u, v) # (r,
s)ifand only ifu#rorv#s.

For graphs G and H, and their tensor product G ® H, define functions
pe: E(G ® H) — E(G) and py: E(G ® H) — E(H) as follows:
pa({(xi, 1), (ks Y03) = {xi, xu} and pu({(xi> ¥3), (%, YD}) = {¥j» 1}

Lemma 5.4.
(i) Forany edge {xi, xc} of G, IPG"({{xn xk}}) | = [E(H)|.
(ii) For any edge {y;, yi} of H, | pu~ ({{yp ) [=[EG).
Proof. For any edge {x;, xi} of G, pa~ ({{Xi» X}}) = {{(Xi, ¥}, (&, Y} € E(G
® H)} = {{y; »} € E(H)} since {(x;, ), (Xx, Y1)} € E(G ® H) if and only if {y;,
v} € E(H).

A similar argument can be applied to prove the second statement.0

Lemma 5.5. Suppose that G and H are graphs. LetL: V(H) — {0, 1} bea
labeling of H. Label a vertex (x, y) of G ® Has m if L(y) =m.

(i) The number of vertices in V(G ® H) with label m = (the number of vertices
in V(H) with label m) . [V(G)|.

(ii) The number of edges in E(G ® H) with label m = (the number of edges in
E(H) with label m) . |[E(G)|.

~ Proof.

(i) The number of vertices in V(G ® H) with label m

=] {(x,y) € V(G®H) | L(y) =m} |

=¥ | m'({y}) : L(y) = m | since sets of the form m;'({y}) are pairwise disjoint,

by Lemma 5.2(i)

= (the number of vertices in V(H) with label m) . [V(G)|, by Lemma 5.2(ii).

(ii) Let S be the set of edges in G ® H with label m and T be the set E(G) x M

where M is the set of edges in H with label m. Define a map ¢ from S to T by
L Y1), (x5 YD = ({6 X3}, {Yio Y1})-

We will show that ¢ is a bijection. Take an edge {(xi, yx), (X; y)} in G® H
with label m. Then {x;, x;} € E(G) and {yi, 1} € E(H) by the definition of tensor
product. In addition, both (x;, yx) and (X;, y1) have label m by the definition of
partial edge labeling. By the way how the labeling on V(G ® H) is defined, yj
and y, both have label m in H. Then edge {yx, v} has label m in H. Thus ¢ is
well-defined.

Take edge {yi, v1} in H with label m. Then vertices y, and y; both have label
m. Now for each edge {x;, x;} in G, vertices (;, yi) and (x;, y1) have label m and

13



are adjacent in G ® H. Moreover the edge {(x;, Yx), (X;, y1)} has label m. Thus ¢
is onto. It is easy to check that ¢ is one-to-one. Hence ¢ is a bijection.

Since |E(G) x M| = (the number of edges in E(H) with label m) - [E(G)|, the
equality follows.O

Theorem 5.6. If G and H are graphs with H strongly balanced, then G ® H is
strongly balanced.
Proof. Choose a strongly balanced labeling L of H. Form =0 or 1, label a
vertex (X, y) of G ® H withm if L(y) =m.

For the vertex labeling, the number of vertices in V(G & H) with label 0
= (the number of vertices in V(H) with label 0) . |V(G)], by Lemma 5.5(i)
= (the number of vertices in V(H) with label 1) . |V(G)|, since L is a strongly
balanced labeling
= the number of vertices in V(G ® H) with label 1.

For the edge labeling, the number of edges in E(G ® H) with label 0
= (the number of edges in E(H) with label 0) . |[E(G)], by Lemma 5.5(ii)
= (the number of edges in E(H) with label 1) . |[E(G)), since L is a strongly
balanced labeling
= the number of edges in E(G ® H) with label 1.

Hence we conclude that G ® H is strongly balanced.0

Corollary 5.7. If G and H are graphs with G strongly balanced, then G ® H is
strongly balanced.
Proof, A similar argument can be applied.O

Example 6. P, is strongly balanced. Thus P, ® P; is also strongly balanced.

P, ®P,
Figure 10.

Corollary 5.8. G ® Cy and Cyx ® G are strongly balanced, where Cy denotes a
cycle with length 2k.

14



Corollary 5.9. P, ® P, is strongly balanced if m or n is a positive even integer.
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