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A new labeling problem of graphs was considered by Lee, Liu and Tan
[6). Let G be a graph with vertex set V(G) and edge set E(G). A vertex
labeling of G is a mapping f from V(G) into the set {0,1}. Corresponding
to a vertex labeling f of G, we can define a partial edge labeling f* of G
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Abstract

~ Let G be a graph with vertex set V(G) and edge set E(G), and
let A= {0,1}. A labeling f : V(G) — A induces an edge partial
labeling f* : E(G) — A defined by f*(zy) = f(z) if and only if
f(z) = f(y) for each edge zy € E(G). For each i € A, let vs(i) =
|{v € V(G) : f(v) = i}| and es(i) = |[{e € E(G) : f*(e) = i}|. The
balance index set of G, denoted BI(G), is defined as {les(0) —es(1)] :
[vs(0) —vs(1)} < 1}. In this paper, exact values of the balance index
sets of five new families of one-point union of graphs are obtained,
many of them, but not all, form arithmetic progressions.
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in the following way. For each edge uv € E(G), let

. 0 if f(u) = f(v) =0,
f (“’”)={1 i ) = Flo) = 1.

Note that if f(u) # f(v), then the edge uv is not labeled by f*. We call
f* the induced partial function from E(G) into the set {0,1}. Let vs(0)
and vs(1) denote the number of vertices of G that are labeled 0 and 1
respectively under the mapping f. Likewise, let ef(0) and es(1) denote
the number of edges of G that are labeled 0 and 1 respectively under the
induced partial function f*. In other words, for i = 0,1,

v(t) = ueV(G): flu) =i},
ef(d) = {uww e E(G): f*(uw)=1i}|.

For brevity, when the context is clear, we will drop the subscript and simply
write v(i) and e(Z). Now we introduce the notion of a balanced graph.

Definition 1.1. A graph G is said to be friendly if it admits a vertex
labeling f such that Jvs(0) — vs(1)] < 1.

Definition 1.2. The graph G is called a balanced graph or said to be
balanced if it admits a vertex labeling f that satisfies the conditions:

lvg(0) —vs(1)| <1 and  |ef(0) —es(1)| < 1.

Hence, a balanced graph is a friendly graph which has the additional prop-
erty that |es(0) —ef(1)] < 1.

Lee, Lee and Ng [6] introduced the following notion in [3] as an extension
of their study of balanced graphs.

Definition 1.3. The balance indez set of the graph G is defined as
BI(G) = {les(0) — ef(1)| : the vertex labeling f is friendly}.
Example 1. Figure 1 shows a graph G with BI(G) = {0, 1, 2}. m]
Example 2. For a cycle C,, with vertex set {21, z2,...,Z,}, we denote by
Ch(t) the cycle with a chord z;z;. The balance index sets of Cy(3), Cg(4)
and Cg(5) are shown in Figure 2. All of them equal to {0,1}. m]

We note here not every graph has a balance index set consisting of an
arithmetic progression.
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[e(0) — e(1)| =0 le(0) —e(1)| =1 e(0) — e(1)] = 2
Figure 1: The friendly labelings of a graph G with BI(G) = {0,1,2}.
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Figure 2: The balance index sets of C4(3), Cs(4) and Cs(5).

Example 3. The graph &(1,3,1,1) is composed of C4(3) with an pendant
edge appended to each of z,, z3 and x4, and three pendant edges appended
to z2. Figure 3 shows that BI(®(1,3,1,1)) = {0,1,2,3,4,6}. Note that 5
is missing from the balance index set. ]

Some balanced graphs are considered in [2, 3, 6]. In general, it is difficult
to determine the balance index set of a graph. The next result is from (7).

Theorem 1.1 Let n > 4. Given any t that satisfies 3 <t <n-—1,

_[{o,1} if n is even,
BI(Cn(t)) = {{0,1,2} if n is odd.

Let (H,z) denote a graph H with a specified vertex . We construct a
new graph Amal((H,z), m), the amalgamation of m copies of H, by identi-
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le(0) — e(1)| =3 e(0) ~ e(1)] = 4 le(0) —e(1)| =6

Figure 3: The six friendly labelings of #(1,3,1,1).

fying all the vertices . The resulting graph is called the one-point union
of (H,x). Shee and Ho (9] used one-point unions to construct numerous cor-
dial graphs. We denote the star with n pendant edges attached to its center
by St(n). Hence the star St(n) is a tree of diameter two with n pendant
vertices. We call its center ¢ and the pendant vertices z;, s, ..., Z,.

Example 4. If 2, is a vertex on the path P,, then Amal((P;,z,),m) is
the star St(m). (]

It was shown in [5] that

Theorem 1.2 Forn > 1,

ssn) = { (| Anodet

2 Balance Index Sets of Flower Graphs

For a cycle C,, with vertex set {z1,z2,...,2,}, we will consider z;, as the
specified point.
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Definition 2.1. We will call the one-point union Amal((Cr,z1),m) a
flower graph. For simplicity we will denote it F(n,m).

Example 5. The graph Amal((Cs,21),m) is called a friendship graph. O

The following result can be found in [5]. We provide here a new and
shorter proof.

Lemma 2.1 For any (not necessarily friendly} vertez labeling of C,, we
always have e(0) — e(1) = v(0) — v(1).

Proof. We may assume, starting from z;, the first ¢; vertices are labeled
0, the next d; vertices 1, the next cp vertices 0, the next dg vertices 1, and
so forth, until we end with c; 0-vertices and dp, 1-vertices. If all the vertices
are labeled the same, define b = 0. Then

b b
e0)=) (a—1)= (Ec,) ~b=v(0)—b.
i=1 i=1

Likewise, (1) = v(1) — b, which completes the proof immediately. o

Lemma 2.2 If a graph contains as a subgraph a cycle of length n which
has z vertices labeled 0 and n — z vertices labeled 1, then, restricting to that
cycle, e(0) — e(1) =22 —n.

Proof. The result follows from e(0) — e(1) = z — (n — 2). 0

Theorem 2.3 Forn>3 andm > 1,
_J{m-1} if (n — 1)m + 1 is even,
BI(F(n,m)) = { {m—-2,m} if(n—1)m+1is odd.
Hence BI(F(n,m)) = {m — 1} if n is even and m is odd, and {m — 2, m}
otherwise.

Proof. Since changing each vertex label to its complement only changes
the sign of e(0) — e(1), we may assume z;, the center of F(n,m), is labeled
0. Let v;(0), vi(1), e:(0) and e;(1) denote the respective values in the ith
copy of Cp,. Then v(1) = Y i, vi(1), and

i=1

v(0)=1 +§: (v:(0)—1)=1-m+ Zm:v,-(O).
i=1

i=1

It follows that

e(0) —e(1) = Y _(e:(0) — (1)) = D (»i(0) —vi(1)) = v(0) —v(1) +m — 1.
i=1

i=1
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Since the labeling is friendly and |V (F(n,m))| = (n — 1)m + 1, we find

_J0o if(n—1)m+1iseven,
v(0) - (1) = { +1 if (n—1)m+1is odd.

The result follows immediately from e(0) — e(1) = »(0) —»(1)+m —1. O

Example 6. Figure 4 shows the friendly labelings that produce the balance
index sets of F(3,3) and F(3,4).

le(0) — e(1)| =1 e(0) — e(1)| =3 le(0) — e(1)] =2 le(0) —e(1)] = 4

Figure 4: The balance index sets of F'(3,3) and F(3,4).

To save space, we could just list the labels of the vertices in each cycle,
starting from z; to z,.

C3 C3 03 Cs 6(0) 8(1) |e(0) - e(1)|
000011011 3 2 1
000001 {011| 4 1 3

000|001 f011]|011] 4 2 2

000000011 011 | 6 2 4

Using this convention, the friendly labelings of F(4,m), where 2 < m < 5,
are summarized in the following table.

Cs | Cy | Cy | Cy | Cy |e(0)]e(1)]]e(0) —e(1)]
0001 | 0111
0000 | 0111
0000 | 6011 | 0111

0000 | 0001 | 0111 { 0111
0000 | 0000 | 0111 | 0111

0000 | 0000 | 0011 | 0111 | 0111

|| oo || Ui x| DO

Y B B Y B K=

| | i o N
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3 Balance Index Sets of One-Point Unions of
Certain Trees

Let the vertices on the path P, be z1,%2,...,Zn. Then Amal((Pn,z1), m)
has (n — 1)m + 1 vertices.

Theorem 3.1 Form > 2,

BI(Amal((P,,z,),m)) = { %ﬁ}_ 1,k) :}c:: : §:+ v

and forn > 3,

{0,1,2,...,m -1} if(n—1)m+1 is even,

BI(Amal((Pn, 21),m)) = {{0,1,2,...,m} if (n— U)ym+1 is odd.

Proof. Without loss of generality, we may assume z, is labeled 0. Using
the same argument we used for cycles in the proofs of Lemma 2.1 and
Theorem 2.3, we find, restricting to the ith path,

Ui 0) - ,(1) if f(-'l:n.)
ei(0) —ei(1) = {vi§0§ - zi(l) -1 if f(z,)

Since Y"ir; vi(0) = v(0) +m—1, we find, over the entire Amal((Pn,z1),m),

L
0.

([l

e(0) —e(l) = iv.'(O) - ivi(l) —-m* =v(0) -v(l)+m-—m* -1,

i=1 i=1

where m* denotes the number of paths with f(z,) = 0.

First we consider the special case of n = 2. If m = 2k + 1, then
v(0) = v(1), and we must have m* = k; hence e(0) — e(1) = k. If m = 2k,
we could have m* =k or m* = k — 1. If m* =k, we have v(0) — v(1) = 1,
hence e(0) — e(1) = k. If m* = k — 1, we have v(0) — v(1) = —1, in which
case e(0) — e(1) = k — 1. This establishes the case of n = 2.

Next, consider n > 3. Since 0 £ m* < m, we find

{-1,0,1,...,m -1} ifv(0)—v(1)=0,
e(0) —e(1) € ¢ {0,1,2,...,m} if v(0) —v(1) =1,

{-2,-1,0,...,m -2} ifv(0) —v(l) = 1.
The proof will be completed if we can show that there always exists a
friendly labeling with v(0) — v(1) € {0,1} and any m* between 0 and m,

inclusive.

Pick any m* paths, and set f(z,) = 0, and assign f(z,) = 1 on the
_other m — m* paths. Setting f(zn-1) = 1 — f(za) ensures that there are
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equal number of 0- and 1-vertices among the z,,—;’s and z,’s. Now we need
to label z,z3,...,Z,-2 in each path. Label them 0 in the odd-numbered
paths (except the last when m is odd), and 1 in the even-numbered path.
If m is odd, we still have to label z3,x3,...,Zn—2 in the last path. Label
[(n —3)/2] of them with 0, and the remaining [(n — 3)/2] vertices with 1.
The result is a friendly labeling with v(0) — v(1) € {0,1} and m* paths end
with f(z;) =0. m]

Example 7. The friendly labelings of Amal((P,z;),3) that produce its
balance index set are listed below. Each row in the table displays, sepa-
rately, the vertex labeling of the three paths of length 7, starting from z,
to z7.

Py Py Py e(0) | e(1) | le(0) — e(1)]
0000001 | 0111101 | 0001101 7 4 3
0000010 | 0111101 | 0001101 6 4 2
00600010 | 0111110 | 0001101 | 6 5 1
0000010 | 0111110 | 0001110 | 6 6 0

The friendly labelings of Amal((Ps,z1),5) are described below.

Ps | Py Py Fs I Py 8(0) 6(1) |e(0)—e(1)|
000001 | 011101 | 000001 | 011101 | 001101
000010 | 011101 | 060001 | 011101 | 001101
000010 | 011110 | 000001 | 011101 | 001101
000010 | 011110 | 000010 | 011101 | 001101
000010 | 011110 | 060010 | 011110 | 001101
000010 | 011110 | 060010 | 011110 | 001110

~3| | ~3| 00| 0] c©
00| 3| O] | |
= O =] 0o cof i

Note that in the last case, m = m*, hence e(0) — e(1) = —1. a

When m = 1, we could have e(0) —e(1) = 2, provided v(0) —v(1) = —1
and m* = 1. This is not possible when n = 3, but is always possible for
any odd n > 5, because we can label the vertices 0101 - - - 01110. We obtain
the following result.

Corollary 3.2 Forn > 2,

{0} ifn=2,
BI(P,) =< {0,1} ifn=23 orn>4is even,
{0,1,2} ifn>5 is odd.

The one-point union Amal((St(n), 1), m) is a tree rooted at z;, which
has m children, each of which has n—1 children. Thus Amal((St(n), z,), m)
has nm + 1 vertices.
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Theorem 3.3 For m,n > 1, define

Ty = {(n-1)i—£";2;m—+1-):osism},
Ty = {(n—1)i—£"_2ﬂ|:05ism},
T3 = {(n—l)i—(i_;ﬂ—l':OSigm},
then
Btamat(ste = = { B gy oL

Proof. Without loss of generality, we may assume z, is labeled 0. Assume
z; is adjacent to i vertices, which are the centers of the stars St(n), that
are labeled 0 and m — i other centers that are labeled 1. Further assume
that among the (n — 1) pendant vertices adjacent to these 0-vertices, j are
labeled 0, the other (n —1)i — j labeled 1. In a similar manner, among the
(n—1)(m — i) vertices adjacent to the 1-vertices in the neighborhood of z1,
assume k of them are labeled 0, and the other (n — 1)(m — i) — k labeled 1.
Then

e(0)—e(l) = i+j—(n—-1)(m—13)+k
= (n-1)pi+i+j+k—(n-1)m.
From v(0) = 1 +i+ j + k and v(1) = nm + 1 — v(0), we deduce that

v(0) —v(1) = 1 +2(i + j + k) — nm. If nm + 1 is even, then v(0) = v(1),
and i + j + k = 22=L, thus

e0)—e(l) = (n—1)i4 =l

-(n-1)m

_(m=2)m+1
—_—

If nm + 1 is odd, then v(0) — v(1) = %1, which leads to

= (n—-1)

(n—1)i— 2=2m if w(0) —v(1) =1,

e(0) —ell) = { (n—1)i— @27 1 if p(0) —v(1) = -1.

Since their values depend on i only, all of them are attainable. The result
follows from 0 < i < m. m]

Remark. An effective way to compute BI(Amal((St(n), z1), m)) is to first
compile a list (or two) of values of e(0) — e(1). If nm + 1 is even, the list
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starts with _!n_—&gm_ﬂ’ increments by n — 1, and ends at 2%, If nm + 1

is odd, we need two lists. The first starts with —f"—':)ﬂ, increments by
n —1, and ends at “*. The second list can be obtained from the first by
subtracting 1 from each value. The last step is to take absolute values to
form the balance index set.

Example 8. When m = 1, Amal((St(n), z,),m) = St(n). If n+1 is even,
the list is { — 252, 251}, If n+1 is odd, we have {-"—"2 2lu{-2,252
Therefore BI(St n)) = {231} if nis odd, and {2 - 1,2} if n is even; t;hls

is precisely what Theorem 1.1 asserts. m]

Example 9. When n = 1, Amal((St(n), z,), m) reduces to St(m). When
m is odd, we have m + 1 even, and the balance index set is { Z1}. If m
is even, we need two lists because m + 1 is odd. In this case, the balance
index set is {2} U{% —1} = {2 —1,2}. The results again agree with
Theorem 1.1. m]

Example 10. Note that Amal((St(2),z:),m) = Amal((P3, ), m). Since
2m +1 is always odd, we need two lists of values of e(0) — e(1), and the
values are incremented by 1, hence they are consecutive integers. The first
list covers O through m, and the second —1 through m — 1. Therefore
BI(Amal((Ps,1),m)) = {0,1,2,...,m}. This agrees with Theorem 3.1. O

Corollary 3.4 Let G = Amal((St(3),z,),m), where m > 1. Then

1,
BI(G) = {{o,
{0,

Proof. Since the increment is 2, each list mentioned in the Remark above
consists entirely of odd numbers or even numbers. If m is odd, 3m + 1 is
even, the lists starts from —™#1, and ends with 3B=L. Hence the numbers
are odd if m = 1 (mod 4), and even if m = 3 (mod 4). Since Zf! < 3m=1

it suffices to consider the nonnegative values, which give the fist two results
listed above. If m is even, we need to compile two lists, one containing odd
numbers and the other even numbers. This gives the last result. a

3,5,.
2,4
1,2

h

o (3m=1)/2}  ifm=1 (mod 4),
,6, »(Bm—-1)/2} ifm=3 (mod 4),
3,...,3m/2} fm=0 (mod 2).

b

Example 11. Recall that Amal((St(3),z;), m) is a tree rooted at x;, which
is adjacent to the centers c of the stars, and each ¢ in turn has z, and z3
as its children. The vertices ¢, z; and z3 form a subtree 7. To save space,
we display the labeling of each copy of T in the form of f(z2)-f(c)-f(z3).
The friendly labelings of Amal((St(3),z;),2) are displayed below in this
manner. See Figure 5.
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[ e0) | e1) | le(0) —e(D)] |
00-L[111] 2 | 2 0
3
2
3

0-0-0 | 1-1-1
1-0-1 | 1-0-1
0-0-1 | 1-0-1

[==] K==] V]

1
2
3

le(0) —e(1)] =0  [e(0)—e()I=1 [e(0)—e(l)[=2 [e(0) —e(1)|=3
Figure 5: The balance index set of Amal((St(3),z1),2).

The following table depicts the friendly labelings of Amal((St(3),z1),3)
that produce its balance index set.

T T T | )] ed)]|le(0)—e) ]
0-0-0 | 0-1-1 [ 1-1-1]| 3 3 0
0-0-0 | 1-0-1 | 1-1-1 4 2 2
001 1-01[1-0-1| 4 | 0 4 -

When n > 4, the nice pattern we have seen thus far starts to break
apart. In fact, the balance index set may not even contain an arithmetic
progression. Here is the reason. After taking absolute value of e(0) — e(1),
the balance index set is in effect the union of two or four, depending on
whether nm + 1 is even or odd, sets of numbers. Although each set by
itself consists of an arithmetic progression, their union needs not form an
arithmetic progression. For example, when n = 7 and m = 5, we find

{ef(0) —ef(1): fis friendly} = {-13,-7,-1,5,11,17}.
Hence
BI(Amal((St(7),z,),5)) = {1,7,13} U {5,11,17} = {1,5,7,11,13, 17}.

In addition, because the sets are of different cardinalities, some entries in
what appears to be an arithmetic progression will be missing. For instance,
when n =4 and m = 5, we find

{es(0) — ef(1) : f is friendly} = {-5,-2,1,4,7,10} U {—6,-3,0,3,6,9}.
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Therefore

BI(Amal((84(4),21),5)) = {2.5}U{1,4,7,10}U {3,6}U{0,3,6,9}
= {0,1,2,...,10} — {8}.

Example 12. Sometimes the missing entries in the balance index set form
an arithmetic progression, as in
BI(Amal((St(4),z1),4)) = {1,2,3,...,8} — {3,6}.

Other times, the missing entries can be split into several arithmetic pro-
gressions:

BI(Amal((St(6),z1),5)) = {0,1,2,...,15} — ({2,7,12} U {3,8,13}).
But in general, the missing entries may not fit any pattern:

BI(Ama.l((St(S), 221), 7)) = {13 31 5) ey 17} - {15}3
BI(Amal((St(6), z1), 7)) = {0,1,2,...,21} — {2,3,7,8,12, 13,17, 18, 19},
BI(Amal((St(6),z1),8)) = {1,2,3,...,24} — {5,10, 15, 20,21, 22}.

It would be a challenging project to find the exact values of these balance
index sets. m]

4 Balance Index Sets of One-Point Unions of
Some Unicyclic Graphs

Let U(n) be the graph consisting of an edge appended to any vertex of C,,.
Let the vertices on the cycle be z,,x2,...,2,. Assume the pendant edge
joins z; to the pendant vertex ¢. Note that Amal((U(n),c),m) has nm+1
vertices.

Theorem 4.1 Let G = Amal((U(n),c), m), where m > 1. Then

BI(G) = {0,1,2,...,max(1,m — 1)} ifnm+1 even,
~1{0,1,2,...,max(2,m)} if nm + 1 is odd.

Proof. Without loss of generality, we may assume c is labeled 0. Let m*
be the number of 0-vertices it is adjacent to. Let v;(0) be the number of
O-vertices on the ith copy of C,,. Lemma 2.2 asserts that, restricting to the
ith copy of C,, e(0) —e(1) = 2v;(0) —n. Therefore, over Amal({U(n),c), m),

e(0)-—e(l)=m*+2 ivi(O) —nm=m" +2v(0) — nm — 2.

i=1
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This gives
_fm*-1 if nm + 1 is even,
e(0) —e(1) = {m* —2orm* if nm+1isodd.

Note that this value does not depend on the actual value of v;(0) for each
i. Therefore we can pick

v;(0) = {

This gives a friendly labeling of Amal((U(n),c),m). The fact that ¢ can
be adjacent to either a 0-vertex or an 1-vertex on each copy of C,, implies
that 0 < m* < m. Hence m* -1 € {-1,0,1,...,m—1},and m* -2 €
{-2,-1,0,1,...,m — 2}, thereby proving the theorem. |

Corollary 4.2 Forn > 3,

|m/2] if iis odd,
[m/2] if i is even.

_[{0,1}  ifn is odd,

BIU(n)) = {{o, 1,2} ifn is even.

Example 13. To describe the friendly labeling of Amal((U(3),c),m), it
suffices to list the labels of the three vertices z;, o and z3 in each of the
m copies of of C3. The table below shows the labeling for m = 2, 3,4.

[Cs [Cs [ Cs [ Cs [e(0) [e(D) [le0) —e(1)] |
110 | 100 1 1 0
011 | 100 2 1 1
011 | 001 3 1 2
011 { 100 | 110 2 2 0
011001110 3 2 1
011|001 | 011 4 2 2
110 | 160 | 110 § 100 2 2 0
011 | 100} 110 | 100 3 2 1
011 | 001|110 { 100 4 2 2
011 | 001 | 011 | 100 5 2 3
011 | 601 | 011 | 001 6 2 4

When reading this table, recall that z; of each cycle is adjacent to ¢, which
is a O-vertex. See Figure 6 for the labelings for m = 2. m

5 Balance Index Sets of Regular Windmills

Definition 5.1. If z;, z2, ..., Z, are the vertices in the complete graph K,
we will call the one-point union Amal({(K,,z;), m) the regular windmill
graph. For simplicity we will denote it by WM(n, m).
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le(0) —e(1)| =0 le(0) —e(1)] =1 e(0) — (1) =2

Figure 6: The balance index set of Amal((U(3), c),2).

Benson and Lee [1] investigated the cordialness of WM(n, m).

Theorem 5.1 For alln > 3 and all m > 1, let p = |V(WM(n,m))| =
(n—1)m + 1, then

{__(n - l)ém —1) } if p is even,
BI{(WM(n,m)) = 3 _
{(n - l)ém 2), (n 2l)m} if pis odd,

Proof. Call a copy of K, of type i if it has i vertices other than z; that
are labeled 0. Restricted to this type ¢ complete graph on n vertices, we
have e(0) = (*}') and e(1) = ("~;~7); hence

e(0) — e(1) = (igl)— ("‘;‘1) =—(n;1)+(n—1)i.

If there are m; copies of K, of type ¢, then over the entire WM(n, m),

_m<"; 1) +(n—1)nz_:lim.-

i=1

—m (" , 1) +(n — 1)(v(0) — 1).

e(0) —e(1)

Since |[V(WM(n,m))| =p= (n — 1)m + 1, we find

(n-2m+m-—1

if p is even,
v(0)-1= (n—2)n?;i-m—2 (n-2ym+m
or if p is odd.
2 2
The proof is now complete. m]
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Corollary 5.2 Forn > 3,

0 ifn i )
s = { {0 _1yey s i
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