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ABSTRACT. An orthogonal double cover (ODC) of the complete graph Kn
by a graph G is a collection G = {Gj|i = 1,2,...,n} of spanning subgraphs
of Kn, all isomorphic to G, with the property that every edge of Kn belongs
to exactly two members of G and any two distinct members of G share
exactly one edge.

A lobster of diameter five is a tree arising from a double star by at-
taching any number of pendant vertices to each of its vertices of degree one.
We show that for any double star R(p, q) there exists an ODC of Kn by
all lobsters of diameter five (with finitely many possible exceptions) arising
from R(p, q).

1. Introduction

An orthogonal double cover (ODC) of the complete graph K, is a
collection G = {G;|i = 1,2,...,n} of spanning subgraphs of K, called
pages, satisfying the following two properties:

(1) Double cover property: Every edge of K, belongs to exactly two pages

of G.

(2) Orthogonality property: Any two distinct pages of G share exactly one
edge.

The definition immediately implies that every page of G must have
exactly n — 1 edges. If all pages of G are isomorphic to the same graph G,
then G is called an ODC of K, by G.
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ODCs have been investigated for more than 25 years, and there is
an extensive literature on the subject. For motivation and an overview of
results and problems in the area we refer to the survey paper [2].

As the condition on the number of edges of G is necessary for the
existence of an ODC by G, it is natural to ask whether there exist ODCs
for some classes of trees. It can be easily verified that there is no ODC
of K4 by Py, the path of length three. For all other non-trivial trees on
at most 14 vertices ODCs of the corresponding complete graphs exist (2],
which supports the following conjecture by Gronau, Mullin, and Rosa [3].

Conjecture. (Gronau, Mullin, and Rosa) If T # P, is a tree on n > 2
vertices, then there is an ODC of K, by T.

The conjecture trivially holds for stars, and it was shown to be true
for all trees of diameter three [3] (see also [4]). On the other hand, even for
paths a complete solution is not known. Therefore, we do not expect the
conjecture to be completely solved soon.

It was also proved for all caterpillars of diameter four [5]. A caterpillar
is a tree that is obtained by attaching pendant vertices of degree one to a
path. By R(p1,p2,...,p:) we denote a caterpillar with ¢ spine vertices and
p: pendant vertices attached to the i-th spine vertex (in natural order). We
of course assume that p;,p, > 1.

The only other class of trees of diameter four and five is the class of
lobsters. In general, a lobster is a tree which is not a caterpillar but deleting
its pendant vertices (and edges incident with them) results in a caterpillar.
Leck and Leck (5] proved that for a fixed r, almost all lobsters of diameter
four with the central vertex (i.e., the only vertex of eccentricity 2) of degree
r admit an ODC of the appropriate K. The author strengthened their
result by proving that for a fixed r, all but possibly finitely many lobsters of
diameter four with the central vertex of degree r admit an ODC [1]. In this
paper, we prove analogous result for lobsters of diameter five. A lobster
L of diameter five arises from a double star R(p,q) by attaching pendant
vertices to the leaves of the double star. We say that R(p,q) is the base
caterpillar or just base of the lobster L.

2. Another generalization of adding construction

In this section we describe a recursive method for constructing ODCs.
The method is a modification of the method originally developed by Leck
and Leck in [5], who call it the adding construction. The author generalized
the adding construction in [1]. A simple version appeared already as a part
of a construction of ODCs by double stars in [3]. To find an ODC by a
graph G, we will need two subgraphs of G, say G*,G’, that both admit
certain type of orthogonal double cover and arise from G by deleting some
vertices of degree one.

130



Let G = {G1,Ga,...,Gn} be an ODC of K, by G defined by isomor-
phisms ¢; : G — G; for i = 1,2,...,n. A vertex v of G is surjective if
{$:(v)|i = 1,2,...,n} = V(K,). Notice that in [5] surjective vertices are
called rotational.

The following lemma is an essential part of the adding construction.
A proof can be found in [1] or in [5] as a part of the proof of Lemma 6.

Lemma 1. Let K., be a complete bipartite graph with bipartition X =
{z1,22,..-,2.},Y = {s1,¥2,....¥s}. Let G be a subgraph of K, ; such
that dege(y;) = 1 for every j = 1,2,...,s and every y; is adjacent to
one of T1,Z2,...,Tm with 1 < m < 7. Define G; for i = 1,2,...,7 by
an isomorphism ¢; : G — G; with the property that ¢i(z,) # &;(zp) for
p=12,....mifi#jand ¢i(yy) = yq for q=1,2,...,s.

Let F be the star induced by X U {ys}. Let F; for i = 1,2,...,5 be
defined by an isomorphism v; : F — F; with the property that ¥;(ys) = yi
Jori=1,2,...,s and ¥i(zy) =24 forq=1,2,...,r. Then
(1) every edge of K, appears in ezacily one of the graphs G1,Ga, ...,Gr,
(2) every edge of K, appears in exactly one of the graphs F1, Fy,... , Fy,

and
(8) for any i € {1,2,...,7},j € {1,2,...,8} the graphs G; and F} share

exactly one edge.

The following lemma will be also useful. The proof is an easy applica-
tion of Lemma 1 and can be found in [1].

Lemma 2. Let H = K, + K (i.e., H is the complete graph Ky, with
all edges of some K, removed). Let V(H) = XUY,XNY = 0, where
(X) = K, and (Y) = K,. Let G' = {G},G,...,G,} be an ODC of K,
by G' with V(G') = X defined by G} = ¢,(G') and S C X be the set of
surjective vertices of G'. Let G be a graph with the vertex set X UY that
arises from G' by joining each vertez of Y to exzactly one surjective vertez
of G'. Let G; for i =1,2,...,r be defined by ¢:(G), where ¢i(z) = ¢i(z)
for every z € X and ¢;(y) = y for every y € Y. Then every two pages
Gi,G; share ezactly one edge z,T,, every edge Tpx, appears in ezactly two
distinct pages, and every edge TpYy, appears in ezactly one page.

Next we present another generalization of the adding construction.

Lemma 3. Let G be a graph with the vertez set V,|V|=n=¢k+m,0 <

m < min{f — 1,k — 1} and U C V be a set of vertices of degree one with

the following properties:

(1) W=V\U, |W|=k,|U|=(—1)k+m, the graph G* = (W) allows
an ODC G* of Ki and S C W is the set of surjective vertices of G*
with respect to G*,
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(2) in the bipartite graph with bipartition W,U there are at least b edge-
disjoint stars K, x41 with central vertices in S, where b = min{m, [ 1}
and if b < | £, then |£] — m more edge-disjoint stars K 4.

If m>1, thenlet U' C V be a set of vertices of degree one (not necessarily
disjoint from U) with the following properties:

(8) W =V\U', [W| =k+1,|U'| = ((-1)k+m~—1, the graph G' = (W’)
allows an ODC G’ of K41 and S’ C W' is the set of surjective vertices
of G’ with respect to G',

(4) in the bipartite graph with bipartition W', U’ there are at least b’ edge-
disjoint stars Ky k41 with central vertices in S', where b’ = min{m —
L 4]}, and if ¥/ < L], then [%J — b more edge-disjoint stars K .

Then G allows an ODC G of K,,.

Proof. We split V' into ¢ disjoint subsets, V3,V2,...,V,, with |[V;| = k+ 1
fori=1,2,.... mand |V;|=kfori=m+1,m+2,...,0 if m < £. The
conditions (2) and (4) guarantee that whenever we place a copy of G’ into
oneof V1,V;,...,Vy, or G* into one of Vi y1, Vinsa, - - -, Vi, we have enough
stars K x+1 and/or K x whose vertices of degree one can be placed into at
least | <] other sets V; such that each star “fills” with its leaves the whole
set V;. More precisely, for every i = 1,2,...,¢, we can fill with the leaves
of a star K r41 or K i (as needed) each of the sets Viyq, Viyo, ..., Vi+[§j’
where the addition is taken modulo £.

Now let G;, and G; 4 be pages of G isomorphic to G that are placed
such that their subgraphs G , and G q isomorphic to G’ (or G} p and G,
isomorphic to G*) both belong to 'che set V;. We apply Lemma 2 wlth
Vi=X,V\ Vi =Y and observe that G;, and G; 4 share exactly one edge
with both endvertices in V; and each such an edge is contained in exactly
two pages G, and G;,o for some p’,¢’. It also follows that G;, and G;,
do not share any edge v;z with v; € V;,z € V; or an edge zy with =,y ¢ V.

We now denote by é,p apageof G* placedin V;if m+1<i< for
a page of G’ placed in V; if 1 < ¢ < m. If we then look at G; ip With G,
placed in the set V; and G;,, with G;, placed in the set V;, we observe
that they can intersect only in some edge v;v;, where v; € V;,v; € V;. We
can assume WLOG that 7 < i + [ |- Therefore, there is the star K
(ifm+1<j <8 or Kigsr (if 1 <3 < m) with the central vertex v;
in G;p, while in Gj, all vertices of V; are of degree one. Thus, we can
apply Lemma 1 with V; =Y, V; = X and conclude that G; »» and Gj 4 share
exactly one edge. Again, if we let G, run through V; and G4 through V;,
from Lemma 1 we can see that each edge of the complete bipartite graph
with the partlte sets V;, V; is contained in exactly two pages G;  and G;, o
for some p',¢’. O
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The graphs we will use in our constructions as G*,G' have a cyclic
orthogonal double cover, or CODC for short. We say that K, has a CODC
G = {G1,G3,...,G,} by a graph G if V(K,) = {x1,%2,...,Zn} and the
isomorphisms ¢;, ¢z, .. .,¢n; ¢ : G — G; are defined as ¢;(z;) = Tj4i—1 for
everyi,j = 1,2,...,n, where the addition is taken modulo n with 0 replaced
by n. Notice that if G is cyclic, then all vertices of G are surjective.

3. The result

. 'We noticed above that a lobster of diameter five is a tree arising from
a double star by attaching any number of pendant vertices to each of its
vertices of degree one. We will call the only two vertices of eccentricity 3
the primary vertices, and their neighbors (of eccentricity 4) the secondary
vertices. The vertices of degree one and eccentricity 5 are called leaves.
Recall that R(p;,p2,p3) is the caterpillar of diameter 5 with p; and p3
leaves adjacent to the endvertices of the path Ps, respectively, and p; leaves
attached to the central vertex of Pj.

We will use the following result by Leck and Leck [5].

Theorem 4. (Leck and Leck [5]) The caterpillar R(p1,p2,p3) admits a
CODC if p2 < |p1 — p3|-

Now we can prove our main result.

Theorem 5. Let L = L(p,q;5) be a lobster of diameter 5 with the base
double star R(p,q) and n > 4(p + q)(p + g + 1) vertices. Then there is an
ODC of K, by L.

Proof. First we show that at least one secondary vertex has p + g or more
neighboring leaves. Suppose it is not the case. Then the number of leaves is
at most (p+¢q)(p+q—1) = (p+q)? — (p+¢) and the number of vertices of L
is at most (p+¢)2+2, which is a contradiction. Therefore, L contains either
R(p+q,p—1,q) or R(p,q —1,p+ q). Each of them satisfies assumptions
of Theorem 4. Therefore, we can suppose WLOG it is the former. By
Theorem 4 it admits a CODC of Ka(p14)+2, all of its vertices are surjective,
and we can choose it for G’ of Lemma 3. Similarly, R(p+¢—1,p—1,q)
satisfies assumptions of Theorem 4. Hence it admits a CODC of Ka(p+4q)+1,
and we can choose it for G* of Lemma 3. Note that then k = 2(p+q) + 1.

Now we need to show that L has enough leaves to satisfy assumptions
(2) and (4) of Lemma 3. We again proceed by contradiction. The number
of secondary vertices of the base double star is p + ¢ and the maximum
number of leaves that do not induce a star K x+1 is 2p + 2¢ + 1 at each
secondary vertex. Therefore, we have at most (p + ¢)(2p + 2g + 1) leaves
not included in the stars. These leaves fill at most p + g of the sets V;. It
remains to show that the number of stars K 41 and/or K that fill all
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remaining sets V; is at least p + q. If this is so, then the number of sets
V; filled with stars satisfies assumptions of Lemma 3. Suppose it is not the
case. Then we have at most p + g — 1 stars, and can suppose that they are
all the bigger ones, K1 2p+2¢+2. This gives at most (p+ ¢—1)(2p+2g+2)
vertices in the stars. The total number of vertices is then at most

(2p+2¢+2)+(p+q)(2p+2¢+1)+(p+9—1)(2p+29+2) = (p+q)(4dp+4g+3).

This contradicts our assumption that the number of vertices is at least
4(p + q)(p + g + 1). Therefore, the number of stars is sufficient. Now we
have verified all assumptions of Lemma 3 and the proof is complete. O

The corollary now follows immediately.

Corollary 6. Let p,q > 1. Then all lobsters of diameter 5 with the base
double star R(p,q) with at most finitely many possible exceptions admit an
orthogonal double cover of the complete graph K,,.
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