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Abstract Let G be a graph with vertex set V(G) and edge set E(G), and let A
={0, 1}. A labeling f: V(G) — A induces a partial edge labeling f*:E(G)>A
defined by f*(xy) = f{x), if and only if f(x) = f{y), for each edge xy € E(G). For
i € A, let v(i) = card{v € V(G) : f{lv) =i} and en(i) = card{e € E(G): f*e) =i}.
A labeling f of a graph G is said to be friendly if | v(0) — v(1) | < 1. If, | e(0) -
eq1)| < 1 then G is said to be balanced. The balance index set of the graph G,
BI(G), is defined as {|e{0) — e(1)| : the vertex labeling f is friendly}. Results
parallel to the concept of friendly index sets are presented.

1. Introduction

In 2], A. Liu, S.K. Tan and the second author considered a new labeling
problem of graph theory. Let G be a graph with vertex set V(G) and edge set
E(G). A vertex labeling of G is a mapping f from V(G) into the set {0, 1}. For
each vertex labeling f of G, we can define a partial edge labeling f* of G in the
following way. For each edge (u, v) € E(G), where u, v € V(G), we have f*(u,
v)= 1if flu) = f{v) = 1, and = 0 if f{u) = f{v) = 0. Note that if f{u) ? f{v), the
edge (u, v) is not labeled by f*. Thus f* is a partial function from E(G) into the
set {0, 1}, and we shall refer to f* as the induced partial edge labeling.

Fori=0, 1, let v{i)=|{v € V(G) | fiv) = i}| and e(i) = |{e € E(G) | f*(e) =
i}]. The mapping f is said to be friendly if| v{(0)- v{(1) | =1

With these notations, we now introduce the notion of a balanced graph.

Definition 1. A graph G is said to be a balanced graph or G is balanced if there
is a vertex labeling f of G satisfying |[v(0) — v(1)| = 1 and |e{0) —eq(1) |= 1.
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We will use v(0), v(1), (0), e(1) instead of the more complicated v(0), v(1),
eq(0), ef1), when the context is clear. A graph G is said to be strongly vertex-
balanced if G is balanced and W(0) = v(1). Similarly, a graph G is strongly
edge-balanced if it is balanced and e(0) = e(1). If G is astrongly vertex-
balanced and strongly edge-balanced graph, then we say that G is a strongly
balanced graph.

Definition 2. The balance index set of a graph G, BI(G), is defined as {|e{0) —
eq(1)| : the vertex labeling f'is friendly}.

Examplel. BI(K; ;) = {0}.

le(1)-e(0)| =0
Figure 1

Example2. BI(G) = {0,1}.

le(1)-e(0)|=0 le(1)-e(0)[=1
Figure 2.

Theorem 1.1. Let G be a graph with p vertices. Then max{BI(G)} = k(k — 1)/2
if p=2k or 2k — 1, depending on whether p is even or odd.

Proof. By friendliness, v(1)=kifp=2kiseven,andkork—1ifp=2k-1is
odd. Thus the maximum value of e(1) = k(k — 1)/2. The minimum value of e(1)
is of course 0. The same argument gives the same maximum and minimum
values for e(0). The result follows.

Theorem 1.2. Let T be a tree with p vertices. Then max{BI(T)} = (p/2)—- 1 if p
is even, and (p— 1)/2 if p is odd.
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Proof. By friendliness, v(1)=p/2 if piseven,and (p— 1)/2 or (p+ 1)12ifpis
odd.

For a friendly vertex labeling, consider the subgraph of T containing all the
edges labeled 1 and their vertices. Each connected component of this subgraph
is a tree, and so the number of edges (all labeled 1) is 1 less than the number of
vertices (all labeled 1). Thus e(1) < v(1) — the number of connected components
<v(1)-1=(p/2)-1ifpiseven,and (p— 1)/2 if pis odd. The minimum value
of e(1) is of course 0. The same argument gives the same maximum and
minimum values for ¢(0). The result follows.

Definition 3. A subset X of Z is said to be Bl-representable if there exists a
graph G such that B{G) = X. '

We investigate sets of integers that are Bl-representable. Some balance
graphs were considered in [6]. The notion of friendly index sets of graphs
which is similar to balance index sets were considered in [3,4,5].

2. On balance index sets of some trees.

In this section we first consider balance index sets of the star St(n), which is
the one-point union of n copies of K;. We note that when computing the
balance index set of a graph, we may fix an arbitrary vertex in the graph and
label it 0. If another vertex labeling gives it the label 1, simply replace each
vertex label by its complement. Then v(0) and v(1) are interchanged, and e(0)
and e(1) are interchanged. Since we are only concerned with absolute values,
interchanging v(0) and v(1), e(0) and e(1) would not make any difference.

Theorem 2.1. The balance index set of the star St(n) is

(1) {k},ifn=2k + 1 is odd,

(2) {k—1,k},ifn=2k is even.

Proof. (1) Letn=2k + 1. Without loss of generality, let the center be labeled
0. Then k of the other vertices are labeled 0, while the remaining (k + 1)
vertices are labeled 1. Thus BI(St(2k + 1)) = {k}.

(2) Letn =2k. Without loss of generality, let the center be labeled 0. Then
either k of the other vertices are labeled 0 while the remaining k vertices are
labeled 1, or (k — 1) of the other vertices are labeled 0 while the remaining (k +
1) vertices are labeled 1. Thus BI(St(2k)) = {k - 1,k}.0

Note. Theorem 2.1 shows that the maximum in Theorem 1.2 is attainable.

Corollary 2.2. For any k > 0, the sets {k} and {k — 1, k} are Bl-representable.

The double star D(m, n) is a tree of diameter three such that there are m
appended edges on one end of P, and n appended edges on the other end (Figure
3). Without loss of generality, we assume m <n.
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Figure 3.

Theorem 2.3. The balance index set of the double star D(m, n) , where m < n,
is

(1) {(n—m)/2, (n+m)/2} if m +n is even, and

2) {(n-m-1)2,(n-m+1)2,(n+m-1)2,(n+m+1)/2} ifm +n is odd.
Proof.

(1) Letm+n=2k.

There are 2k + 2 vertices. Without loss of generality, assume that the vertex
u has label 0.

First label the vertex v by 0. Assume j of the vertices u, ... , u,, are labeled
by 0, and the other (m - j) vertices are labeled by 1. By friendliness, (k—j— 1)
of the vertices vy, ... , v, are labeled by 0, and the other (n—k + j + 1) vertices
are labeled by 1. Then e(0) =k and (1) =0, making e(0)— e(1) = k = (n + m)/2.

Then label the vertex v by 1. Assume j of the vertices u,, ... , u,, are labeled
by 0, and the other (m ~ j) vertices are labeled by 1. By friendliness, (k —j) of
the vertices vi, ... , v, are labeled by 0, and the other (n— k + j) vertices are
labeled by 1. Then e(0) = j and e(1) =n -k + j, making e(0)~e(1) =k—n=(m
—n)/2, with absolute value (n — m)/2.

Thus BI(D(m, n)) = {(n — m)/2, (n + m)/2}.

(2) Letm+n=2k+1.

There are 2k + 3 vertices. Without loss of generality, assume that the vertex
u has label 0.

First label the vertex v by 0. Assume j of the vertices w, ... , u, are labeled
by 0, and the other (m - j) vertices are labeled by 1. By friendliness, either (k — j
— 1) or (k — j) of the vertices v, ... , v, are labeled by 0, and the other (n— k + j
+ 1) or (n -k + j) vertices are labeled by 1 respectively. Thene(0)=kork + 1
and e(1) = 0, making e(0)-e(1)=k=(n+m-1)/2,ork+ 1 =(n+m+ 1)/2
respectively.

Then label the vertex v by 1. Assume j of the vertices u;, ... , uy, are labeled
by 0, and the other (m - j) vertices are labeled by 1. By friendliness, either (k —
j)or (k—j+1)of the vertices v, ... , v, are labeled by 0, and the other (n— k +
J)or (n—k +j—1) vertices are labeled by 1 respectively. Then e(0)=j and e(1)
=n-k+jorn-k+j—1, making e(0)—e(1) =k - n=(m-n-1)22, with
absolute value (n—m+ 1)/2, ork —n + 1 = (m- n + 1)/2, with absolute value (n
-m-1)/2.

Thus BI(D(m, n)) = {(n—-m-1)/2,(n-m+1)/2,(n+m—-1)/2,(n+m+
1)/2}.0
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Corollary 2.4. For any non-negative integers a and b, with a <b, {a, b} is BI-
representable.
Proof. Letm=b—-aandn=>b+a. Use (1) in Theorem 2.30

Corollary 2.5. For any non-negative integersaand b, witha + 1 <b, {a,a + 1,
b, b + 1} is Bl-representable.
Proof. Letm=b—-aandn=b+a+ 1. Use(2) in Theorem 2.30

Corollary 2.6. For any non-negative integer a, {a,a+ 1,2+ 2} is BI-

representable.
Proof. Letm =1 and n=2a+ 2. Use (2) in Theorem 2.3.0

Example 3. Figure 4 shows the balance index set of the double star D(m, m) ,

3
le(1)-e(0)| =0 le(1)-e(0)| = 3
Figure 4.

Example 4. Figure 5 shows BI(D(3, 4)) = {0, 1, 3,4}.
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By Theorem 1.2, max{BI(B(2, d))} = (p - 1)/2=(2%' —2)/2=2%— 1. This
finishes the proof. O

Example 5. BI(B(2,2))= {0, 1,2, 3}.
B(2.2)

le(1)-e(0)]= 3 le(1)-e(0)| = 1
0 0 S
O D
(0) @/ 1 D
O © O O O
le(1)-e(0)]=2 le(1)-e(M)=0

Figure 6.

Example6. BI(B(2, 3))={0,1,2,3,4,5,6,7}.
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le(1)-e0))=3 "4 le(1)-e(0)=+ ¥4
Figure S.

Let B(2, d) denote the full binary tree of depth d. We denote its vertices at
depth t from left to right by v, Vo, ..., V5's.

Theorem 2.7. Forany d 2 1, the balance index set of the full binary tree B(2, d)
of depth d is the set {0, 1,2, . 2"—1}
Proof. The tree B(2,d) has 1 244+ +28=2%1_ vertices, and 2 + 4 +

L+29=2%1_» edges.

Flrst we label all the vertices at depth less than d by 1. Then we label all the
vertices at depth d except the rightmost one by 0, and the rightmost vertex by 1.
We see that e(1) =2%- 1, e(0) =0, and so 2% - 1 € BI(B(2, ).

At the (d-1)st level interchan, Jge the vertex labels of v," " 4, and its left
child v,°., 4. Then v d_, and v,"_; 4 have labels 0 and 1 respectively, and the
tree has two fewer 1-edges. This decreases the value of e(1)— e(0) for the tree
to (2% - 3). Now interchange the vertex labels of v,;*'_, 4, and its left child v,°_

3.4- This decreases the value of e(1) by 1 and increases the value of e(0) by 1,
making e(1)—e(0) = =24_5, Repeatlng this procedure till the vertex v,,4_
produces the values 1,3, 5, ..., 2%~ 1.

Now we start over, and ]abel all the vertices at depth less than d by 1, and all
the vertices at depth d by 0. We see thate(1)=2%-2, e(0)=0,ands02%-2 ¢
BI(B(2, d)).

At the (d - 1)stlevel, mterchange the vertex labels of v,* ,,.. and its right
child v,%4. Then w*" 41 and V! ¢ have labels 0 and 1 respectively. This
decreases the value of e( l) by 1 and increases the value of e(0) by 1, changing
the value e(1)—e(0) to 29— Refeatmg this procedure till the vertex v,4
produces the values 0, 2,4, ..., 2%-2.
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3. Balance index sets of complete graphs, complete bipartite
graphs and K; U N,.

Theorem 3.1. Foranynz 3, BI(K,) is

(1) {0} ifnis even, and
(2) {k}ifn=2k+1is odd.
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Proof. It is clear that the balance index set of the complete graph K, is {0} for
allt=>1.

Now consider K., Without loss of generality, assume that v(1) - v(0) = 1.
Letf(vw)=1,fori=1,2,...,k+1and f{lv) =0, forj=k+2,...,2k + 1. Then
we have e(1) = C(k + 1, 2) and e(0) = C(k, 2). Thus |e(0)—e(1)|=k.0

For any m, n 2 1, we denote the complete bipartite graph by Ky, .. Without
loss of generality, we assume that m <n.

Theorem 3.2. The balance index set of complete bipartite graph BI(K, ») is

1) {{(n-m)(i-'m):i=0,1,2,..., m} if (m+n)is even, and

) {i(n—m)(i- %m)—Ym|, |(n — m)(i— Y4m) + Yam|:i=0, 1,2, ..., m} if (m
+n) is odd.

Proof. The set of vertices of K, , can be partitioned into two subsets, one with
m vertices, and the other with n vertices. Two vertices are adjacent if and only
if they come from different subsets.

(1) Assume that i vertices from the first subset are labeled 0. Then the
remaining (m — i) vertices in this subset must be labeled 1. By friendliness, in
the second subset, (Y4(n + m)— i) vertices must be labeled 0, and the remaining
(Y5(n— m) + i) vertices must be labeled 1. It follows that e(0) = i(%2(n + m)— i)
and e(1) = (m — i)(%s(n — m) +i). Simplification gives e(0)—e(1)=(n—-m)(i—
Ysm). Sincei=0, 1,2, ..., m, by exhausting all the values of i, we obtain the
balance index set stated in the theorem.

(2) We consider two subcases:

Case2.1: v(0)=%(m+n—1)and v(1)="%(m +n+1).

If the first subset has i vertices labeled 0, then the remaining (m — i) vertices will
have label 1. Then the second subset must have (2(m + n — 1) — i) vertices
labeled 0, and the remaining (Y2(n —m + 1) + i) vertices labeled 1. Then e(0) =
i(Ys(m +n—1)—i) and e(1) = (m - i)(%s(n—m + 1) + 1), giving e(0)— e(1) = (n—
m)(i— %m) - ¥m. Sincei=0, 1,2, ..., m, by exhausting all the values of i, we
obtain the first half of the set in (2).

Case22: v(0)=%(m+n+1)and v(1)="%(m+n-1).

Again if the first subset has i vertices labeled 0, then the remaining (m — i)
vertices will be labeled 1. Then the other subset must have (Y2(m +n + 1)—i)
vertices labeled 0, and the remaining (Y2(n — m— 1) + i) vertices labeled 1. Then
e(0) =i(*4(m + n+ 1)—i) and e(1) = (m— i)(%a(n — m — 1) +1), giving e(1)—e(0)
= (n - m)(i— Y4m) + sm. By exhausting all the valuesofi=0, 1,2, ..., m, we
obtain the second half of the set in (2).0

In particular, we have
Corollary 3.3. The balance index set of the complete bipartite graph BI(Ky,m)
is {0}.

Example 7. Figure 8 illustrates BI(K; 5) = {1,2,4}.
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le(0) - e(1)| = 1 le(0) - e(1)| = 2 le() -e(i=4

Figure 8.

The following result shows that we can generate arbitrarily large BI-
representable sets.

Corollary 3.4. The balance index set of the complete bipartite graph BI(Knm+1)
is {0,1,2, ..., m}.

Example 8. Figure 9 shows the balance index sets of the complete bipartite
graphs K, 3 andKs 4,

OO
\(D

le(1)-e(0)|=0  Je(1)-e0))=1 [e(1)-e(0)|=2

le(1)-e(0)[=0 le(1)-e(0)|=1 [e(1)-e(0)|=2 [e(1)-e(0)|=3
Figure 9.
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Example9. BI(K; ) = {0, 3, 6} and BI(Ks 7) = {2, 6}.
BI(KIG) = {0.36}

le(1)-e(0)] =2 je(1)-e(0)| =6
Figure 10.

Corollary 3.5. Forany n> 1, Bl(K,2) = {n,n-2, ...,0} ifnis even, and {n,
n-2,..., 1} ifnis odd.

Corollary 3.6. For any m >0, even n2 2, BI(Kpne2m) = {mn, m(n-2), ..., 0}.
Corollary 3.7. Foranyoddn21, {n,n-2, ..., 1} is Bl-representable.

Corollary 3.8. Forany m>0,evenn22, {mn,m(n-2), ..., 0} is Bl-
representable.

Now we consider the disjoint union of two graphs K; W N,.
Theorem 3.9. Forany n2 2, BI(K, UN,)={%(n-1)(n-2j):0<j<n/2}.
This is {0, 2k — 1,22k - 1), ..., k(2k — 1)} if n =2k, and {k, 3k, 5k, ..., (2k +
Dk} ifn=2k+1.
Proof. By changing all vertex labels to their complements if necessary, we may
assume that K, has no more 0-vertices than 1-vertices. Thus let K, have j
vertices labeled 0, where 0 < j <n/2. Then the other (n — j) vertices of K, are
labeled 1. We have e(0) =j(j— 1)/2 and e(1) =(n—j)(n — j— 1)/2. Thus |e(0)—
e(1)] = %a(n - 1)(n—2j). Now let j exhaust all possible values.0

Note. Theorem 3.9 shows that the maximum in Theorem 1.1 is attainable.

Corollary 3.10. Foranyk > 1, {0,2k - 1,2(2k - 1), ..., k(2k— 1)} and {k, 3k,
5Kk, ..., (2k + 1)k} are Bl-representable.

Example 10. BI(K;s U Ns) = {2, 6, 10} and BI(Ks L Ng) = {0, 5, 10, 15}.
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le(1)-e(0) =2
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[e(1)-e(0)| =5 © le(1)-e(0)|=0 ©
Figure 11.

4. Windmill graphs

. Shee and Ho [7] considered one-point union of graphs which are
cordial.

Notation. Let K(m,, m,, ..., m,) be the one-point amalgamation of the
complete graphs m, m, ..., m, vertices. Call the point at which the complete
graphs are amalgamated the center of K(my,... m,). Ifk of the m values are -
equal to the same value a, and if no confusion could arise, we use a* to denote
these values.

Theorem4.1. Foranym20,n 22, BI(K(n +2m + 1, n)) = {{2m + 1)j— mn—
2m:m<j<n+m-1},

Proof. In K(n +2m + 1, n), there are (2n + 2m) vertices. Thus a friendly vertex
labeling must have v(0) = v(1) =n +m. Without loss of generality, let the
center be labeled 0. If K., has j non-center vertices labeled 0, then the other
(n +2m - j) vertices must be labeled 1. By friendliness, K, has (n+m-j— 1)
non-center vertices labeled 0, and the other (j— m) vertices labeled 1. For these
numbers to make sense, we musthavem < j<n+m-— 1. Then in Kp.pp+1, €(0)
=(+1)j2ande(l)=(n+2m-j}n+2m-j-1)22,and inK,, e(0) = (n + m—
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j)(n+m-j—1)/2 and e(1) = (j— m)(j— m — 1)/2. Algebraic calculations show
that for the whole graph K(n +2m + 1, n), e(0)— (1) = (2m + 1)j~ mn - 2m’.0

Example 11. BI(K(5,2)) = {1, 2}.
K(582)

le(1)-e(0)| =1 le(1)-e(0) =2

Figure 12.

Example 12. BI(K(6,3)) = {1,2, 4}.
K(63)

le(1)-e(0)|=1 le(1)-e(0)| =2 le(1)-e(0)| =4
Figure 13.

Corollary 4.2. BI(K(n+1,n))={0,1,...,n-1}.
Corollary 4.3. Forany n> 1, the set {0, 1, ...,n— 1} is Bl-representable.

Theorem 4.4. For any n > 3, the balanced index set of the graph K(n, n) is {0, n
-1}

Proof. Call the vertex at which the two copies of K, are amalgamated the center
of K(n, n). Without loss of generality, let the center be labeled 0. There remain
(2n - 2) vertices to be labeled.

Case 1: In one copy of K,,, m non-center vertices are labeled 0, while the other
(n—m— 1) vertices are labeled 1, where 0 <m <(n - 1). In the other copy of
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K., (n —m - 1) non-center vertices are labeled 0, while the other m vertices are
labeled 1. In the first K, there are (m + 1) vertices labeled 0, and (n-m-1)
vertices labeled 1. Thus e(0)=(m + 1)m/2,and e(1)=(n—m—- 1)(n-m— 2)/2.
In the second K,,, there are (n — m) vertices labeled 0, and m vertices labeled 1.
Thus e(0) = (n— m)(n—m — 1)/2, and e(1) = m(m — 1)/2. Then for the entire
Ki(2),e(0)=(m+ 1)m2+(n-m)}(n-m-1)/2,ande(l)=(n-m—- 1)}(n-m—
2)/2 + m(m - 1)/2, making e(0)-e(1)=m+(m-m-1)=n-1.

Case 2: In one copy of K,, m non-center vertices are labeled 0, while the other
(n—m - 1) vertices are labeled 1, where 0 < m < (n - 2). In the other copy of
K., (n — m —2) non-center vertices are labeled 0, while the other (m + 1) vertices
are labeled 1. In the first K,, there are (m + 1) vertices labeled 0, and (n — m —
1) vertices labeled 1. Thus e(0) =(m+ 1)m/2, and e(1)=(n-m- 1)}(n— m-
2)/2. In the second K, there are (n— m — 1) vertices labeled 0, and (m + 1)
vertices labeled 1. Thus e(0) = (n—m — 1)}(n—m—2)/2, and e(1) = (m + 1)m/2.
Then for the entire K(n,n), e(0) =(m + 1)m/2 + (n — m— 1)(n - m— 2)/2, and
e(1)=(n-m-1)(n-m-2)/2 +(m + 1)m/2, making e(0)—-e(1) =00

Corollary 4.5. Forany n 2 3, the set {0, n— 1} is Bl-representable.

Example 13. Figure 14 shows BI(K(6,6)) = {0, 5}.
K(6.6) K(6.6)

()

le(1)-¢(0)| =0 le(1)-e(0)| =
Figure 14,

5. Uniformly balanced graphs.

In [1], Chartrand, Zhang and the second author characterized graphs whose
friendly index sets are subset of {0,1}.
Recall that a graph G is balanced if there exists a binary labeling f such that
[v(0) — v(1)| < 1 and |ed0) — e(1)| < 1, or equivalently, min BI(G) < 1.
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Definition 4. A graph G is said to be uniformly balanced f it is balanced for
any friendly binary labeling f.

Remark. A graph G is uniformly balanced if and only if BI(G) < {0, 1}.

In Section 3, we showed that the balance index set of the complete bipartite
graph BI(K,, ) is {0}. Thus the complete bipartite graph K, is uniformly
balanced. We now show that the cycle C, is uniformly balanced for all n > 3.

Lemma S.1. For any (not necessarily friendly) vertex labeling of G,, the
differences e(0) — e(1) and v(0) — v(1) are the same.

Proof. Obviously it is impossible for all vertices to be labeled 0 or for all
vertices to be labeled 1. In other words, there must be two adjacent vertices
with complementary labels. Call them v, ; and v o, with labels 1 and 0
respectively. Start from v, o, and go in the direction opposite to v; ;. Consider
the value of ¢ = (v(0)— v(1)) — (e(0) - e(1)) as we traverse the cycle. When we
start from v, o, ¢ = 1. Let the next vertex labeled 1 be v, ;. Before we reach v, ,
v(0) and e(0) increase by the same amount, while v(1) and e(1) are unchanged.
The edge leading to v, , has no label. Thus at v, ;, the value of ¢ becomes 0.
Continue to traverse the cycle in the same direction. Let the next vertex labeled
0 be v, o. Before we reach v, 4, v(1) and e(1) increase by the same amount,
while v(0) and e(0) are unchanged. The edge leading to v, o has no label. Thus
at vy g, the value of ¢ becomes 1 again. Let the next vertex labeled 1 be v; ;. The
same argument shows that the value of c at v; | is 0. Let the next vertex labeled
0 be v3 0. The same argument shows that the value of ¢ at v; o is 1. Continue in
this fashion. Eventually we will return to vy, and vj o. At vy, the value of ¢ is
0. The edge leading from v, | to v; ¢ has no label. Since the vertex label of v
has been counted when we start the process, we conclude that the value of ¢ =0
when we finish traversing the cycle. O

Theorem 5.2. BI(C,) = {0} ifniseven,and= {1} if nis odd.

Proof. As the vertex labeling is friendly, we have |[v(0) — v(1)| = 0 whenn is
even, and = 1 when n is odd. The fact from Lemma 5.1 that e(0) — e(1) = v(0)—
v(1) finishes the proofd

Theorem 5.3. Let G be a 2-regular graph, i.e., G is the disjoint union of cycles.
Then BI(G) = {0} or {1}, if the number of vertices is even or odd respectively.
Proof. Assume that G is the disjoint union of k cycles. Letc;=(v(0)- v(1))—
(e(0) — (1)) for the ith cycle, wherei= 1,2, ..., k, and v and e are the counts
corresponding to that cycle. By Lemma 5.1, ¢; = 0 for each i. Summing c,, ¢,,
... s Cy, We have (v(0)— v(1))— (e(0)— e(1)) = 0 for the whole graph G. Using
the fact that the vertex labeling is friendly, we establish the result.]

In[1], uniformly cordial graphs are completely characterized. However, at
present the following problem is still unsolved.

149



Problem. Characterize uniformly balanced graphs.
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