On the Security of Stickel’s Key
- Exchange Scheme

Michal Sramka

Center for Cryptology and Information Security,
Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431
sramka@math.fau.edu

Abstract

E. Stickel proposed a variation of the Diffie-Hellman key exchange
scheme based on non-abelian groups, claiming that the underlying
problem is more secure than the traditional discrete logarithm prob-
lem in cyclic groups. We show that the proposed scheme does not
provide a higher level of security in comparison to the traditional
Diffie-Hellman scheme.

1 Introduction

E. Stickel in [3] proposed a variation of the Diffie-Hellinan key exchange
scheme [1] to non-abelian groups. In particular, he described a key exchange
protocol that uses exponentiations of two non-commuting group elements.
The proposal also contains an implementation detail for a specific subgroup
of a general linear group of prime degree n. Although the proposal lacks
a rigorous security analysis, the author claims that a brute-force attack of
an instance would require searching through a space of size (2" — 1)2.

In this paper, we show that the proposed key exchange scheme can, in
fact, be successfully attacked with a considerably smaller complexity. In
particular, we show that the scheme can be broken by searching through
a space of cardinality 2 — 1. Also, for the general case with two non-
commuting elements of order n; and na (n1 > n2), we show that the worst-
case time complexity of breaking the scheme is O(n;) group operations
while requiring storage of O(n2) group elements.

We start by presenting a description of Stickel’s key exchange scheme
and the implementation details, then we show our main cryptanalytic re-
sults. We conclude with a generalization of our proposed method for fac-
toring group elements.

JCMCC 66 (2008), pp. 151-159

1.1 Proposal

We firstly provide a description of the E. Stickel’s general scheme (3] for
exchanging a secret key between two parties (Scheme 1) and then describe
some implementation details that lead to Schemne 2, a variation of the first
scheme.

Let G be a non-abelian finite group and a, 8 € G be two non-commuting
elements. Let n; denote the order of « and n, the order of 3. Both elements
o and 3 are public information.

The key exchange protocol between Alice and Bob can be described in
the following steps:

Scheme 1 (Stickel’s key exchange scheme).

1. Bob randomly chooses integers r and s with 0 < r < n;, 0 < 8 < n,.
The integers r and s are kept secret. Bob forms % := a”3° and sends
v to Alice.

2. In a similar way, Alice chooses integers v and w with 0 < v < n; and
0 < w < ng, which she keeps secret. Alice forms ¢ := o¥#¥ and sends
4 to Bob.

3. Alice computes the key x := ayf", and similarly, Bob computes the
key K as a"45°.

Note that an arbitrary element 7 € G known to both parties can be
placed in the middle of the products v and 4, respectively, to obtain new
v :=a"76* and 6 := a?T/Y.

The correctness of the protocol is obvious in both cases.

1.1.1 Implementation details

An implementation of the general key exchange scheme over certain sub-
groups of the general linear matrix groups leads to a large family of concrete
instances.

Let n be a prime such that 2" — 1 is also a prime. Primes of this form
2" — 1 are called Mersenne primes, and n in this case is called a Mersenne
exponent, e.g., n = 2,3,5,7,13,17,19, 31, 61, 89, 107, 127, 521, 607,

Let p(z) and ¢(z) be two inequivalent irreducible polynomials of degree
n over the finite field GF(2). Let C and D be the companion matrices of
p(z) and g(z), respectively. That is, if p(z) := 2% + cp12™ 1+ -+ 12+

152

co € GF(2)[z], then the corresponding n X n companion matriz is

00

Finally, let F be an extension field of GF(2), and let T} and T be arbi-
trary invertible n x n matrices over F; i.e., T1,T> € GL,(F). The purpose
of these matrices is to render eigenvalue/eigenvector attacks infeasible. See
the original proposal (3] for details. For our purposes it suffices to know
that the field F is a finite extension of GF(2) of degree at least 2.

Now, both matrices C and D have prime order 2" — 1, CD # DC (as
long as p(z) # q(z)), and so the cardinality of the set {C*T1ToD? | i,j € Z}
is (2" — 1)%.

An adaptation of Scheme 1 to these settings is straightforward: C and
D play the role of a and 3, resp. (with n; = nz = 2" — 1), and h'T2
plays the role of 7. However, a slightly different variant of Scheme 1 was
proposed in [3] by E. Stickel. Namely, two additional secret scalars a and
b were added:

Scheme 2 (Stickel’s key exchange scheme (2)).

1. Bob randomly chooses integers r and s with 0 < r,s < 2" — 1, and
a scalar b € F. The parameters r,s, and b are kept secret. Bob
computes F := bC™T T D® and sends this matrix F to Alice.

2. Similarly, Alice randomly chooses secret integers v and w with 0 <
v, w < 2"—1, and a secret scalar a € F. Alice forms H := aC*T1'To D"
and sends H to Bob.

3. Alice computes the key (matrix) K := aC*FD", and similarly, Bob
computes the key K as bCT"HD?.

1.2 Cryptanalysis

The security of Scheme 1, that is, the security of the final exchanged key
K, is based on the fact that an opponent is unable to factorize vy or 4 into
a’s and B’s. Here we are using notation as in Section 1.1.

However, a factorization of 7 or 4 can be successfully obtained by know-
ing only one out of the four secret parameters , s, v, or w: Without loss of
generality, suppose an opponent learns the value of r. Then, the opponent

153

can compute the key « from r and the public values as a"da~". Similarly,
knowledge of any one of the remaining three yields the key. Therefore the
security of the scheme depends on the knowledge of just one of the four
secret parameters.

Let Q := (a)N(B) be a subgroup of G. Then, from elementary theory of
cyclic groups (2], it follows that ¢ := n,/|Q| is the smallest positive exponent
such that o* € @, or equivalently ¢ is the smallest positive exponent such
that of € (8). Now, consider the element y := o~y = a"~#* for some
integer ¢. It is easy to see that u € (8) if and only if r —i =0 (mod).
And so, 7 is one of the |Q| numbers i+kt, where k = 0,1,2,...,|Q|—1. The
correct r can be then obtained by constructing a key «’ for each possibility
i+ kt and verifying whether &’ is the correct key.

The following algorithm implements these ideas:

Algorithm 1.
Input: «,B,v and n,
Output: (i,t,m) such that r = i + kt for some k € {0,1,...,m -1}

1. Set m := [{a) N (B)| and t := n,/m.
2. Fori=1,2,...,tdo

(a) If o'y € (B) then output (i,t,m) and stop.

1.2.1 The worst-case complexity analysis

The worst case complexity of Algorithm 1 occurs when the subgroups gen-
erated by a and § intersect trivially (i.e., |[{a) N (8)| = 1) or if it is too
costly to compute the order of (a) N (B). In either case, the value of ¢ in
Algorithm 1 becomes n;.

On the other hand, group membership testing can be a hard problem.
For the worst-case analysis, we will assume that the subgroup (3) must be
stored as a list — possibly as a sorted list, so that we can test for membership
using the binary search method.

Consider the following algorithm, equivalent to Algorithm 1, but rewrit-
ten for the purpose of complexity estimation.

Algorithm 2 (The worst-case complexity of Algorithm 1).
Input: o, 8,4,n;, and ns
Output: r

1. Set o := 3 and table T to be empty.

2. Fori=1,2,...,ny do

154

(a) Using binary search, determine where to insert element o into
table T, such that after the insertion table T remains sorted,
and perform the insertion.

(b) Set o :=0p.
3. Set w:=a™"! (ie. w=a™!).
4. Set o :=1.
5 Fori=1,2,...,n1 do

(a) Set ¢ :=wo (i.e. o =a™™v).

(b) Using binary search, determine if ¢ is in table T. If it is, set
r := i and stop.

Steps 1 and 4 are assignments and are negligible from the complexity
point of view. The computation of the inverse of @, in Step 3, is an exponen-
tiation which can be performed using the square-and-multiply method by
doing at most 2n, [log,(n;)] group multiplications. Each iteration of Step
2 consists of a binary search which requires at most 2[logy(n2)] element
comparisons, one group multiplication, and some negligible assignments.
In total, Step 2 performs 2n;[log,(n2)] element comparisons and n; group
multiplications. Finally, each iteration of Step 5 consists of one group mul-
tiplication, the binary search requiring at most 2[log,(n2)] element com-
parisons, and some negligible assignments. In total, Step 5 performs at
most 2n; [log,(n2)] element comparisons and n; group multiplications.

Concerning the space complexity, table T requires storage of nz group
elements. The other steps require negligible (constant) storage.

Without loss of generality we can assume that n; > np. We then
see that Algorithm 2 is dominated by Step 5, which requires at most
n1(2[logy(n2)] + 1) < ny(2[logy(n1)] + 1) group multiplications and el-
ement comparisons. Hence the complexity of Algorithm 2 is O(n; - logn,)
group multiplications and element comparisons. However, in the case of
abstract/generic groups, it is common to count only the group multiplica-
tions, i.e., the number of calls to the “black box” that realizes the group.
Therefore the worst-case time complexity of Algorithm 2, and hence also
of Algorithm 1, is O(n;) group multiplications and the space complexity is
O(n3) group elements.

1.2.2 The case of Scheme 2

Of course, the generic attack described in the previous section applies to
any implementation of Scheme 1. However, Scheme 2 is a slight variation of
Scheme 1, and the structures used in the implementation allow for further

155

reduction in the complexity of the attack. In particular, the need for storage
space is minimal, because group membership testing is easy.

In terms of the notation of Section 1.1.1, an opponent needs to ob-
tain one of the four pairs (b,7), (b,s), (a,v), or (a,w) to factor F or H,
that is, to obtain the key K. Again, without loss of generality, suppose
the opponent has obtained the scalar b € F and the integer r. Then
the opponent can obtain the key K from b, r, and the public values as
K =C"HT;'T['C~"b~'F.

Consider the matrix M := T, 'T{'C~*F = T; T 'C~C"bT T, D*
for any integer 0 < i < 2". If i = r, then M = bD?*, and since D €
GL,(GF(2)), the entries of M will consist of elements b and 0 only. On
the other hand, if ¢ # r and since C and D are non-commuting elements of
prime order, from elementary group theory (2], it follows that C™* ¢ (D),
and so M # bDY for any j. Moreover, because of statistical reasons, for the
vast majority of fixed matrices T and T3 over F, the entries of matrix M
would consist of more than two elements from F.

We have made some implicit assumptions here:

1. Although Scheme 2 did not specify it, the scalars a,b € F should be
chosen as non-zero elements. We assumed that b # 0.

2. For practical implementations, the field IF is an extension over GF(2)
of degree more than 1. This follows from the fact that T}, and T} are
matrices that are supposed to make eigenvalue/eigenvector attacks
infeasible [3]. We assumed that [F| > 2.

3. Finally, we have assumed that the matrices 77 and T are known
to the opponent. It is not clear from the original specification [3]
whether these matrices (or the element 7 in the case of Scheme 1)
are pre-shared secrets. The other reason we believe that 7} and T
are public is that they are not chosen randomly in GL,(F) but are
constructed in a specific way to help make eigenvalue/eigenvector
attacks infeasible.

The following algorithm implements these ideas:

Algorithm 3.
Input: n,C, T T3, and F
Output: candidates for b and »

1. Fori=1,2,...,2" —1do

(a) Compute M := (Ty\T3)"'C-iF.

(b) If M consists of just two elements 0 and m,
output b :=m and r := { (as candidates) and continue.

156

An alternative algorithm for the same task, but described by means of
generic group membership testing is:

Algorithm 4.
Input: n,C,D,T),T5, and F
Qutput: b and r

1. Fori=1,2,...,2" —2do

(a) Compute M :=T; Ty 'C~iF.
(b) For each m € F\ {0} do
i. If m~'M € (D) then output b := m, r := i, and stop.

For n = 31, which was considered a safe security parameter 3], an
opponent had to search through the set {C*T1T>D? | i, j € Z} that is known
to have cardinality of (2" — 1)% & 262 (infeasible with current technology).
However, if an opponent uses Algorithm 3, he/she will need to perform only
2n — 1 = 23! operations to break the scheme, and this can be performed on
present day personal computers in a reasonable time.

In addition, all algorithms mentioned are highly parallelizable (linear
parallelization). This follows from the fact that each iteration can be run
independently. In particular, if n processors are used, then the speedup is
by a factor of n.

1.2.3 Experimental results

Assume the following scenario: Alice and Bob will be using Scheme 2 with
parameters as in Section 1.1.1. Let n = 31, C the companion matrix
for p(z) = 23! + z + 1 € GF(2)[z], D the companion matrix for g(z) =
231 4+ 230+ 228 4 2341 € GF(2)[z], and Ty, T> € GL3)(F) chosen at random,
where F = GF(2)[z]/(z® +2* + 23 +2%+1). An attacker was able to obtain
the value of H sent over a public network from Alice to Bob, and the value
of F sent from Bob to Alice.

We implemented Algorithmn 3 in the C-language. Each of the field op-
erations was performed as a table lookup, and ordinary “textbook” matrix
multiplication was used. No further speedups or optimizations were used,
as opposed to the proposition in [3]. Finally we used the Intel C-compiler
v9.0.

A single Intel Pentium-1v, 2.5 GHz computer running Linux OS could
perform approximately 750 iterations of Algorithm 3 in 1 second. Forty-
four such computers (the current BOCA4 beowulf supercomputer cluster)
finished the search in less than 31 hours, while some of the nodes were
running other scientific computations at the same time. The search resulted

157

in a single possibility for b and r which was correct, and was computed after
8 hours and 23 minutes.

The computed values together with H and F can be used directly to ob-
tain the key exchanged between Alice and Bob, as described in the Section
1.2.2,

The program returned only one candidate for b and r. Hence, this
experiment also shows that even for a relatively small field F consisting
of 256 elements, it is unlikely that in the case i # r the matrix M would
consist of only 2 distinct elements.

1.3 Summary

We have shown that there is a difference between obtaining the integers r
and s from o"3° using a brute-force attack and the computational effort
to obtain either r or s, which is needed in order to break the scheme and
obtain the exchanged key.

We argued why only one out of the four secret exponents is needed in or-
der to completely break the key exchange scheme. We proposed algorithms
to obtain one of the exponents r or s and estimated their complexity. The
time and space complexities of such algorithms can be directly used for the
estimation of security parameters in the case of Stickel’s scheme as well
as any other cryptographic scheme (not necessary a key exchange scheme)
based on similar security assumptions.

It should also be noted that once we have obtained one exponent using
our proposed algorithms, we can use the known methods for solving tradi-
tional discrete logarithms in cyclic groups to obtain the other exponent if
we wish to do so.

Finally, Algorithm 1 can be naturally extended to factorize a group
element (into more than two predefined “basis” elements ay,as,...,a,
such that :
B = a‘fla‘;’ . ..az’l,

for some integers x;’s, provided that such factorization of 3 is possible.

Acknowledgments
I would like to thank Spyros S. Magliveras and Rainer Steinwandt for their

valuable suggestions and for providing helpful comments during the re-
search.

158

References

(1] W. Diffie and M. E. Hellman, New directions in cryptography. IEEE
Transactions on Information Theory 22(1976), 644-654.

[2] J. J. Rotman, Advanced Modern Algebra. Prentice-Hall, 2002.

[3] E. Stickel, A New Method for Exchanging Secret Keys. In. Proc. of
the Third International Conference on Information Technology and
Applications (ICITA’05) 2(2005), 426-430.

159

