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Abstract

Let G be a connected simple (p, g)-graph and k a non-negative
integer. The graph G is said to be k-edge-graceful if the edges
can be labeled with &,k +1,...,k + g — 1 so that the vertex
sums are distinct modulo p. The set of all £ where G is k-edge-
graceful is called the edge-graceful spectrum of G. In 2004,
Lee, Cheng and Wang analyzed the edge-graceful spectra of
certain connected bicyclic graphs, leaving some cases as open
problems. Here, we determine the edge-graceful spectra of all
connected bicyclic graphs without pendant.

1 Introduction

Let G = (V,E) be a connected simple graph having p vertices
and g edges. Given an integer k > 0, a bijection f : E(G) — {k,k +
1,...,k + q— 1} is called an edge-labeling of G. Any such edge-
labeling induces a map f* : V(G) — Z,, defined by f*(v) = Zf(uv)
(mod p), where the sum is over all uv € E(G). If there exists an
edge-labeling f whose induced map f* is a bijection, we say that f
is a k-edge-graceful labeling of G and that G is k-edge-graceful. The
set

Egsp(G) = {k € NU {0} | G is k-edge-graceful}
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is called the edge-graceful spectrum of G.

In 1985, Lo [18] introduced the concept of an edge-graceful (ie,
l-edge-graceful) graph. Since then, a large body of research has
emerged in the area of edge-graceful labelings of graphs (2,4-23,26).
Within this rich area of study, several open problems remain unre-
solved to this day. Examples of these include Lee’s (8] conjecture
that all trees of odd order are edge-graceful, as well as Lo’s con-
dition being a necessary and sufficient condition for a graph to be
edge-graceful. The interested reader is directed to Gallian’s [3] ex-
cellent survey of general labeling problems, as well as to Wallis’ [25]
monograph on magic labelings.

The concept of k-edge-graceful labelings was first introduced in
2004 by Lee, Chen and Wang [9]. In their paper, the edge-graceful
spectra of two classes of bicyclic graphs, namely the dumbbell graphs
and cycles with one chord, were analyzed. For these types of graphs,
some open cases remained unresolved. Eventually, the edge-graceful
spectra of cycles with one chord was completely determined by Shiu,
Ling and Low [24]. In this paper, we completely determine the edge-
graceful spectra for the class of connected bicyclic graphs without
pendant, of which dumbbell graphs and cycles with one chord belong
to.

2 A necessary condition

In [18], Lo gave a necessary condition for a graph G to be 1-
edge-graceful. This can be naturally extended to give the following
result.

Theorem 2.1. If (p, q)-graph G is k-edge-graceful, then
glg+2k—-1)= @ (mod p). (2.1)

We observe the following for a k-edge-graceful (p, ¢)-graph:
e If p is odd, (2.1) is equivalent to g(g + 2k — 1) = 0 (mod p).

e If piseven, (2.1) is equivalent to g(g+2k—1) = Lzz-'-e =F=f
(mod p).
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Corollary 2.2. If (p, q)-graph G has a k-edge-graceful labeling, then
p=0,1, or 3 (mod 4).

Proof. Let G be a k-edge-graceful graph and assume that p = 2 (mod
4). Now, set p = 41 + 2. Thus, we have that g(¢+2k—1) =2l +1
(mod p). This implies that g(¢+2k—1)—(2/+1) = 0 (mod p). Since
g(g+2k—1) is even and 2/ +1 is odd, g(g+ 2k — 1) — (2l +1) is odd.
Thus, we have an odd number which is congruent to 0 (mod p), where
piseven. This is impossible and we reach a desired contradiction. [

3 Bicyclic graphs

A connected (p,p + 1)-graph G is called a bicyclic graph. For a
bicyclic (p,p + 1)-graph G, condition (2.1) and Corollary 2.2 imply
the following:

e If pis odd, then Egsp(G) C {k e NU{0} | £ = 0 (mod p)} =
{sp|s=0,1,2,... }.

o If p = 4n, then Egsp(G) C {k e NU{0} | k¥ = 2 (mod §)} =
{sn]s=1,3,5,... }.

e If p =2 (mod 4), then Egsp(G) = @.

Furthermore, we note that k¥ € Egsp(G) if and only if K+ p €
Egsp(G). Thus to find Egsp(G), we only need to consider all the
values of k between 0 and p — 1 which satisfy condition (2.1). Hence
for a (p,p+ 1)-graph G where p is odd, we only need to determine if
G is 0-edge-graceful. Similarly for p = 4n, we only need to determine
if G is k-edge-graceful for k = n, 3n.

Definition 1. A vertex of degree t is called a t-vertez. A vertex of
degree greater than t is called a t*-vertez.

Lemma 3.1. Let G be a (p,p + 1)-bicyclic graph without pendant.
Then, the number of 2% -vertices in G is at most two.

Proof. 1t is known that d(v) = 2(p + 1), where d(v) denotes

veV(G)
the degree of v. Let z be the number of 2%-vertices in G. Then,
2(p—x)+3z <2(p+1). Hence, z < 2. O
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Definition 2. A one-point union of two cycles is a simple graph
obtained from two cycles, say Cy, and C,, where m,n > 3, by iden-
tifying one vertex from each cycle. Without loss of generality, we
may assume the m-cycle to be ugu; - - - u—14g and the n-cycle to be
UOUmUm+1 * * * Un+m—2U0. We denote this graph by U(m, n).

Definition 3. A cycle with a long chord is a simple graph obtained
from an m-cycle, m > 4, by adding a chord of length ! where ! > 1.
Let the m-cycle be ugu; - - - um—1up. Without loss of generality, we
may assume the chord joins ug with u;, where 2 < i < m — 2. That
IS, UQUMUM41 - Um4i-2U; is the chord. We denote this graph by
Cm(3;1).

Definition 4. A long dumbbell graph is a simple graph obtained from
two cycles Cy, and Cy, by joining a path of length  for m,n > 3 and
[ > 1. Without loss of generality, we may assume

Cm = U1 Um-1Ug, Pi = Um—1Um " Umyi—1

and Cp = Um4i-1Um41 * * * Umgntl—2Umtl—1-
We denote this graph‘by D(m,n;l).

Theorem 3.2. Let G be a (p, p+ 1)-bicyclic graph without pendant.
Then, G contains only one 2% -verter if and only if G is a one-point
union of two cycles.

Proof. Suppose G contains only one 2*-vertex. Let d be the degree of
the 2%-vertex. Since 2(p—1)+d = 2(p+1), d = 4. Since G contains
one 4-vertex and (p — 1) 2-vertices, G is eulerian and contains two
cycles. Hence, G is a one-point union of two cycles. The converse is
clear. a

Theorem 3.3. Let G be a (p, p+ 1)-bicyclic graph without pendant.
Then, G contains two 2% -vertices if and only if G is either a long
dumbbell graph or a cycle with a long chord.

Proof. Suppose G contains only two 2+-vertices. Let d be the sum
of the degrees of the 2*-vertices. Since 2(p — 2) +d = 2(p + 1),
d = 6. Since the degree of the 2*-vertices is greater than 2, the
two 2*-vertices must be 3-vertices. Since G contains two 3-vertices
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and (p — 2) 2-vertices, G is edge-traceable. The two 3-vertices are
connected to each other by joining either one path or three disjoint
paths. If the 3-vertices are connected by one path, then two disjoint
cycles are incident with these 3-vertices respectively. Hence, G is a
long dumbbell graph. If the vertices are connected by three paths,
then G is a cycle with a long chord. The converse is clear. a

Corollary 3.4. A bicyclic graph without pendant is either a one-
point union of two cycles, a long dumbbell graph or a cycle with a
long chord.

Lemma 3.5. Let P be a path of odd order p. Then, any graph
obtained from P by adding two extra edges is 0-edge-graceful.

Proof. If the edges of P are labeled with 1,2,...,p — 1 consecu-
tively, then the induced labels on the vertices are 1,3,5,...,p —
2,0,2,...,p— 1. The set of these labels is congruent to Z,. Since
the induced labels of the vertices do not change after adding an edge
labeled 0 or p = 0 (mod p), the graph obtained from an odd path by
adding two edges is 0-edge-graceful. O

Corollary 3.6. Let G be a (p, p+ 1)-bicyclic graph without pendant,
where p is odd. Then, Egsp(G) = {sp|s=0,1,2,...}.

Proof. By Theorems 3.2 and 3.3, G is either a one-point union of
two cycles, a long dumbbell graph or a cycle with a long chord. Each
of these graphs can be obtained from an odd path by adding two
suitable edges. Thus by Lemma 3.5, G is 0-edge-graceful and hence,
Egsp(G) = {sp|s=0,1,2,... }. a

4 The edge-graceful spectra of (4n,4n + 1)-
bicyclic graphs without pendant

Definition 5. A tadpole graph is a simple graph obtained from an
m-cycle by attaching a path of length I, where m > 3 and I > 1.
Let the m-cycle be ugu; - - - um—1uo. Without loss of generality, we
may assume the path is attached at up and that the attached path
iS UgUmUm+1 * * - Umi—1- We denote this graph by T, .
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For the upcoming discussion, we define two sets
Q1 ={a€Z|n<a<5n}\{4n}

and
Q2={a€Z|3n <a< }\{4n}.

Lemma 4.1. For n > 1, there is an edge-labeling f : E(Cyn) — Q1
such that the induced mapping f* : V(Cyn) — Zay, is a bijection.

Proof. We use the labels n, n+1, ..., 3n—1 on the edges ugu;, ugus,
-+ U4n—2Usn—1 respectively. Then, we use the labels 3n, 3n + 1,
.«+y4n—1 on the edges u4n—1ug, urU2, ..., Usn—3U2n—2 respectively.
Finally, we use the labels 4n+1, 4n+2, ..., 5n on the edges Uz, _1ugn,
U2n+1U2n+2; - - -, Udn—3U4n—2 Tespectively. Thus, we have

n+j i=0,2,...,4n -2,
fluivip)) = 3n+3L  i=1,3,...,2n-3,
n+1+4l i=2n-1,2n-3,...,4n 3,

and
f(uan-1u0) = 3n.

This yields the induced vertex labeling
i 1=0,1,...,2n -2,
ffw)={ i+1 i=2n-1,2n,...,4n -2, (mod 4n)
2n—-1 i=4n-1.

Clearly, f* is a bijection. O

Figure 1 is an edge-labeling of Ci¢ which illustrates the proof of
Lemma 4.1.
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Figure 1: Labeling of Cje.

For Lemmas 4.2, 4.3, 4.4, 4.5, 4.7 and 4.8, we will continue to use
the notation established in Lemma 4.1 and in its proof.

Lemma 4.2. For 3 <m < n, let T = Tppy = Cyn — Usk+1U2k+2 +
Uok41Unik Where m +1 = 4n and k = m +n — 2. Then, there
is an edge-labeling g : E(T) — Q1 such that the induced mapping
gt : V(T) — Zy, is a bijection.

Proof. We define g(e) = f(e) for each e € E(Csn) N E(T) and

9(Untitzit+1) = f(Uok+1U2k42). Only the three vertices ugr1, Uok+2
and u,,x need to be considered since the induced labels of the other
vertices are not changed.

g% (ugks2) = flugksouor+s) =n+k+1=fF(untk)

gt (uak+1) = 9(Unyitiors1) + fugkr1U2k+2)
= f(ugrtor+1) + f(U2k+1U2k+2)
= f* (uzk+1)
9" (untk) = FH (untr) + 9(untrtiok+1)
=(n+k+1)+(k-n+2)=2k+3
= [ (ugks2)

Thus, the induced labels of vertices usgi2 and unyix are swapped
according to f*. ]
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Lemma 4.3. Forn > 2 andn+1<m<2n-1, letT =Ty =
Can — UgkUgk+1 + UgkUsnyk Wherem+1l=4n andk =m —n - 1.
Then, there is an edge-labeling g : E(T) — Q. such that the induced
mapping g* : V(T) — Zyy, is a bijection.

Proof. We define g(e) = f(e) for each e € E(Cyp) N E(T) and
9(u2kusnk) = f(ugkuoksr). Only the three vertices ugk,ugr41 and
U3zn+k Need to be considered since the induced labels of the other
vertices are not changed.

9t (uzk41) = f(Uoksrtoks2) = 3n+k +1 = f+(ugn k)

9% (uok) = g(usnrrtior) + f(ugk_1ugk)
= f(ugk-1u2k) + f(uokugk+1)
= f*(uok)

9" (Uantk) = fH (Uansk) + 9(uaniruor)
=@n+k+1)+ (n+k)

=2k+1= f*(ugrs1) (mod 4n)

Thus, the induced labels of vertices ugx4+1 and ugn4x are swapped
according to f¥. O

Lemma 4.4. Forn > 2 and2n < m <3n-1, let T = Ty =
Can — UokUgk+1 +Uok4+1Usn+k~1 Where m+1=4n and k = 3n—m—1.
Then, there is an edge-labeling g : E(T) — Q, such that the induced
mapping gt : V(T) — Zy, is a bijection.

Proof. We define g(e) = f(e) for each e € E(Cy,) N E(T) and
9(uzk41Usnsk-1) = f(uzkusks1). Only the three vertices Uk, UDk+1
and u3,+x—1 need to be considered since the induced labels of the
other vertices are not changed.

97" (uzk) = fugk-1uk) = 3n +k = f+(ugnik—1)
*(u2k41) = 9(Usntk-1%2k+1) + F(Ugks1Uoks2)
= f(uokUor+1) + f(Uk+1u2k42)

= f+(U2k+1)

g
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9" (usn+k-1) = fH(Usnsr-1) + 9(Uansk-1u2k+1)
=@Bn+k)+(n+k)
=2k = fT(ugx) (mod 4n)

Thus, the induced labels of vertices ugr and u3nik-1 are swapped
according to f¥. O

Lemma 4.5. Forn > 2 and3n < m <4dn—-2, letT =Ty =
Cln — Uk +1Ugk+2+ U2k +2Un+k—1 Where m+1 = 4dn and k =5n—m—2.
Then, there is an edge-labeling g : E(T) — Q1 such that the induced
mapping g* : V(T) — Zayp, is a bijection.

Proof. We define g(e) = f(e) for each e € E(Cy) N E(T) and
9(Untk-1u2k+2) = f(uok+1ugks2). Only the three vertices uge+i,
ugk+2 and up4—1 need to be considered since the induced labels of
the other vertices are not changed.

g7 (ugka1) = fluoktak+r) =n+k = fF(unsr-1)

gt (ugks2) = 9(Untk—1u2k+2) + f(U2k12Uok+3)
= f(uok+1u2k+2) + f(Ugk+2U2k+3)
= f(ugk+2)
g (Unk-1) = FT (Untk-1) + 9(Unsk—1U2k+2)
=n+k)+(k-n+2)=2k+2
= f*(ugk+1)
Thus, the induced labels of vertices ugg41 and upir—1 are swapped
according to f¥. 0

Figure 2 gives edge-labelings of Tio6, T6,10 T13,3 and T3,13 which
illustrate the proof of Lemmas 4.2 to 4.5.
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Figure 2: Labelings of Tho,6, T6,10, T13,3 and T3,13.

Combining Lemmas 4.2 to 4.5, we have the following result. For
3 < m < 4n - 2, there is an edge-labeling g : E(T,,;) — @1 such
that the induced mapping g* : V(T,,1) — Z4, is a bijection, where
m+1=4n.

Theorem 4.6. Forn >2 and3 <m < 4n —2, T, + e i3 n-edge-
graceful, where e is an extra edge and m + 1 = 4n.

Proof. There is an edge-labeling g : E(T,,;) — @1 such that the
induced mapping g* : V(Tn1) — Zsy, is a bijection. It is clear that
the induced mapping does not change after adding the edge e labeled
by 0 = 4n (mod 4n). Thus, T, + e is n-edge-graceful. O
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Lemma 4.7. For n > 1, there is an edge-labeling f : E(Csn) — Q2
such that the induced mapping f+ : V(Cyy) — Zay, is a bijection.

Proof. Define f(e) = 8n — f(e) for each e € E(Cyn). ft(w) =16n -
ft(v) = 4n — f*(v) (mod 4n) for each 2-vertex v € V(Cyn), and
ftw) = 24n — fH(v) = 4n — f¥(v) (mod 4n) for each 3-vertex

ES

v € V(C4p). Clearly, f is a bijection. m|

Figure 3 gives an edge-labeling of Cig which illustrates the proof of
Lemma 4.7.

Figure 3: Labeling of Cig.

Lemma 4.8. Forn > 2 and 3 < m < 4n—2, there is an edge-labeling
g : E(Trm;) — Q2 such that the induced mapping g* : V(Tm1) = Zan
is a bijection, where m +1 = 4n.

Proof. The proof of this result uses Lemma 4.7 and is very similar
to the proofs of Lemmas 4.2 to 4.5. O

Figure 4 gives edge-labelings of Tio6, T6,10, 113,3 and T3,;3 which
illustrate the proof of Lemma 4.8.
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Figure 4: Labelings of T1o6, T6,10, T13,3 and T3,13.

Theorem 4.9. Forn >2 and3<m < 4n -2, T + € is 3n-edge-
graceful, where e is an extra edge and m + 1 = 4n.

Proof. Similar to the proof of Theorem 4.6, we obtain the result. [

Corollary 4.10. Forn >2 and 3 < m < 4n — 2, Egsp(Tyny +€) =
{sn]|s=1,3,5,...}, where m + [ = 4n.

Proof. This follows from Theorems 4.6 and 4.9. a

Lemma 4.11. Let n > 2. Then, any bicyclic (4n,4n + 1)-graph G
without pendant can be constructed by adding an edge to a tadpole
graph T, ;, where 3 < m < 4n — 2.
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Proof. The one-point union of two cycles, U(m, n), is isomorphic to
Tonn—11+%0Um+n—-2- A cycle with a long chord, Cp,,(4;1), is isomorphic
t0 Tpni—1 + Uitm4i—2. Lastly, a long dumbbell graph, D(m,n;l), is
isomorphic t0 Ty n1-1 + Um+l-1Umtn+l-2-

Furthermore, we do not have to consider the case where m =
4n — 1. Suppose that G contains a Cyn—1. Let u be the vertex not
in C4n-1. Then, deg(u) = 2. Let = and y be its neighbors, and P be
the shortest z — y path in Cy,—1. Then, the length of P is less than
or equal to [#-1|. Hence, there is a cycle C of length c less than
or equal to [4"‘1J + 2, which is less than or equal to 4n — 2. Thus
in this case, G can be constructed by adding an edge to T¢;, where
c+l=4n. O

Theorem 4.12. For a bicyclic graph G of order 4n without pendant,
Egsp(G) = {sn|s=1,3,5,... }.

Proof. The case where n = 1 is established in [24] For n > 2, the
result follows immediately from Corollaries 3.4 and 4.10, and Lemma
4.11. O

Figure 5 gives 12-edge-graceful labelings of U(10,7), C10(3;7) and
D(10,5;2) which illustrate the proof of Theorem 4.9

Figure 5: 12-edge-graceful labelings of U(10,7), C10(3;7) and
D(10,5;2).
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