Judgment Aggregation And The
Greedy Algorithm

Christopher M. Earles
Department of Mathematical Sciences
~ Bethel College
300 E. 27th Street
North Newton, KS 67117

Abstract
The judgment aggregation problem is an extension of the group
decision making problem, wherein each voter votes on a set of propo-
sitions which may be logically interrelated (such as p, p — ¢, and q).
The simple majority rule can yield an inconsistent set of results, so
more complicated rules must be developed. Here the problem is cast
in terms of matroids, and the Greedy Algorithm is modified to obtain
a “best” result. An NP-completeness result is also presented for this

particular formulation of the problem.

The fundamental political question of individuals making decisions as
a group has come under increasing mathematical scrutiny in the past cen-
tury as researchers have become aware of the incredible difficulties inherent
in the problem. The most famous of such difficulties is Arrow’s Theorem,
which proves the nonexistence of voting rules satisfying certain fairness cri-
teria (see [1] or the more elementary [6]). Ever since then, endless variations
of this theorem have been created, exploring the limits of aggregating indi-
vidual preferences into group preferences. Recently, a different problem has
arisen, that of judgment aggregation, which is the aggregation of individual
beliefs into group beliefs.

Judgment aggregation suffers from many of the same problems as pref-
erence aggregation, but it is more general in scope. Indeed, preference
aggregation is merely the problem of the aggregation of individual beliefs
about a certain order relation (see [4]). Work by List and Dietrich has high-
lighted the various relationships between fairness criteria one might impose
on an aggregation rule, including several impossibility and possibility the-
orems (see, for example, (2, 3, 5]).

In the present article, the author intends to add to this literature by
developing a new aggregation rule based on the idea of maximizing group
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agreement with the final decision. The details of the problem suggest the
use of the Greedy Algorithm, which turns out to be insufficient; however,
ideas from matroid theory yield an algorithm which selects the desired ag-
gregate. Unfortunately, far from being as simple as independent set maxi-
mization for matroids, the maximization problem used in this aggregation
rule is NP-complete.

1 The Discursive Paradox

It is natural to suggest that when a group must make decisions over sev-
eral propositions, they should vote on each proposition and select those
propositions for which more than half of the voters have voted. This is
the Majority Rule: believe about each fact what the majority of voters
believe. As long as the propositions are independent of each other, this
works fine. However, when the propositions are interdependent, this can
lead to difficulties. Consider the following example, a case of the discursive
paradox.

Suppose a committee of three people (Dr. A, Dr. B, and Dr. C) are
deciding on an important matter of department business. They are voting
on three propositions

p : “We will have a colloquium series.”
q : “We need a cookie budget.”
p — g : “If we have a colloquium series, then we need a cookie budget.”

The difficulty arises in the very different belief systems of the partici-
pants. In the table below we see each of the participants’ beliefs and the
majority aggregate.

Proposition: | p p—q ¢
Dr. A|Yes No No
Dr.B| No Yes No
Dr.C|Yes Yes Yes

Majority | Yes Yes No

As a consequence, we see that the Majority Rule cannot be used to
collect the beliefs together into a single consistent choice.

One might object that it is simplest to vote for only the atomic propo-
sitions p and g. This is a valid approach to resolving the paradox, perhaps
even the best approach to this particular matter of department business.
However, in other decisions which are formally identical to this, deciding
on, for example, p and p — ¢ may be preferable. Besides which, not mak-
ing use of the beliefs about p — ¢ ignores the reasons the participants
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have for believing in the particular way they do. (See List and Dietrich on
premise-based and conclusion-based aggregation rules in [3].)

2 Formal Description of the Problem

Now, let us set down formal definitions for the main elements of the prob-
lem. This will allow us to see more clearly the structure inherent in the
problem. We have the following:

A set of players N = {1,2... ,n}.
An agenda X, consisting of propositions and their negations.

The judgment sets A, ..., An of the players. We assume these are
consistent and complete (hence |4;| = |X|/2).

An aggregation rule F(4;,...,A,), which generates a consistent
and complete collective judgment set

The aggregation rule which we will develop in this article will actually
be a probabilistic aggregation rule, in that the result of the rule is a prob-
ability distribution over all consistent and complete judgment sets rather
than a specific judgment set. A theory of probabilistic aggregation rules
has yet to be properly developed. Nevertheless, for the purpose of this
article, it is enough to require that an aggregation rule give a definite—if
not deterministic—result every time it is applied.

3 A Class of Aggregation Rules

A significant portion of the literature on collective decision making has dealt
with the so-called (im)possibility theorems. These theorems are of the form
“The only aggregation rule which satisfies a certain list of properties is a
rule of the form such-and-such” or “No aggregation rule can satisfy all of
a certain list of properties.” We will not prove any such theorem here, but
we should make note of some of the relevant properties.

An aggregation rule is anonymous if it is invariant under permutation
of judgment sets. That is, it does not take into account which player holds
which judgment set but only the number of times each judgment set is
chosen. We will be interested in anonymous aggregation rules, specifically
those which arise from the weighting function

w(p) =|{i:p € Ai}|.

Such aggregation rules take into account only how frequently a particular
proposition p is chosen.
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Not every anonymous aggregation rule can be defined by one that de-
pends only on w. For instance, the rule which selects the most popular
judgment set (or chooses randomly from the favorites, if there is a tie) can-
not be reduced to a function of w. Consider, for instance, the following
situation arising from two elections with 41 voters but different beliefs:

CaseOne | CaseTwo | ¢ a—c b b—oc ¢
6 votes S5votes [ Yes Yes Yes Yes Yes
8 votes S5votes | Ys No Yes No No
4 votes S5votes | Yes Yes No Yes Yes
2 votes 5votes | Yes No No Yes No
4 votes 5votes | No Yes Yes Yes Yes
2 votes 5votes | No Yes Yes No No
7 votes 6votes | No Yes No Yes Yes
8 votes Svotes | No Yes No Yes No

In both cases, the weighting function is w(a) = w(b) = 20, w(c) =
21, w(@ — c) = w(b — ¢) = 31. However, choosing the most popular
judgment set gives a random choice between {a, b, ~c, =(a — ¢), =(b — ¢)}
and {-a,—b,~¢,a — ¢,b — c} in the first case, but in the second case, the
choice is {-a,-b,c,a — ¢,b — c}. That is, this anonymous aggregation
rule is not a function of w.

The aggregation method studied here arises from the consideration of
the disenfranchisement of each player, the number of propositions wherein
the player disagrees with the aggregate. We desire to minimize the total
disenfranchisement of the players. To do so, we maximize the total “enfran-
chisement”, i.e. the sum of w(p) for each p in a judgment set. A maximizer
of this sum is a judgment set with largest total weight, which we call a
maximum judgment set (MJS).

To the combinatorist, the problem of finding an MJS resembles the
problem of finding a maximum independent set in a matroid. The natural
technique to try is the Greedy Algorithm. The algorithm works as usual:
choose the proposition with the most votes; choose the next-largest if it is
consistent with what you have already; repeat until you have exhausted the
list. Break ties randomly. The bad news is that it doesn’t work. Consider
the following example:

a a—-c b boc ¢
3votes { Yes Yes Yes Yes Yes
3 votes | No Yes No Yes No
3 votes | Yes No Yes No No
lvote | No Yes No Yes Yes

for| 6 7 6 7 4

against | 4 3 4 3 6
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Begin by choosing a — ¢ (7 votes), and b — ¢ (7 votes). Next, randomly
select one of a, b, or ~c (6 votes). Suppose we choose —c. Then, we must
choose —a and —b last (each 4 votes). The total weight is 28 votes. However,
the set a,b,c,a — c,b — ¢ has weight 30 votes.

4 Matroid Embedding

The Greedy Algorithm fails to solve the MJS problem, which means that
the structure of the problem is not matroidal. It is similar, though: the set
C of consistent subsets of X is hereditary. It has a little extra structure, as
well.

There is a fixed-point-free involution n : X — X, specifically proposition
negation. The involution is enough to give an embedding of the problem
into a partition matroid (see below), which allows us to use the theory of
matroids to find a solution. Furthermore, the weighting function satisfies a
constant sum rule:

w + w o n = constant.

Although unnecessary for the solution of the MJS problem, I make
note of one additional structural fact of interest. The operation of logical
completion is a a closure operation C — C, which enriches the structure
under study.

The judgment aggregation structure (X,C) is a substructure of a parti-
tion matroid (X,Z). A set I € T is independent if I contains at most one
element of each proposition-negation pair {p,-p} in X. Note that C C Z,
and complete judgment sets are bases of the partition matroid. Thus, to
find an MJS, we can start by finding maximum bases in (X,Z). These are
the results of the Majority Rule, as one simply chooses the heavier-weighted
proposition from each proposition-negation pair.

Since the Majority Rule does not always yield an MJS, we must find
a way to work from the Majority Rule to an MJS. To do this, construct
a weighted directed graph as follows. The nodes will be all the bases of
(X,T), the partition matroid. Direct an edge from a basis By with weight
w to a basis By with weight ws if By and B, differ by exactly one element
and wy < w;. Weight the edge by the difference w; —ws. The edges should
go “downhill” from higher-weighted bases to lower-weighted bases, trading
one proposition at a time for its negation. (This downhill direction is a
consequence of the constant sum rule relating the weight and negation.)
The undirected version of the graph is called the matroid basis graph of
the matroid, and in this case it is an n-cube. The Majority Rule choice or
choices can be found at the “top” of this graph, and the negation of those
choices are at the “bottom”. The MJS is the consis
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tent basis that is closest to the Majority Rule nodes. One can use
Dijkstra’s Algorithm to find it.

5 An Algorithm

To summarize, the following steps yield an MJS. Remember to break ties
randomly.

1. Invoke the Greedy Algorithm on the partition matroid.

2. Construct matroid basis graph, directed from higher-weighted to lower-
weighted bases.

3. Weight the edges according to the difference between basis weights.

4. Invoke Dijkstra’s Algorithm to find a shortest path from the Majority
point to a basis in C.

5. This nearest element is an MJS.

In the case of the discursive paradox at the beginning of this article,
this method gives a solution by randomly choosing one of the three cho-
sen judgment sets, as each of the sets has weight five, hence each set is
equidistant from the weight six Majority Rule node.

6 NP-Completeness

A criticism of the algorithm of the previous section is that it is exponential
in the size of the agenda: the graph constructed has 2" vertices whenever
the agenda has n propositions. However, finding an MJS in a judgment
aggregation structure with the constant sum requirement w+won = const
is an NP-complete problem. Finding a polynomial-time algorithm for the
solution may be difficult, at best.

(Note: finding an MJS for the judgment aggregation problem—i.e.,
given the players’ judgment sets, not just the weighting function—might
not be NP-complete: the problem transformation given below does not
seem to correspond to a situation beginning from judgment sets.)

Given a simple graph G with vertices vy, ... ,v,, create an agenda

X ={pi,~pili=1,...n} U {p; Apj,(pi Apj)Il <i< j<n}

The atomic proposition p; represents the vertex v; in G, and the conjunctive
proposition p; Ap; represents the assertion that v; and v; are adjacent. So, a
complete (and consistent) judgment set for this agenda consists of a choice
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of vertices and all of the edges between them, whether or not those edges
actually exist.

Now, weight the propositions as follows. The (atomic) propositions will
be given weight zero: w(p;) = w(-p;) = 0. The conjunctive propositions
will be given weights as follows. If v; and v; are adjacent in G, then weight
w(p; Ap;) =1 and w(~(p; Ap;)) = —1. If v; and v; are not adjacent in G,
then weight w(p; A p;) = —n and w(~(p: A pj)) = n.

Constructing the agenda and weighting function from the graph can be
done in polynomial time. Proof of the following proposition will complete
the proof that the MJS problem is NP-complete.

Proposition 6.1. An MJS for this system corresponds to a marimum
clique.

Proof. Consider an MJS, supposing the vertices and propositions are num-

bered so that py, . .. , px are the atomic propositions selected, and px41,- .- ,Pn
are not selected. There are two cases: either vy,..., v form a clique, or
they do not.

If they do not, then, by relabeling if necessary, we may assume vx—1 and
vk are not adjacent. Removing pi from the MJS, the score decreases by
two points for each edge between v and another vertex of vy, ... ,Vk-1 but
increases by 2n for each vertex of vy,... ,vx—1 not adjacent to v. Since
vk is not adjacent to vg_;, the score increases by at least 2n — 2(k — 1).
Consequently, the judgment set with —pi rather than p; has a higher score
than the given MJS. This is contradictory, so the MJS must correspond to
a clique.

The vertices vy, ... , v form a clique, which is either a maximum clique,
or some vertex v;, (i > k) is adjacent to each of vy,... ,vx. Suppose v; is
adjacent to each of vy,... ,v;. Adding p; to the MJS, the score increases
by two points for each of the edges connecting v; to the original clique, but
the score does not decrease. So, this new judgment set has a higher score
than the given MJS. This is contradictory, so the MJS must correspond to

a maximum clique.
’ O

7 Conclusion

When making a collective decision over multiple connected propositions,
the natural Majority Rule fails in fairly simple cases. We have explored
the possibility of trying to minimize disenfranchisement by choosing the
maximum judgment set. Considerations of matroid theory yield a straight-
forward algorithm for finding such a judgment set. However, the algorithm
is probabilistic, which could be disconcerting for the participants in the
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decision-making process. Furthermore, from a theoretical standpoint, prob-
abilistic decision rules are not well-understood. Nevertheless, this method
has the benefit of two desirable properties: symmetry and the selection
of a broadly-supported decision which is as close to the Majority Rule as
possible.
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