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Abstract. Let G be a (p,q)-graph and k>0. A graph G is said to be k-edge-
graceful if the edges can be labeled by k,k+1,...,k+g-1 so that the vertex sums
are distinct, modulo p. We denote the set of all k such that G is k-edge
graceful by egS(G). The set is called the edge-graceful spectrum of G. In this
paper, we are concerned with the problem of exhibiting sets of natural
numbers which are the edge-graceful spectra of the cylinder C,xPy, for certain
values of n and m.

1. Introduction.

Given an integer k EN ={1,2,3,...}, a graph G = (V, E) with p vertices
and q edges is said to be k- edge-graceful if there is a bijection
f: E—>{kk+1, k+2,..., k+q-1}

such that the induced mapping f*:V—Zp, given by
f*(u) =={f(u,v): (u,v) in E} (mod p)
is a bijection.

Theorem 1.1 (Lo’s condition [18]). If a (p,q)-graph G is k-edge-graceful, then it
satisfies the condition
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a@2k-1)= 281 (mod .

Graphs can be l1-edge-graceful but may not be k-edge-graceful for
some k>1, and vice versa.

Example 1. Figure 1 shows that K, is k-edge graceful forallk > 1.

Figure 1.

Example 2. We see in Figure 2 two trees of order 4 which are 2-edge
graceful but not 1-edge-graceful.

& ] o

Figure 2,

The set of all integers k>0 such that G is k-edge-graceful is denoted by
¢gS(G) and is called the edge-graceful spectrum of G.

Supposing that G is d-regular graph with m vertices, and H is k-regular
graph with n vertices such that GCD(d,n)=GCD(k,m) =1, and assuming that G
and H are both odd-order and 1-edge-graceful graphs, Schaffer and the first
author [22] showed that GxH is 1-edge-graceful. In particular, they showed that
the Cartesian product of two cycles of odd order is 1-edge-graceful.

A cylinder graph C, x Py, is the Cartesian product of the cycle C, and the
path Py, In this paper we are concerned with the problem of exhibiting sets of
natural numbers which are the edge-graceful spectra of cylinder graphs C, X Py,

1-edge-graceful graphs are investigated in [1,3,4,5,6,7,8,9,10,11,12,13,
14,18,19,20,21,22,23,24]. Some k-edge graceful graphs are considered in
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[16,17]. A good account on other graph labeling problems can be found in the
dynamic survey of Gallian [2].

2. k-Edge-graceful cylinder graphs

The cylinder graph C, x Py, is a (p, q ) — graph with p = nm vertices and g=2nm
—n edges. Suppose that C, x Py, is k-edge graceful. Then Lo’s condition reads
(2nm —n)(2nm — n + 2k-1) = nm(nm-1) 2 (mod nm), and is equivalent to:

Condition 2.1: n®-2nk+n = nm(nm-1) / 2 ( mod nm).
(i) Suppose that n is even and m is odd. Then condition 2.1 becomes:

Condition 2.2: nm | (n®-2nk+n-(n/2)m(nm) + (n/2)m), hence nm | (n(n-2k+1)
+m(n/2)) and hence m | n-2k+1 +m/2. This implies m is even, a contradiction.

(ii) Suppose that n and m are both odd. Then nm-1 is an even integer and
condition 2.1 becomes nm|( n’- 2nk+n), m|(n-2k+1). Since n+1-2k is even,
this means that n-2k+1=(2t)m for some integer t, n=2tm-+2k-1 for some t.

Conversely, let n=2tm+2k-1 for some t. Then n-2k+1=2tm, n-2k+1= O(mod
m), hence n(n-2k+1) = 0 ( mod nm). Now nm((nm-1)/2) = 0 (mod nm).
Therefore, n(n-2k+1) = nm((nm-1)/2)(mod nm), and condition 2.1 is
satisfied.

(iii) Suppose that n and m are both even. So nm -1 is odd. Then condition 2.1
becomes condition 2.2, from which we deduce nm | (n® -2nk + n + n(m/2),
i.e. m| (n-2k+1+m/2).

Since (m/2) | m, we must have (m/2) | (n-2k+1); moreover, as 2|m, we must
also have 2|(n-2k+1+m/2), i.e., 2|(1+m/2), i.e., m/2 is odd. This boils down
to saying that there exists an odd integer s such that n-2k+1 = s(m/2) with
m/2 odd, i.e., there exists t such that n = (2t-1)(m/2)+2k-1 with m/2 odd.

Conversely, suppose n = (2t-1)(m/2)+2k-1 for some t. Then n-2k+1+m/2 =
tm = 0 (mod m), so n® — 2kn + n + nm/2 = 0 = n’m%2 (mod nm). Therefore,
condition 2.1 is satisfied.

(iv) Suppose that n is odd and m is even. Then condition 2.1 becomes n’-2nk+n
= -(m/2)n (mod nm), hence m|(n-2k+1+m/2).

Here n+1-2k is even. if it happens that m/2 is odd, we have that n+1-
2k+m/2 is odd. This is not possible since the even integer m cannot divide
an odd number. Therefore 4jm. For m|(n+1-2k+m/2), we deduce that (m/2) |
(n+1-2k) and 2|((n+1-2k)/(m/2)+1), whereupon (n+1-2k)/(m/2) is odd, so
there exists an integer t such that n+1-2k=(m/2)(2t-1), i.e.

n = (m/2)(2t-1) + 2k-1 with 4|m.
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Conversely, suppose that 4/m and n=(m/2)(2t-1)+2k-1 for some t; then
condition 2.1 holds true, the proof being the same as in part (iii).
From all three remarks, we deduce the following results. Let us start
with describing the integer n for which condition 2.1 holds true.
Theorem 2.1. Condition 2.1 is verified if and only if there exists an integer n
such that for some integer t, we have

n=2tm+2k -1 with m odd and n odd
n=(2t-1)}(m/2)+2k-1 with m = 2 (mod 4) and n even; or withm =0
(mod 4) and n odd.

We can now describe the integers m for which condition 2.1 holds true.
Theorem 2.2. Condition 2.1 is verified if and only if either there exists an odd
integer m such that m | ((n+1)/2 ~ k) for odd n, or there exists an even integer m

such that (m/2) | (n+1 - 2k) for odd n when 4|m, or for even n when 4 {m.

We can also describe the integer k for which condition 2.1 holds true.
Theorem 2.3. Condition 2.1 is verified if and only if there exists an integer k
such that for some integer t, we have

k=(n+1)/2 — tm, for m odd and n odd,

k=((n+1) - (2t-1)(m/2))/2, for m even with 4 {m, and n even,

k=(n+1)/2 - (2t-1)(m/4), for m even with 4|m, and n odd

Remark that in Theorem 2.3 we could have written
k= (n+1)/2 —tm, for m odd and n odd,
k=(n+l - (2t-1}(m/2))/2, for m even,
since the parity of m/2 dictates the parity of n.

From the preceding four remarks, we deduce the following results.

Theorem 2.4. (A) The cylinder graph C,xPy, is not k-edge-graceful if at least
one of the following conditions is satisfied:

(a) n even and m odd;

(b) nand m both odd and (2m) 4 (n+1-2k);

(¢) nand m both even and either 4 | m or (m/2) £ (n+1-2k);

(d) nodd and m even and either 4 +m or (m/2) ¢(n+1-2k).
(B) If the cylinder graph CxPy, is k-edge-graceful, then at least one of the
following conditions is satisfied:

(i) m is odd with n = 2tm + 2k -1 for some t;

(ii) m is even with n = (2t-1)(m/2) + 2k -1 for some t.

Particular cases of the preceding theorem are the next two theorems.

Theorem 2.5. For all odd n >3 the edge-graceful spectrum of the cylinder graph
CuxPyy is empty form = 2 (mod 4).
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Theorem 2.6. The edge-graceful spectrum of the cylinder graph CoxPp, is empty
for n even and m = 0,1, or 3 (mod 4).

Theorem 2.1, 2.2 and 2.3 are powerful results because they provide
necessary and sufficient conditions for Lo’s condition to be satisfied.
Unfortunately, Lo’s condition is not (so far) an equivalent necessary condition
for a (p, q)-graph to be k-edge-graceful.

3. Some k-edge-graceful cylinder graphs

In the following table we list for a given pair (n,m) the values of k for
C.xPy, to satisfy Lo’s condition , namely Condition 2.1.

m 3 4 5 6 7 8 9 10 11 12
2 - N - N - N - N - N
3 3t+2 ) 3t+3 - 3t+1 - 3t+2 - 3t+3 -
4 2t+1 - 2t+2 - 2t+] - 2t+2 - 2t+1 -
5 5t+2 - 5143 - 5t+4 - 5t+5 - 5t+1 -
6 - 3+l - 3t+2 - 3143 - 3t+1 - 3t+2
7 T2 - Tt+3 - Tt+4 - Tt+5 - 7t+6 -
8 4t+4 - 4t+1 - 4t+2 - 4143 - 4t+4 -
9 9t+2 - ot+3 - 9t+4 - ot+5 - 9t+6 -
10 - 5t+5 - St+1 - 5t+2 - 5t+3 - St+4

The table above may be summarized and extended in the following chart, for
n odd or even, and m congruent to either 2,3,0, or 1, mod 4. Note that this table
applies when m = 2, if we take “mod m/2” in this case to indicate that k may be
any positive integer in N. When m is odd, the representation of k follows
directly from Theorem 2.3.

When m is even and divisible by 4, letting m = 4s for some integer s, Theorem

2.3 implies that
k = (1/2)(n+1)- (2t — 1)m/4 = (n+1)/2 - (m/2) + s = (n+1)/2 + s (mod m/2)
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When m is even and not divisible by 4, it is of the form m = 4s + 2, for some
integer s, and n must be even. Then
k=1/2((n+1) - (2t-1)m/2) = /2 - (m/2) + (2 + m)/4 = /2 — t(m/2) +s + 1
=n/2 +s+ 1 (mod m/2)

J\& n odd neven
m=4s+2 - k=n/2 +s+1 (mod m/2)
m=4s+3 k= (n+1)/2 (mod m) R

m=4s k= (n+1)/2 +s (mod m/2) T
m=4s+1 k= (nt+1)/2 (mod m) -

The formulation using s in this chart allows us, given m and n, to arrive
quickly at the smallest positive value of k to check in searching for a k-edge-
graceful labeling of C,xPy,.

It is interesting to note that from Theorem 2.3, we see that for any evenn >
4, Condition 2.1 is satisfied when m =2 (that is m, =1). In 1990, the first author
and Eric Seah [10] showed that Cy x P, is 1-edge-graceful.

We show here Cy, x P, is in fact k-edge-graceful for any k.

Theorem 3.1, The edge-graceful spectrum of C, x P,isN for all evenn > 4.

Proof. The cylinder graph C, x P, has p =2n vertices and q =3n edges.

Assume n =2t. As seen in Figure 3 (for simplicity, we have n=8, i.e. =4),
we cut the cylinder graph by the two edges aga,.) and boby.;, and stretch it into a
strip.

—

—pe 19 sector IZ"‘seﬁm I:‘" sectoq l-l"‘ sectof

Otardes @aph CyxP; CyXP, stretchied utto a stuap
Figure 3.

We further divide the strip into t sectors, each of which consists of the 6 bold
edges (see Figure 4).
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We want to label the edges with {k,k+1,k+2,.... k+6t-1}. The i-th sector has

the edges (a2i.3,22i2),(22i-2,82i-1)5(82i-2,b2i-2),(82i1,02i-1),(b2i.3,b2i.2), and (baiz,b2i1),
which we label as in Figure 4.

2.2 i1

k+20i+1)-2

k+6t-21 k+4t-2H1

k+2t+2i2 k+4t+2i~1 k+2t+2(i+1)-2

b2|-2 b2|~1
k-edge graceful labeling for the i-th sector
Figure 4.

1t is not difficult to see that the induced vertex labels can be classified into 4
sets A,B,C,D:

A= {f¥ () i=1,2,....t} = {3k+6t+2i-3: i =1,2,...,t} (mod 41),

B = {f¥ (ay.,):i=1,2,...,t} = { 3k+4t+2i: i =1,2,....,t-1} (mod 4t) U {f"(an-1)
=3k},

C={ft (baz): i=1,2,...,t} = {3k+ 12t+2i-3: 1 =1,2,...,t} (mod 4t),

D = {f* (b1 ):i=1,2,...,t} = {3k+10t+2i: i=1,2,...,t-1} (mod 4t) U {f*(be1)

=3k+n}.
The union of these four sets is {3k+2t+2i-3} U {3k+2i-2} U {3k+2i-3} U
{3k+2t+2i-2} fori=1, 2, ..., t (mod 4¢).

Now modulo 4t, we have
CU B= {3k-1,3k,3k+l,..., 3k+2t-3,3k+2t-2}
AU D= {3k+2t-1, 3k+2t, 3k+2t+1,..., 3k+4t-3,3k+4t-2}

Since 3k-1 = 3k+4t-1 (mod 4t), we conclude AU D UCU B is the set
{0,1,...,4t-1} (mod 4t).

Thus f is a k-edge-graceful labeling.[]

Remark. Suppose the cylinder C;x P, with 2n vertices and 3n edges is 1-edge-

graceful. Then modulo 3n, the union of the sets
{ff@):1<isnjU{fr(b):1<i<n}

is the set {0,1,2,...,3n-1}. If each edge label is increased by k for any fixed k >

0, then each value of f* (a;) (respectively f™ (b;)) is increased by 3k. Therefore

modulo 3n, the previous set {0,1,2,...,3n-1} becomes {3k,3k+1,...,3k+3n-1},

remains {0,1,2,...,3n-1}. Therefore C,x P, is k-edge-graceful.
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We illustrate the above result for C, x P,.
Example 3. Figure 5 shows that C, x P, is 1-edge-graceful. If we add a fixed

integer k > 0, to each edge label, we have that C, x P, is k-edge-graceful.

1%t sector 2udgector

1-edge-graceful labeling

loec[gc-gl'acd’lll labeling of cylinder graph CxPy
Figure S.

Example 4. Figure 6 shows that Cg x P, is 1-edge-graceful. If each edge label is
increased by k, we have that Cy x P, is k-edge-graceful.

Figure 6.

4. Cylinder graphs C, x P, . m =3,

By Theorem 2.3 and Theorem 2.4 (B), if C,xPy,is k-edge-graceful with
m odd, then n is odd and k = (n+1)/2 (mod m). The whole section is devoted to
the proof of the following theorem.
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Theorem 4.1. The cylinder graph C,xP; is k-edge-graceful if and only if n is
odd and k = (s+1)/2 (mod 3), where s € {1, 3, 5} verifies s =n (mod 6).
Proof. The graph C,xP; has 3n vertices and 5n edges. For the part (=>), since n
is odd, we have n = 6t+s for some s € {1, 3, 5}. Hencek =(n+1)/2 = (s+1)/2
(mod 3).

Let us prove now the part (<=). We want to exhibit a k-edge-graceful
labeling when n = 6t+1 (respectively, n = 6t+3, n=6t+5) with k = 1 (mod 3)
(respectively, k =2 (mod 3), k =3 (mod 3)).

First case: Consider n = 6t+1 and k =1. Example 4 exhibits a 1-edge-graceful
labeling of C;x Ps,

Example 4. Figure 7 shows that C; x P;is 1-edge- graceful.

w o & & 8 8 g
v 1o 9 3 all = 5 o 13 o 7

Figure 7.

The exhibited 1-edge-graceful labeling of C;xP; is a particular case of the
labeling of Figure 8 showing a 1-edge-graceful labeling of C,xP; where n=6t+1.
Note that the labels will not be written modulo 5n in order to make sure that we
indeed see a bijection between the edges and the labels. However, it will not hurt
to write the values of the vertex sum f'(u) modulo 3n. This policy will be
adopted in the rest of the paper.

Figure 8.
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Therefore modulo 3n, we have

A=+ (ay2):i=1,2,...,3t+1} = {Sn+6i-4: i =1,2,...,3t+1},
B={f* (ay,):i=1,2,..,3t} = { Sn+6i-1:i=1,2,...,3t} ,
C={f¥ (bu2)i=1,2,...,3t+1} = {11n+ 3t+6i-2: i =1,2,..., 3t+1},
D= { T* (bs.):i=1,2,..., 3t} = {1 1n+ 3t+6i+1: i=1,2,...,3t},
E={ft(cs2)i=1,2,..,3tH} = {4n+6i-2: i=1.2,..., 3t+1},

F={ft(csi1):i=1,2,.., 3t} = {4n+6i+1:1=1,2,...,3t} .
Hence modulo 3n, we have
AU B= {2n+2, 2n+5,..., 2n-1}.

We used the fact that Sn+6(3t+1)-4 = 5n+18t+2=5n+3(6t+1)=8n-1
s 2n-1(mod 3n).
Similarly, modulo 3n, we have
CU D= {2n+3t+4, 2n+3t+7,..., 2n+3t+1},
EU F= {n+4, n+7,..., n+1}.

We conclude that AU B UCU D UEU F is modulo 3n the set {0,1,2,...,3n-1},
and this proves that indeed C,xP; is 1-edge-graceful.

Note that all the elements of A U B are congruent to 2n+2 = 1, modulo 3, all
the elements of C U D are congruent to 0, modulo 3, and all the elements of E U
F are congruent to 2, modulo 3.

Now we can produce a 4-edge-graceful labeling from this 1-edge-graceful
labeling by simply adding 3 to the value on each edge. The edge labels will then
run 4, 5, 6, ..., 3n+3. Each vertex a; has vertex sum 3+3+3=9 more than it had in
the 1-edge-graceful labeling. Because the a; vertex sums under the 1-edge-
graceful labeling consist of all the elements of {1, 2, 3, ..., 3n} which are
congruent to 1, modulo 3, the values of A U B are not changed by adding 9 to
each integer of A UB, when we work modulo 3n. Since the elements of C U D
are all congruent to 0, modulo 3, the values of C U D are not changed modulo
3n by adding 4(3)=12 to each element of C U D. The process also adds 9 to each
vertex sum in E and F, and the same conclusion holds true for E UF. This proves
that C, x P; is 4-edge-graceful.

It is clear now that a 7-edge-graceful labeling can be obtained by adding 3 to
each edge label in the 4-edge-graceful labeling. This allows to conclude that for
allk = 1 (mod 3) we have exhibited a k-edge-graceful labeling of a C, x P3
when n=6t+1.

Second case:
Theorem 4.2.egS(C; x P;) =2 +3N.
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Proof. Figure 9 shows that C; x P; is 2-edge-graceful for s=0; in a manner
identical to that in the proof of Theorem 4.1, C; x P; is 2+3s-edge-graceful for
any positive integer s.

4+3s

C3 X Py is 2+3s-edge graceful
Figure9.

Figure 10 shows similar 2-edge-graceful labelings of C, x P; for n=6t+3.

n-1+2i

n-1-2(1-1)

5n+6i-1
2.2 VIR

du+2i 4n+2i+1

2n+-3t+i+2 § 11043t 2o-3t-i=1 =2

+6i+3

11n+3t
+6i+6

b1
3n+2i 3n+2i+1

n—2(1~1)

(1Sig3t +2) (1gig3t+1)
Figure 10.
Therefore modulo 3n, we have

A={f"(ay5.5):1<i<3t+2}={5n+6i—1:1<i<3t +2},
B={ft(ay.)):1<i<3t+1}={Sn+6i+2:1<i<3t +1},
C={f"(by.2):1<i<3t+2}={lIn+3t+6i+3:1<i<3t +2},
D={f"(by.1):1<i<3t+1}={lIn+3t+6i+6:1<i<3t +1},
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E={ft(c.2):1<i<3t+2}={n+6i+1:1<i<3t +2),
F={f"(ca.)):1<i<3t+1}={4n+6i+4:1<i<3t +1}.

Modulo 3n, i.e. modulo 18t+9, we have

AUB={2n+5,2n+8, ...,2n-1, 2n +2}={2,58,...,3n-4, 3n-1},
CUD={2n+3t+9,2n+3t+12,...,2n+3t+3,2n + 3t + 6}
={0,3,6....,3n-6,3n-3},

EUF={n+7,n+10,...,n+1,n+4}={123,..,3n-5, 3n-2}
whereupon AUBUCUDUEUF={0,1,2,3,...,3n-1} and C¢+3 X P; is
2-edge-graceful.
For reasons similar to those given in the first case, the labelings can be extended
to any k of the form 3s + 2 (by adding respectively 3, 6, 9, ..., etc. to each edge
in a given labeling). This allows us to conclude that C, x P; with n=6t+3 is k-
edge-graceful for all k = 2 (mod 3).

Example S. Figure 11 shows that Cy x P; is 2-edge-graceful.

C;xP3 is 2-edge-g'aceful.

Figure 11.
Third case:

Figure 12 shows a similar 0-edge-graceful labeling for n=5 which generalizes
in the same way for all cases n=6t+5, as shown in Figure 13. Again, these
labelings can be extended to k-edge-graceful labelings for k=3, by simply
adding 3s to each edge label. The proofs that these labelings work in general are
similar to the case n=6t+1.

Example 6. Figure 12 illustrates a 0-edge-graceful labeling of Cs x P;.




Figure 12.

Figure 13 shows the general solution for C, x P; for n=6t+5. As before this
labeling partitions the vertex labels, so that the a; receive labels congruent to 1,
modulo 3, the b; receive labels congruent to 0, modulo 3, and the ¢; receive
labels congruent to 2, modulo 3. Again, we can modify this 0-edge-graceful
labeling by adding 3s to each edge, creating a 3s-edge-graceful labeling. This
completes the proof of Theorem 4.1

2u+3t+i~1

b2 Baig

4nm-242 40+24-1

=21t -2

Cai1
(A= 3t ¢ 3) A<l 30+ 2)

Figure 13.

5. Cylinder graphs C,, x Py, , m =4.

Figure 14 shows that C; x P, is 1-edge-graceful, for s=0. For other values of
s, the situation is similar to that in the proof of Theorem 4.1. If we add 2 to each
edge label in the 1-edge graceful labeling, then the vertex labels for the a; and d;
will have 6 added to them, while the vertex labels for the b; and c; will have 8
added. Thus the vertex labels for the b; and c; will be unchanged, modulo 4,
while the labels for the a; and d; will “switch”; for example, the 3-edge graceful
labeling arrived at in this manner will have vertex labels for the
a; which run through all values from 1 to 12 that are congruent to 2 (mod 4),
namely 2, 6 and 10, while the labels for these vertices under the 1-edge graceful
labeling are the values congruent to 0 (mod 4), namely 0,4, and 8. Similarly, the
labels for the d; switch from 2 (mod 4) values to 0 (mod 4). When we again add
2 to each edge label to produce a 5-edge graceful labeling, these values switch
again.
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This labeling generalizes for all C, x P4 for which n is of the form 4t+3.
Theorem S.1. The cylinder graph C, x P, is 1-edge-graceful if and only if n

=4t+3. For n=4t+3, the edge-graceful spectrum of C, x P,is 1+2N.
Proof. Figure 15 shows 1-edge-graceful labelings of C, x P, for n=4t+3.

208



boy2
20212

2nti- 241 2u+i

(is2t+2) Qi<+ H
Figure 15. C,xP4, n=4t+3,

Note that the edge joining a,_, to a, takes label 3n+2, which is 4 less than the
label on the edge joining a,.; to a,), and similarly for the edge joining d,.; to do.
However, 3n+2 = 7n+10-8(1) (mod 4n), so the vertex sums remain as in the
diagram, and similarly for the edge labeled 3n+4.

Modulo 4n, we have two variations in the overall pattern, depending on
whether t is even or odd. If t is even, for example when n=3, then for C U D, the
vertex sums of the form

5n+8i+ 2t —4 = 5(4t+3) + 8i +2t — 4 = 2t+3 = 3 (mod 4),
and similarly for vertex sums of the form 5n + 8i + 2t + 8. If t is odd, for
example when n=7, then vertex sums of the form

5n+8i+2t -4 =5(4t+3) + 8i +2t— 4 = 2t+3 = 1 (mod 4),
and similarly for vertex sums of the form 5n + 8i + 2t. The opposite pattern
holds for vertex sums in E U F, so that together

(CUD)U(EUF)={1,3,5,7,9, ...,4n +3}.
Here,
AUB={17n-8i+9:1<i<2t+2} U{17n-8i-3:1<i<2t+1}
={0,4,8,12,...,4n-4}
CUD={5n+8i+2t-4:1<i<2t+2} U{Sn+8i+2t:1<i=<2t+l}
={1,5,9,...,4n -3} iftodd, or = {3,7,11, ...,4n -1}, if teven,

EUF={9n+2t+8i—-2:1<i<2t+2} U {On+2t+8i+2:1<i<2t+]}
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=2{3,7,11,...,4n-1} iftodd, or = {1,5,9,...,4n -3} ifteven,
GUH={1Tn-8i+15:1<i<2t+2} U{17n-8i+11:1<i<2t+1}

= {2,6,10, 14, ...,4n -2},
whereupon AUBUCUDUEUFUGUHS=S({0,1,2,...,4n-1}. As in the
case of C; x P, we obtain the 2s+1-edge-graceful labeling of Cy+3 x P4 by adding
2s to each edge in the 1-edge-graceful labeling given above.

Example 8. The cylinder graph C; x P, is 2s+1-edge-graceful. Figure 16 shows
the 1-edge-graceful labeling according to Theorem 5.1. To obtain a 2s+1-edge
graceful labeling, we add 2s to each edge, as before.

23

C7x Pyis 1-edge-graceful
Figure 16.

The labeling scheme for C, x P4, with n=4t+1, is nearly identical to that for
n=4t+3, and this will finish the C, x P4 cases.

Theorem 5.2, The cylinder graph C, x P, is 2-edge-graceful if and only if n
=4t+1. For n=4t+1, the edge-graceful spectrum of C, x P, is 2+2N.

Proof: to obtain a 2-edge-graceful labeling of C, x P4, for n=4t+1, we use the
labeling scheme shown in Figure 17.
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To+11-8i

i+2t+1

2n+i+2t+1

(a<is2t+1) (1i<2y)

Figure 17.

Because now n = 1 (mod 4), the vertex sums will reduce to:

AUB={1Tn-8i+12:1<i<2t+1} U{17n-8i+8 :1<i<2t}
={l,5,9,...,4n-3},

CUD={5n+8i+2t—-1:1<i<2t+1} U{Sn+8i+2t+3:1<i<2t}
={2,6,10,...,4n-2} iftodd,or = {0,4,8, ..., 4n -4}, if teven,

EUF={On+2t+8i+1:1<i<2t+1} U{9n+2t+8i+5:1<i<2t}
={0,4,8, ...,4n -4} if todd, or = {2,6, 10, ..., 4n -2} if t even,

GUH={17n-8i+18:1<i<2t+1} U{17n-8i+14:1<i<2t}
={3,7,11,...,4n- 1},

whereupon AUBUCUDUEUFUGUH={0,1,2,...,4n - 1}. (Note that
the edge labels in A,B,G, and H are now odd, and those in C,D,E, and F are
even, the reverse of the situation for the labeling given in Theorem 5.1 for the
n=4t+3 case.) As in the case of Cy.3 X P4 we obtain the 2s+2-edge-graceful
labeling of Ca+; X P4 by adding 2s to each edge in the 2-edge-graceful labeling
given above. As before, when s=1 (or any odd value), this adds 8 to each vertex
label in C,D,E, and F, leaving their values the same, modulo 4. It adds 6 to each
vertex label in A,B,G, and H, switching the values in A U B with those in G U
H.
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Example 9. Figure 18 shows the 2-edge-graceful labelings given by Theorem
5.2 for Cs x P;and Cy x P,

Cs x Psand Cy x P, are 2-edge-graceful
Figure 18,

6. Conjecture.
We propose the following conjecture.

Conjecture. The cylinder graph C, x Py, is k-edge-graceful for some k if and
only if m=2 (mod 4).

References

[1] S. Cabannis, J. Mitchem and R. Low, On edge-graceful regular graphs and
trees. Ars Combin. 34, 129-142, 1992,

[2] J.A. Gallian, A dynamic survey of graph labeling, The Electronic J. of
Combin. # DS6, 1-180, 2007 version.

[3] Jonathan Keene and Andrew Simoson, Balanced strands for asymmetric,
edge-graceful spiders, Ars Combinatoria 42,49-64, 1996.

212



[4] Q. Kuan, Sin-Min Lee, J. Mitchem, and A K. Wang, On edge-graceful
unicyclic graphs, Congressus Numerantium 61, 65-74, 1988.

[5] Li-Min Lee, Sin-Min Lee and G. Murthy, On edge-graceful labelings of
complete graphs - solutions of Lo's conjecture, Congressum Numerantum 62,
225-233, 1988.

[6] Sin-Min Lee, A conjecture on edge-graceful trees, Scientia, Ser. A, vol. 3,
45-57, 1989.

[7] Sin-Min Lee, New Directions in the Theory of Edge-Graceful Graphs,
Proceedings of the 6th Caribbean Conference on Combinatorics & Computing,
216-231, 1991.

[8] Sin-Min Lee, K-J Chen and Y-C,Wang, On the Edge-graceful spectra of
cycles with one chord and dumbbell graphs , Congressus Numerantium 170,
'171-183, 2004.

[9] Sin-Min Lee, Peining Ma, Linda Valdes, and Siu-Ming Tong, On the edge-
graceful grids, Congressus Numerantium 154, 61-77, 2002.

[10] Sin-Min Lee and Eric Seah, Edge-graceful labelings of regular complete k-
partite graphs, Congressus Numerantium 75, 41-50, 1990.

[11] Sin-Min Lee and Eric Seah, On edge-gracefulness of the composition of
step graphs with null graphs, Combinatorics, Algorithms, and Applications in
Society for Industrial and Applied Mathematics, 326-330, 1991.

[12] Sin-Min Lee and Eric Seah, On the edge-graceful (n,kn)-multigraphs
conjecture, Journal of Combinatorial Mathematics and Combinatorial
Computing, Vol. 9,141-147, 1991.

[13] Sin-Min Lee, E. Seah and S.P. Lo, On edge-graceful 2-regular graphs, The
Journal of Combinatoric Mathematics and Combinatoric Computing 12, 109-
117, 1992.

[14] Sin-Min Lee, E. Seah, Siu-Ming Tong, On the edge-magic and edge-
graceful total graphs conjecture, Congressus Numerantium 141, 37-48, 1999.

[15] Sin-Min Lee, E. Seah and P.C. Wang, On edge-gracefulness of the kth
power graphs, Bulletin of the Institute of Math, Academia Sinica 18, No. 1,1-11,
1990.

[16] Sin-Min Lee and Wang Ling, On k-edge-graceful trees, manuscript.

213



[17] Sin-Min Lee,Wang Ling and Kang Qingde, On the edge-graceful indices of
the wheel graphs, manuscript.

[18] S.P. Lo, On edge-graceful labelings of graphs, Congressus Numerantium,
50,231-241, 1985.

[19] Peng Jin and W. Li, Edge-gracefulness of Cyx Cy, in Proceedings of the
Sixth Conference of Operations Research Society of China, (Hong Kong:
Global-Link Publishing Company), Changsha, October 10-15, 942-948, 2000,

[20] J. Mitchem and A. Simoson, On edge-graceful and super-edge-graceful
graphs. Ars Combin. 37, 97-111,1994,

[21] A Riskin and S. Wilson, Edge graceful labellings of disjoint unions of
cycles. Bulletin of the Institute of Combinatorics and its Applications 22: 53-
58, 1998.

[22] Karl Schaffer and Sin -Min Lee, Edge-graceful and edge-magic labelings of
Cartesian products of graphs, Congressus Numerantium 141, 119-134, 1999.

[23] W.C. Shiu, P.C.B. Lam and H.L. Cheng, Edge-gracefulness of composition
of paths with null graphs, Discrete Math 253, 63-76, 2002

[24] W.C. Shiu, Sin-Min Lee and K. Schaffer, Some k-fold edge-graceful
labelings of (p, p-1)-graphs, Journal of Combinatorial Mathematics and
Combinatorial Computing 38, 81-95, 2001.

[25] S. Wilson and A. Riskin, Edge-graceful labellings of odd cycles and their
products, Bulletin of the ICA 24, 57-64, 1998.

214



