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Abstract. Let G be a graph with vertex set V(G) and edge set
E(G). For a labeling f: V(G) — A = {0,1}, define a partial edge
labeling £*: E(G) — A such that, for each edge xy € E(G), f*(xy)
= f(x) if, and only if, f(x) = f(y). Fori € A, let v{i) = |{v € V(G)
: f(v) = i}| and ep(i) = |{e € E(G) : f¥(e) = i}|. A labeling fofa
graph G is said to be friendly if [v(0) — v(1)] < 1. If a friendly
labeling f induces a partial labeling f* such that Jex(0) — ex(1)] <
1, then G is said to be balanced. In this paper, a necessary and
sufficient condition for balanced graphs is established. Using this
result, the balancedness of several families of graphs are also
proven.
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1. Introduction

A graph labeling problem called cordial graph labeling was
introduced by Cahit [2] in 1987. Consider a graph G with vertex
set V(G) and edge set E(G). A binary vertex labeling of G is a
mapping from V(G) into the set A = {0,1}. For each vertex
labeling f of G, Cahit considered an induced binary edge labeling
f: E — {0,1} defined by f*(uv) = |f(u) - f(v)], uv € E(G). Let
vo(G), and vi(G), denote the number of vertices in V(G) that are
labeled with 0, and 1, under the labeling f, respectively. Likewise,
let y(G), and €1(G), denote the number of edges in E(G) that are
labeled with 0, and 1, under the induced labeling f respectively.
Cahit called a graph cordial if it satisfies the following properties:

@) V(G -vi(G)[ <1,
(ii) leo(G) —ei(G)| < 1.

Several classes of cordial graphs, including the Cartesian
product, composition of graphs and tensor products, are
considered in [1,2,3,4,6,7,9,10,11,12,13,14,16,18,19,20,21,22].
In [5], Cairnie and Edwards have determined the computational
complexity of cordial labeling and Z-cordial labeling. They
proved that the problem of deciding whether a graph G admits a
cordial labeling is NP-complete. Other new and unsolved
problems related to cordial labeling can also be found in [4,7,8].

Lee, Liu and Tan introduced another graph labeling problem
in [17], called the balanced labeling problem. For any binary
vertex labeling f, a partial edge labeling f* of G is defined for
each edge uv € E(G) by

0, if fu) =f(v) =0,
f(u,v) = {
1, iffwy=f(v)=1.

Note that if f(u) # f(v), the edge uv is not labeled by f*. Thus,

f is a partial function defined from E(G) into the set {0, 1}. We
shall refer f* as the induced partial function of f.
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Let vo(G), vi(G), eo(G), and e,(G) be defined as above. Hence,
vo(G) = |{u € V(G) : f(u) = 0},
vi(G) = [{u € V(G) : flw) = 1},
eo(G) =[{{u, v} € E(G) : f ({u, v}) =0},
ei(G) = [{{u, v} € E(G) : f({u, v}) = 1}].

With these notations, we now introduce the notion of a balanced
graph.

Definition 1.1: Let G = (V,E) be a graph. G is a balanced graph,
or G is balanced, if there is a binary vertex labeling f of G
satisfying the following conditions:

(i) [vo(G)-vi(G)f <1and

(ii) leo(G) —er(Q) < 1.

A balanced graph G is said to be strongly vertex-balanced if vo(G)
= vi(G). It is strongly edge-balanced if eo(G) = €1(G). And if G
is both strongly vertex-balanced and strongly edge-balanced, then
G is strongly balanced.

Definition 1.2: A labeling f of a graph G is said to be friendly if
Ivo(G) — vi(G)| < 1. For any given friendly labeling of G, the
balance index set of G, BI(G), is defined by {|ed0) — e«(1)|}.

Example 1.1: Figure 1 shows a graph with BI(G) = {0,1,2}.

LV © ©

. L
le(1)-0]=0  e(1)-e@I=1  |e(1)-e(0)=2

Figure 1
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Example 1.2: The balance index set of ®-graph ©(2,2,3) is
{0,1}.

le(1)-e(0)f =0 - le(1)-e(0)=1
Figure 2

Example 1.3: The following (4,5)-graph G is balanced with two
different labelings.

le(1)-e(0)| =0 le(1)-e(03=1

Figure 3
The following results were established in [17].
Theorem 1.1: Let G be a k-regular graph with p vertices,

(i) G is strongly balanced if and only if p is even;
(ii) G is balanced if and only if p is odd and k = 2.

Corollary 1.2: Every cycle Cm is a balanced graph.
Corollary 1.3: For complete graph on n vertices Km,

(i) Km is a strongly balanced graph if m is even;
(ii) If m is odd, Km is balanced if and only if m = 3.
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Theorem 1.4: Every path Pm is balanced for m > 1; it is strongly
balanced if m is even.

Theorem 1.5: The complete bipartite graph Km,n is balanced if,
and only if, one of the following conditions holds:
(i) both m and n are even;
(ii) both m and n re odd and |m-n| < 2;
(iii)one of m and n, say m, isodd,n=2tand t=-1,0, or 1
(mod |m-n|).

Other results on balanced labeling and balanced graphs can
also be found in [15,20]. In this paper, a necessary and sufficient
condition for a graph to be (strongly) balanced is established.
Based on this result, the (strongly) balancedness of several
families of graphs are determined.

2. A Necessary and Sufficient Condition for Balanced Graphs

To establish a necessary and sufficient condition for balanced
graphs, we follow the edge-counting proof similar to the proof of
Theorem 1.1 as found in [17]. Suppose a graph G has p vertices
and q edges. Assume that p; of the vertices are of degree r;, for i
=1,2,...,n, and rj are arranged in such a way thatr; <r; <... <
r.. We note that the integers r;’s are not necessarily distinct but,
for our purpose, we assume they are. Thus, when n is 1, we have
an r)—regular graph. Counting the number of vertices and edges
of G, we have the following simple relationships:

p=Yp, andq=Yps /2.
i=1 i=1

For each i, 1 <i < n, we partition the p; vertices of degree r; into
two sets A; and B;, where all vertices in A, are labeled by 0 and all
vertices in B; are labeled by 1. Let a; = |Aj|, then [B]| = pi — a;. It
follows immediately from above that

Vi(©)= ¥a, and VG = Y.(b,-a) =p - a.
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In order to obtain an expression for eo(G) and e;(G), we define
¢(u,C,D) to be the number of edges connecting a given vertex u €
C to vertices in set D. Hence,

¢(w,C.D)=[{{u, v} :u e C,v e D, {uv} € E(G)}|.

We have
eo(G)=Z Z; o(v,AnA,) + Z; Z,: c(vALA,)/2,
e,(G)=Z Zr; ¢(v,B;,B)) + Z' ZB ¢(vB,B))/2, i <j

Let Sy = vi(G) - vo(G)' and S, = 1(G) - eo(é). Then,
R M
S, = Z} 2}; c(v,B;,B;) + Z} Z; ¢(v,B,B))/2 (2

- Zl T oA, A) + Z} 3 oA, AD/2 i<]

It is not difficult to see that the number of edges of the graph, q,
can also be expressed in terms of ¢(u,C,D), as follows:

4= Y cvA,A)/2+ 3 T o(v.B,,B,)/2

i=lvea i=lveB
+ Zn: Z C(V’Ai’Bj) + i z C(V,Ai,Bj)
i=lveA i=lveB, (3)
+ Z D C(VALA) + Z Y <(v,B,,B;)
i=lveA i=lveB
= ipiri/Z-
i=1
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Substituting the terms > ¥ ¢(v;B,B,)+ 3 " c(v,B,,B))/2 in

i=lveB; i=lveB
(2) by the same terms in (3) and simplifying, we have

Se = iplrl/z - ii Z c(V:AiaAj) - ii Z C(V,Ai,Bj)

Efatr] e tetr]
- Zpirﬂ - [Z;gc(V,Ai A)+c(VA,B,)]

= Zpig/Z - 2airi

- Z(pi —2a)r,/2. @)

We have the following result.

Theorem 2.1. Let G be a (p, q)-graph with S, and S, as defined
in (1) and (4) respectively. G is balanced if, and only if, there
exists a set of integers {a; : 0 < a; <p;, i = 1,2, ..., n} such that |S,|
<1and|Se| £1. Furthermore, G is strongly balanced if, and
only if, there exists a set of integers {a;j: 0 <a;<p;,i=1,...,n}
such that S, = 0,and S, = 0.

3. Applications

By using the result from Theorem 2.1, we can determine the
balancedness of the following families of graphs.

Example 3.1: A k-regular graph G on p vertices.

Here n=1. If we let p; = p, r; =k and a, = a, we have S, =p —2a
and S, = (p — 2a)k/2. If p is even, we set a = p/2 and, it is obvious
that G is strongly balanced. For p odd, G cannot be strongly
balanced since it is impossible for S, = 0. Thus, for G to be
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balanced, a must either be (p — 1)/2 or (p + 1)/2, and k must be 2.

Example 32: A path P, on m vertices.
Heren=2. Letri=2,n=1,p;=m-2,p, =2, we have S, =m
—2a; — 2a and Se = m - 1 — 2a, — 2a,. For Pm to be strongly
balanced, Sy = 0 and S, = 0. Hence, a; = (m —2)/2 and a, = 1.
Note that in this case m must be even. If m is odd, let a; = (m -
1)/2 and a; = 0, and it is obvious that Py, is balanced.

Ho, Lee and Shee [11] proved CymxP; is cordial for all m
and odd t. Seoud and Abdel [23] proved certain cylinder graphs
are cordial. By applying the above characterization, we have the
following result.

Theorem 3.1: A cylinder graph C,xP, is

(1) strongly balanced if either s or t is even;

(2) balanced if both s and t are odd.
Proof. A cylinder graph C; x P, has st vertices and 2st — s edges.
Heren=2. Letr; =3,1r,=4, p; =2s, p» = (t-2)s, we have S, =
st — 2a; — 2a; and S, = 2st —s — 3a; — 4a,. If either s or t is even,
the graph is strongly balanced, since we can set a; = s and a, = (t
—2)s/2. If both s and t are odd, let a, =s —2 and a, = [(t — 2)s +
3)/2 and we see that the labeling is balanced.

Example 3.3: We show that C;xP; is balanced and C;xP, is
strongly balanced in Figure 4.

Let G, H be two graphs, and let G have p vertices. The
corona of G with H is the graph obtained by taking one copy of G
and p copies of H and then joining the ith vertex of G to each
vertex in the ith copy of H, for each i from 1 to p. We will use
GC©H to denote the corona of G with H.
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led0) — ed1){ =0

C4xP; led0) — ed 1) =0
Figure 4
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Example 3.4: The sun graph C,©K,.
Heren=2.Letr; =1, =3, py =m, p, = m, we have S, =2m -
2a) — 2a; and S, = 2m - a; — 3a,. In order for CmCK, to be
strongly balanced, Sy, = 0 and S, = 0. Hence, a, =m /2 and a, =
m/2. If m is odd, let a; = (m — 1)/2 and a; = (m + 1)/2 and, it is
obvious that C,OK is balanced (See Figure 5).
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Figure §

By applying the above chafacterization, we have the following
result.
Theorem 3.2: The sun graph Cm©K; is

(1) strongly balanced if m is even

(2) balanced if m > 3.

4. Conclusion

As can be seen from above, the condition is particularly
useful if the number of distinct degrees is small. In the event that
a large number of distinct degrees are involved, the problem can
be solved by using dynamic programming or other integer
programming algorithms.
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