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The following definitions and theorems can be found in many textbooks
and papers, for example, see Behjad and Chartrand[1], Harris, Hirst and
Mossinghoff[5], and Johnsonbaugh(7]. Unless otherwise stated, all graphs
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Abstract

We give constructive and combinatorial proofs to decide why cer-
tain families of slightly irregular graphs have no planar representation
and why certain families have such planar representations. Several
non-existence results for infinite families as well as for specific graphs
are given. For example the nonexistence of the graphs with n = 11
and degree sequence (5,5,5,..,4) and n = 13 and degree sequence
(6,5,5,...,5) are shown.

Introduction

are assumed to be simple and connected.

1.1 Planar Graphs

A planar graph is a graph that can be drawn in the plane in such a way

that no two edges intersect except at a vertex.
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In 1930, Kuratowski gave the necessary and sufficient conditions for a
graph to be planar, see Harary[4].

Theorem 1.1. A graph G is nonplanar if and only if it contains a subgraph
homeomorphic with either Ks or Ks 3.

A connected planar representation of a graph divides the plane into
contiguous regions called faces. The unbounded face includes all the
plane up to the outer boundary of the graph. Let F denote the set of faces
of graph G. The following theorem, proven by Leonard Euler in 1752 gives
the Euler’s formula.

Theorem 1.2. If a graph G is connected and planar, then
|F| = |E| - V] +2.
Theorem 1.3. If a graph G is connected and planar with |V| > 3, then
|E] < 3|V|-6.
Corollary 1.1. In a planar graph G on n vertices,

Zi=1 d‘ < 6.
n

The condition, |E| < 3|V| — 6, is necessary, but not sufficient for pla-
narity. An example is K3 3.

Theorem 1.4. For a planar connected graph with |V'| > 4, there exists a
vertex v € V such that
d(v) <5.

Theorem 1.5. Given a face in a planar, connected graph with more than
two vertices, there exists a representation of that graph in which that face
is the unbounded (exterior) face.

For the proof see Theorem 11.3 in Harary[4].

1.2 Degree Sequences

An ordered sequence d; > d; = ... 2 d,p of non-negative integers is called
the degree sequence if there exists a corresponding graph G with vertices
%, ¥2, ..., ¥p Such that the degree of v; is d; for all i. A sequence is said to
be graphic if there exists a graph corresponding to it. Harary [4] has given
a complete list of non-isomorphic graphs up to 6 vertices.
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Theorem 1.6. A sequence dy,ds, ..., dr of non-negative integers with d; >
dy > ... > d, and n > 2 is graphic if and only if the sequence ds — 1,d3 —
1,....dg,+1 — 1,d4, 42, ...,dn is graphic.

See for reference, page 11 of Bondy and Murty[2]. Naturally these and
other similar results should be satisfied for the degree sequences we want
to study for planarity.

1.2.1 Regular Degree Sequences

A regular graph has all vertices of equal degree. A regular degree se-
guence is the degree sequence of such a graph.

The following result, due to Limaye, Sarvate, St¥nici and Young (8],
concerns the existence of planar graphs for regular degree sequences.

Theorem 1.7. For every degree sequence of length p whose elements are
all v, with r £ 5, pr even, and r < p, there exists a planar graph with that
degree sequence, except when p=7 andr =4, and whenp =14 andr =5,
in which case no planar graphs exist.

2 Slightly Irregular Degree Sequences

In this paper we consider degree sequences which fail to be regular by only
a few vertices.

Let us first consider sequences with highest degree greater than 5. In
view of Theorem 1.7, for a sequence d,dz,ds, ...,dm, ..., @pn—2,dn-1,dn o0
n vertices, there exists m such that d; > 6 for 1 < j <m, and d; <5 for
some m + 1 £ 7 < n in order to be planar. The following lemma describes
the restrictions on such a sequence.

Lemma 2.1. In a degree sequence dy,dz,...,dm,dm41y ..y dn—1,dn on 0
vertices, where dj > 6 for 1 < j <m, d; <5 form+1<j <n, and
r= Z;':m +14dp, if the sequence has a planar representation then

6(n —m)—r >12.

Proof. Let s = 3_7", dp. The number of edges in a graph with this sequence

is *’—“2’—’ Assume that this sequence has a planar representation. Then, by
Theorem 1.6, s+ r < 6n — 12. Since 6m < s, implies 6m + r < 6n — 12.
Hence the result. O
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If the regularity fails by only one or two vertices, then we have two
cases: (i) (n—m)=1or(n—m)=2and (ii) (n—m) = (n—1) or
(n —m) = (n —2). First case turns out to be of little interest because
when (n —m) = 1, the inequality in Lemma 2.1 can not be satisfied. When
(n — m) = 2, the inequality is satisfied only when degree sum of vertices
with d; < 6 is zero which gives a non-planar graph as there is no vertex of
degree less than 6.

Thus, it is more interesting to study case (ii) when n —m =n — 1
or n — 2, that is the degree sequences of the form n — j,d,d,...,d and
n—jn-k,d,d,..,d where n is the number of vertices and d < 5. We
first discuss the existence of planar graphs with degree sequence (n —
j»d,d,d...,d). Here is an important observation:

Lemma 2.2. (i) A planar graph with degree sequence (n — j,2t,2t,...2t)
may exist only when n and j have same parity and does not exist if n and
J have opposite parity. (ii) A planar graph with degree sequence (n— j,2t+
1,2t +1,...,2t + 1)) may exist only when j is odd and does not ezist if j is
even.

This lemma is used repeatedly i;l the following discussion:

Case d = 1: For j = 1, such a planar graph is a star. For connected
planar graph, j = 1 is the only possible value of j.

Case d = 2: For (n — 4,2,2,...,2), n and j must be of the same parity
and n ~ j must be even. To construct such a planar graph, form (n — 5)/2
triangles with a common vertex of degree n — j.

Case d = 3: For j = 1, such a graph is a wheel. For general j, the
sum of the degrees is 3(n — 1) + n — j. Therefore for even j such a graph
does not exist.

Theorem 2.8. (1) A connected planar graph with degree sequence
(n-31,1,..,1) exists iff j = 1. (2} A planar graph with degree sequence
(n—3,2,2,...,2) exists iff n and j have the same parity. (3) A planar graph
with degree sequence (n — 4,3,3,...,3) exists iff 7 is odd.

Theorem 2.9. A planar graph with degree sequence
(n-1,d,d,d...,d) does not ezist ford =4 and d = 5.

Proof. The result is true when n is even and d = 4 because sum of the
degrees is odd in that case. Let n be an odd integer. Name the vertex
with degree (n — 1) as central vertex, and denote by C. Consider another
vertex z in the graph, then there are three more vertices with which z is
connected say z;, T2, 3. These three vertices are connected to C as well as
to z, forming three co-axial triangles ( i.e. three triangles which share an
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edge.). See Figure 1. If all the vertices lie outside this structure then one of
the vertices inside has degree at most three. If a vertex z4 lies inside one of
the triangles then it gives rise the similar structure embedded in the original
structure leaving at least one vertex with degree three. Thus a planar graph
with d = (n — 1,4,4,4...,4) does not exist. Consider the case when d = 5,
applying Theorem 1.6, the inequality yields §Lﬂ_"l)2i(_";1_l < 3n — 6, which
reduces to 3n < 3n — 3. This is false, therefore no planar graphs exist for
d=5. ’ O

X

Figure 1: Three co-axial triangles

Theorem 2.10. A planar graph with degree sequence (n — 2,d,d,d...,d)
does not exist ford =1,3,4 and 5 except forn =6 and d = 4.

Proof. We have discussed d = 1 and d = 3 cases in Theorem 2.13. Consider
d = 4, when n > 6, three co-axial triangles arise, leaving at least one
vertex of degree three and hence the corresponding graphs do not exist.
(This situation is similar to above theorem). Consider d = 5, then }_d; =
6n — 7 > 6n — 12 which is upper bound for degree sum of a planar graph,
hence the corresponding graph does not exist.

O

Theorem 2.11. For n > 8 a planar graph with degree sequence (n —
7 4,4,4...,4) always exists, whenever the necessary conditions n — j is an
even number, and 0 < n — j < n — 3 are satisfied. For n = 6, a planar
graph exists except for (n — j) = 0,2. Forn =17, forn—j = 0,2 the
corresponding planar graphs exist, but for n — j = 4 it does not. Forn = 3§,
forn — j = 2,4, the corresponding planar graphs exist.

Proof. As the graph can not have a single vertex of odd degree, n — j must
be and j > 3 is necessary because when j is 1 or 2, the corresponding
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graphs do not exist by Theorems 2.9 and 2.10. The claims for n = 6,7,
and 8 can be checked easily. For n = 9 and n = 10, the graphs are given
in Example D and Example E.

The basic building blocks in this constructive proof for n > 11 are
two planar graphs G; and G, of degree sequences (4,3,3,...,3,2,2) on odd
number of vertices labeled 1,2,...,2t-1; and of degree sequence (4,3, ...,3,2)
on even number of vertices labeled 0,1,2,...,2t-1 respectively. The planar
representation of these graphs are drawn in Figure 2 with their mirror

images G| and G on vertices 1,2’,...,(2t — 1)’ and 0/,1,2, ..., (2t — 1)

4 @ty 24 @y
(3] /,tman)l‘\ ar . G2 //f .

8

-, \)
\\‘ / \ A ”
. A /
N N
] [
odd number of vertices even numbet of vertices

Figure 2: basic building blocks

Casen=4t,t>23

Draw the building blocks G; and G5 on 2t —1 and 2t vertices. Note G,
has two end vertices labeled 1 and 2t —1 with degree 2 and G4 has only one
vertex labeled 0’ of degree 2. Join the two end vertices 1 and 2t -1 of G; to
the vertex 0’ of degree 2 of G5. Join vertex i with i’ to create parallel edges
for i =1,2,..,2t — 1,7 # t. Now combine the middle (n — j)/2 parallel
edges to create a vertex of degree (n — 7). For an illustration, see Example
Awheren=12andn—-j=4.

Casen=4t+1,t>3

Start with the building blocks G2 and G5 on 2t vertices. They are
identical and vertices labeled 0 and 0’ are of degree two. Join these two
vertices to a new vertex z. Also add edges (i,%), i = 0,1,...,2t — 1 while
keeping planar property intact. Now replace edges (i,i') fromi = 1,2, ...,t—
1,t+1,...,(n—j—2)/2 by edges (i, z) and (¢, z) to get the required graph.

Casen=4t+2,t>3

Start with the building blocks G; and Gj on 2t — 1 vertices. Add
four new vertices 0,0’, —z, z and edges (0, 0"),(0, 1),(0’, 1'), (0, —z), (0, —z),
(0,2),(0',z), (—=,2t — 1) and (—z, (2t — 1)') and parallel edges (7,7’) for
i =0,...,2t — 1 while keeping planarity intact. Note we already have a
planar graph with n — j = 2. Now replace edges (i, ") with edges (i,z) and
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(#,x)fori=1,..,t-1,t+1,...,(n—-3)/2 to get the required planar graph.
Casen=4t+3,t>2

Start with the building blocks G and G} on 2t + 1 vertices. Add
the parallel edges (¢,7') for ¢ = 1,2,...,2¢ + 1. There are two cases to
consider: first n — j = 4t and then 2 < n — j < 4¢. For the first case:
replace the edges (i,%') for i = 2,3,...,t — 1,t + 1, ...,2t with edges (i, z)
and (i',z) and also draw edges (1, z), (1',z), (2t + 1, ), ((2¢t + 1)’, z), where
z, the new vertex of degree 4, is placed in the midway between G, and
G} so as to preserve planarity of the graph. See Example B (Figure 4)
after the proof for n = 15 and n — 7 = 12. For the second case, add edges
(2t—1,2) and ((2¢—-1),2') and (1, z) and (1’, z) while preserving planarity.
Remove the edge (2,2'). This gives the required graph for n — j = 2. For
other values of n — j, we replace the edges (i,%') by (i,z) and (', z) for
i=3,4,..,t—1,t+1,...(n—3)/2. See Example C, forn = 15and n—j = 6.

]

Example A : n =12, n — j = 4 (see Figure 3).

©
o

Figure 3: Example A n=12

Example B : n = 15, n — j = 12 (see Figure 4). Example C : n = 15,
n — j = 6 (see Figure 5). Example D: n =9, n —j =0,2,4,6 (see Figure
6). Example E : n =10, n — j =0, 2,4, 6 (see Figure 7).
Theorem 2.12. A planar graph with degree sequence (n — j,5,5,5...,5)
does not exist for j < 6.

Proof. Note that the degree sum 6n — (5 + j) must be less than or equal to
6n —12,ie. 547 > 12 or 7 = 7 for such planar graph to exist.

O
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Figure 5: Example C n=15

3 Maxplanar graphs with slightly irregular
degree sequences

A planar graph is called maxplanar (or maximal planar graph) when it has
exactly 3(n — 2) edges. If a face has more than three sides we can add
an edge between nonadjacent vertices on the boundary of this face and
get a planar graph, therefore in a maxplanar graph all faces are triangles.
Construction of such graphs is also known as triangulation.

Theorem 3.13. A mazplanar graph is regular only for n = 3,4,6, and 12.
Furthermore, all these planar graphs ezist.
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Figure 6: Example D n=9

2 @@ &

Figure 7: Example E n=10

P

/

Proof. A necessary condition for a graph to be maxplanar is that }_d; =
6(n — 2) and is regular when 6(n — 2) is divisible by n. Combining these
two we must have 6(n — 2) = an where «a is some constant integer. This is
satisfied when o takes values 2, 3, 4 or 5 resulting into corresponding values
of n to be 3,4, 6 and 12 with d = 2, 3,4, and 5 respectively. It is well known
that all these planar graphs exist. a

We call a maxplanar graph slightly irregular if max d; —mind; < 1 and
obtain a general complete result.

Theorem 3.14. A mazplanar graph with degree sequence such that maz
di—min d; <1 is always constructible except for n = 11 and n = 13.

Proof. From Theorem 1.7 and the hypothesis, for slightly irregular max-
planar graphs the possible pairs (min d;, mazx d;) are (1,1),(1,2),(2,2),
(2,3),(3,3),(3,4), (4,4),(4,5), (5, 5), and (5,6). First we consider each case
with same min and max degrees. The planar graphs of type (1, 1) are regu-
lar planar graphs of degree 1 that do not exist. The cases (2,2), (3, 3), (4,4)
and (5, 5)are that of regular planar graphs as described in theorem 3.18.

Recall, for a planar graph to be maxplanar }_ d; = 6(n — 2). Let x; be
the number of vertices with degree 1 and x» be the number of vertices with
degree 2. Solving two equations 6(n — 2) = z; + 2z, and z, + z2 = n gives
1 = 12 — 4n. The only valid value n for which maz d; = 2 is 3 which
gives z; = 0, thus there does not exist a maxplanar graph of type (1,2).
Similarly for the maxplanar graph of type (2,3), we have two equations
6(n — 2) = 2z; + 3x,, and z; + 22 = n, implying z; = 12 — 3n. The only
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valid value for n is n = 4 for which a maxplanar regular graph K, exists,
hence a maxplanar graph of type (2,3) does not exist.

For the case of graph of type (3, 4), the equations are 6(n — 2) = 3z; +
4z5, and 1 + 2 = n, which gives £y = 12 — 2n. This has two valid
solutions: n = 5 gives z; = 2, and a maxplanar graph with degree sequences
(4,4,4,3,3), which exists. The other solution, namely n = 6 gives z; = 0,
which gives regular planar graph on 6 vertices.

For the case of graphs of type (4,5), the equations are 6(n — 2) =
4z) + 52, and z; + 2 = n, which gives ; = 12 — n. This has six valid
solutions, n = 7,8,9, 10,11, 12. Each of these values gives rise to different
degree sequences as given below:

when n = 7, ; = 5, the resulting maxplanar graph has degree sequence
(5) 51 4, 4, 4a 41 4)’

when n = 8, z; = 4, the resulting maxplanar graph has degree sequence
(5,5,5,5,4,4,4,4),

when n = 9, z; = 3, the resulting maxplanar graph has degree sequence
(5,5,5,5,5,5,4,4,4),

when n = 10, z; = 2, the resulting maxplanar graph has degree sequence
(5,5,5,5,5,5,5,5,4,4), and

when n = 11, z; = 1, the resulting maxplanar graph has degree sequence
(5,5,5,5,5,5,5,5,5,5,4).

All graphs with above degree sequences given are constructible except
for n=11 and n=13. The non-existence of these graphs have been proven
in the following.

Now consider the case of graphs with (min d;,maz d;) = (5,6). For
such graphs the simultaneous equations are 6(n — 2) = 5z, + 6z, and
1 + 2 = n. Solving these two equations give z; = 12 and = = n — 12.
Obviously n > 13. Such maxplanar graphs exist for all n but 13.The degree
distribution is as follows : x; = 12 (number of vertices with degree 5) o = ¢
{number of vertices with degree 6), for n =12+¢ and i = 2,3, ...

For n =14 and 15 the graphs are given in the Examples F and G. We
give a construction for such graphs with n > 16 as follows:
For n > 16 a maxplanar graph with degree sequence such that max d;- min
d; <1 is always constructible with min d; = 5 and max d; = 6 with degree
distribution: z; = 12, number of vertices with degree 5, zo = i, number of
vertices with degree 6 for n =12 + ¢ and i = 4,5, ...
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n=14

Figure 8: Example F and G

Note that in all such graphs, the number of vertices with degree five is
12. Let G be the graph with n = 16 and » = 5. It is known that G is
unique, see Brinkman and McKay(3]. The maxplanar graph on 16 vertices
has degree sum 84 but the degree sum of G is 80. Thus G is 4 degrees
short of being maxplanar graph. Alternatively, G is two edges short of
being maxplanar graph. Note that G has two quadrangles, draw two di-
agonals (shown as dash lines, see Figure 9 ) in these two quadrangles to
get the desired graph on 16 vertices with 12 vertices of degree 5 and four
vertices of degree 6. Call this graph as G;. In G; the vertices of degree
six are adjacent in pairs. See Figure 9. The graphs for n > 16 can be

O |,

G G1

Figure 9: graph with n=16

constructed from G, of figure 9 as follows:

In the figure 10 (a) a subgraph on seven vertices of G is shown where
degree of vertex a is 6 and all other vertices are of degree 5. It is obvious
from figure 9 that such a subgraph exists in G;. We perform the set of
operations of addtion and deletion on Figure 10(a) as described below:

In the Figure 10(a), a new vertex h is added on the edge ac, an edge ad is
removed and new vertex h is connected to d and e. The resulting subgraph
is shown in Figure 10(b).
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This set of operations reduces the degree of a to 5 and increases degrees
of b and e to 6. Thus we arrive at a subgraph on vertices a,c¢,d, e, f,g,h
which is isomorphic to the subgraph in Figure 10(a). Adding a new ver-
tex i in this subgraph would result in the figure 10(c), which contains the
subgraph isomorphic to Figure 10(a). Repeating the set of operations de-
scribed above, every time we add a new vertex to the subgraph we get a
vertex of degree 6 keeping the degrees of other vertices in the graph G, as it
is. Thus we can construct the required graph for any n > 16 by performing
the described set of operations recursively.

b ~ b —
—~. c Rt
| A )
b i VN
L \ TN
e R A ‘)a\ e
AU N NN ~
~! /4/> g yg
— -6
L "

Figure 10: subgraph from figure 9

a

Introducing a further slight irregularity in the degree sequence gives us
the following series of maxplanar graphs.

Theorem 3.15. A planar graph with degree sequence (n—2,n—-2,d,d, ...,d)
exists whenever n =2 d+ 1 for d = 2,3,4 and do not exist for d = 1,5.
Further, these graphs are mazplanar ford =4

Proof. Clearly to have a graph with least degree d, the graph must have
at least d + 1 vertices. For d = 4, consider a wheel with (n — 2) spokes,
that means on the outer cycle there are (n — 2) vertices. Join these (n —2)
vertices with a new vertex of degree (n — 2) located in the exterior region
of the wheel to get the required planar graph. For d = 2, delete the edges
from the (n — 2)-cycle of the graph constructed for d = 4. For d = 3, note
that n = 2t for some positive integer t. Delete alternate edges from the
(n — 2)-cycle of the graph for d = 4. For d = 5, the required planar graph
does not exist because the number of edges exceeds the bound 3(n - 2).
For d = 1 the sequence is not even a graphic sequence. 0O

Theorem 3.16. A mazplanar graph with degree sequence (n—7,5,5,5...,5)
does not exist except for n = 12.
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Proof. Suppose such a planar graph exists. Let C be the vertex with degree
n — 7. We divide the vertices into two groups. The first group containing
(n — 7) vertices z;,x2, ..., Zn—7 Which are connected to center C forming
a wheel with n — 7 spokes and the second group which containing the re-
maining six vertices, say, a, b, ¢, d, e, f, which are not connected to C. None
of those six vertices are inside the triangles of the wheel as the graph we
are considering is maxplanar and connected and so the degree of the center
will increase, a contradiction.

As the graphs we consider are maxplanar and in a maxplanar graph
min d; > 3, (n — 7) has to be greater than or equal to 3.
Without loss of generality, assume the edges on the wheel are (z;, Ti+1)
fori=1,2,..,n — 8 and (zp—7,%1). There are no other edges among the
vertices from the first group. If there were such edges, without loss of
genenerality, choose the edge (i, ;) where j # (i + 1) and there are no
other edges (z,,zx) with i < 7 < k < j and (j — ¢) > 2. This implies, by
triangulation of the polygon z;,....x;, z;, that there exists a vertex z; for
some k which must be of degree less than 5 (in fact of degree 3), a contra-
diction, unless some of the six vertices are inside the polygon. In this case
there are at least three of the six vertices inside the polygon z;i, ....z;, z:.
All six vertices can not be inside, because then we will have the polygon
Zj, Tjt1,y.. L1, ...Z3, T; and triangulation will give a vertex of degree 3 in
the graph, a contradiction.
There can not be five vertices inside the polygon z;, ....z;, z;, because then
there will be one vertex, say a, outside the polygon. The vertex a must
be adjacent to z; and z; because of triangulation and we arrive at similar
situation where triangulation of a polygon will give us a vertex of degree 3
in the graph.
Now suppose there are exactly two vertices outside z;, ....z;,z; and 4 ver-
tices inside. The four vertices can form a planar K, , but then the degree
of all vertices can not be five without getting non-planar graph, at the
most five edges can be drawn among these four vertices. Therefore to have
degree five, 2n; > 8 where ny = 7 — 7 — 1 and n; < 10 as two edges will
emit from each of n; vertices to cover the degree sum 20 of four vertices. In
any case, there is at least one vertex out of these four which is joined with
three vertices x,y, and z from ;, ..., Z;, but then one of the x,y or z will be
of degree 4 or some of the vertex from z;,...,z;-x,y,z will remain as degree
three vertex. Now suppose there are exactly three vertices inside the poly-
gon i, ....Zj, T;, then 2ny + 2 > 9, so n; > 4, therefore by same argument
as in the case of 4 vertices, there will be a vertex from z;, ..., z; which will
not be of degree 5. This completes the argument for nonexistence of any
other edges among the vertices on the cycle of the wheel.
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Next, note that the n — 7 vertices on the cycle is two degrees short of 5,
there are 2(n — 7) edges coming out of the wheel and joining the remaining
six vertices and none of these six vertices are adjacent to more than 2
vertices on the cycle of the wheel. Second part of the last statement is
true, because if one of the six vertices is adjacent to three or more vertices
of the cycle of the wheel, one of the vertices on the cycle of the wheel can
not be of degree 5 as required due to triangulation.

The sum of the degrees of the group of six vertices is 30. A vertex outside
the wheel can not be connected to more than two vertices on the wheel.
Thus there are at the most 12 edges, two emitting from each of six vertices.
Thus these six vertices have to form an outer planar (all the vertices are
exterior) graph with degrees three or four.

It can be seen that regular graphs with d=3 or d=4 on six vertices are
not outer planar. Thus we are left with only one outer planar graph on
six vertices, which is a wheel of size 5. As all vertices other than C are
of degree 5, exactly 10 edges emit from this wheel to match up with 2(n-
7) edges of the first wheel. Therefore 2(n-7)=10 and hence n=12. This
completes the argument why a maxplanar with given degree sequence does
not exist except for n = 12. (]

Remark: The above theorem explains the nonexistence of the graphs
with n = 11 and degree sequence (4,5,..,5) and n = 13 with degree se-
quence (6,5, ...,5)
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