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Abstract.

A directed covering design, DC(v, k, A), is a (v, k,2]) covering design
in which the blocks are regarded as ordered k-tuples and in which each
ordered pair of elements occurs in at least A blocks. Let DE(v, k, A) denote
the minimum number of blocks in a DC(v, k, ). In this paper the values
of the function DE(v, k, A) are determined for all odd integers v > 5 and A
odd, with the exception of (v,\) = (53,1),(63,1),(73,1),(83,1). Further,
we provide an example of a covering design that can not be directed.

1 Introduction

A transitively ordered k-tuple (ay, . . ., ax) is defined to be the set {(a;, a;) :
1<i<j<k} Letu, k, and X be positive integers. A directed cover-
ing (packing) design, denoted by DC(v, k, X) (DP(v, k, })) is a pair (X, A)
where X is a set of points and A is a collection of transitively ordered
k-tuples of X, called blocks, such that every ordered pair of X appears
in at least (at most) A blocks. Let DE(v,k,\) (DD(v,k,\)) denote the
minimum (maximum) number of blocks in a DC(v,k,A) (DP(v,k,A)). A
DC(v,k, \) with |A| = DE(v,k, \) is called a minimum directed covering
design and a DP(v,k, \) with |A| = DD(v,k, ) is called a maximum di-
rected packing design. If we ignore the order of the blocks, a DC(v, k, A)
(DP(v,k,))) is a standard (v, k,2X) covering (packing) design. Therefore,
the following bounds, known as the Schonheim bounds, hold [22].
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Here [z] is the smallest and |z] is the largest integer satisfying |z] <
z < [z] . The above bound has been sharpened in certain cases by Hanani
[19].

Theorem 1.1. (3) If 2A(v—-1) =0 (mod (k—1)) and 2Mv(v-1)/(k—1) =
—1 (mod k), then DE(v,k,)) > DL(v,k,\) + 1.

(i) If 2M\v(v—1)=0 (mod (k —1)) and 2/\v(v -1)/(k—-1) = 1(mod
k), then DD(v,k,)) < DU(v,k,\) — 1.

Therefore, let DE(v, k,A) = DL(v, k, A)+1if 2X\(v—1) = 0 (mod (k—1))
and 2\v(v —1)/(k — 1) = ~1 (mod k) and DE(v,k,\) = DL(v,k, A), oth-
erwise.

When DE(v,k,A) = DL(v, k, ), the directed covering design is called
minimal. Similarly when DD(v, k,\) = DU(v,k, A), the directed packing
design is called optimal. A directed balanced incomplete block design,
DBlv,k, ], is a DC(v, k, ) where every ordered pair of points appears in
exactly A blocks. If a DBfv, k, A] exists then it is clear that DE(v,k, ) =
2\v(v —1)/(k — 1) = DL(v,k,)\) = DD(v,k, )). In the case k = 5, Street
and Wilson [26] have shown the following:

Theorem 1.2. Let A and v > 5 be positive integers. The necessary and suf-
ficient conditions for the ezistence of a DB|v, k, )] are that (v,)) # (15,1)
and that AM(v —1) =0 (mod 2) and Mv(v — 1) =0 (mod 10).

Lemma 1.1. If there exists a DB(v,k, )] and DE(v,k,\') = DL(v,k, \")
then DE(v,k,A + X') = DL(v, k, A + X').

In [23]-[25], Skillicorn discussed the functions DE(v,4,1) and DD(v, 4,1)
and developed many other results including applications of directed designs
to computer network and data flow machine architecture. Further, Assaf
et al. [10] have determined the values of DE(v, 4, )) and DD(v,4, )) for all
positive integers v and A. The values of DE(v, 5, A) have been determined
for all v > 5 and positive A except for v and A odd, [5,6). It is our purpose
here to discuss the function DE(v, 5, A) for every odd A and odd v > 5.
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Theorem 1.3. Let v > 5 and A be odd integers . Then DE(v,5,}) =
DL(v,5,)) with the exceptions of DE(v,5,1) = DL(v,5,1) + 1 for v =
9,13, 15 and the possible ezceptions of (v, ) = (53,1), (63, 1), (73,1), (83,1).

2 Recursive Constructions

To describe our recursive constructions we need the notions of transver-
sal designs, group divisible designs, pairwise balanced designs, for general
information see [6). We shall adopt the following notation: a (v, K, A)-PBD
stands for a pairwise balanced design of size v with index A and block size
from K. A T[k, A\, m] stands for a transversal design with block size k, in-
dex A and group size m. A (K,)-GDD stands for a group divisible design
with block sizes from K and index A. When K = {k} we simply write & for
K. The group type of a (K,\)-GDD is a listing of the group sizes using
exponential notations, i.e. 1°273*... denotes ¢ groups of size 1, j groups of
size 2, etc. Further, an incomplete pairwise balanced design with index A
denoted by (v, K, \)-IPBD(h) is a triple (X, H, A) where X is a finite set
of order v, H C X of order h and A is a collection of k-subsets of X, keK,
called blocks, such that:

1) Each pair of distinct points z,y € X in which at least one of = and
y does not lie in H occurs in exactly A blocks.

2) No block contains two distinct points of H.

We would like to remark that the notions of transversal designs, group
divisible designs, incomplete pairwise balanced design can be easily ex-
tended to the directed case. In the sequel we write DT, DGDD and
IDPBD with the appropriate parameters.

The following theorem will be used extensively in this paper. The proof
of this result may be found in [1)-[3], [14] -[16], [19], [21], [27]-

Theorem 2.1. There ezists a T[6,1,m] for all positive integers m, m 4
{2,3,4,6} with the possible ezception of m € {10, 14, 18,22}.

Another notion that is used in this paper is the notion of modified group
divisible designs. Let k, \,v and m be positive integers. A modified group
divisible design (k,\)-MGDD of type m" is a quadruple (V, 3,7,6) where
V is a set of points with |V| = mn, v = {G1,Ga,...,Gx} is a partition of
V into n sets, called groups, § = {R1, Rz, ..., Rm} is a partition of V' into
m sets, called rows, and 8 is a family of k-subsets of V, called blocks, with
the following properties:

1) lBﬂGiISIfora.llBeBandG,-E'y.
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2) |BNRij|<1forall B€pandR; €.

3) |Gi| = m for all G; € 4.

4) |GiN R;j| =1 for all G; € v and R; € 4.

5) Every 2-subset {z,y} of V such that z and y are neither in the same
group nor same row is contained in exactly A blocks.

A resolvable MGDD (RMGDD) is one the blocks of which can be
partitioned into parallel classes. It is clear that a (5, 1)-RMGDD of type 5™
is the same as RT[5, 1, m] with one parallel class of blocks singled out, and
since RT'[5, 1,m] is equivalent to T'[6, 1, m] we have the following existence
theorem.

Theorem 2.2. There exists a (5,1)-RMGDD of type 5™ for all positive in-
tegersm, m & {2,3,4,6}, with the possible ezception of m € {10,14, 18, 22}.

The following theorem is a generalization of Theorem 2.6 of [8].

Theorem 2.3. If there exist a (5,1)-RMGDD of type 5™, a (5,))-DGDD
of type 2™s', and a (10 + h,5,))-IDPBD(h), then there ezists a (10m +
2u+h+5,5A)-IDPBD(2u+h+s), where0 <u<m-1.

Lemma 2.1. If there ezists a (v + h,k,A\)-IDPBD(h) and DE(h,k,\) =
DL(h,k,}), then DE(v + h,k,A) = DL(v + h,k, \).

We would like to mention that, for large v, instead of constructing a
DC(v,5, \) we will construct a (v,5,A)-IDPBD(h), h > 5 and then on the
hole we construct a DC(h,5,A). Finally, about the notations, a block of
theform (k k+m k+n k+j f(k)) (mod v) where f(k) = a
if k is even and f(k) = b if k is odd is denoted by ( 0 m n j ) U {a, b}.
Further, ablock (0 m f(k) n j)mod (v) ,where f(k) = a if k is even
and f(k) = bif k is odd, is denoted by (0 m - n j).

3 Incomplete Pairwise Balanced Designs

In this section, we construct a (v,5,1)-IDPBD(k), then we invoke
Lemma 2.1 to prove our result. We would like to mention that, the IDPBD
designs for v = 29,77,93 are taken from [17], then we directed them and
for v = 23,27, 33,43, 113 are from [20].

Lemma 3.1. Let v =7 (mod 10), v > 47 be an integer. Then there ezists
a (v,5,1)-IDPBD(k) where k =7 when v =7 (mod 20) and k = 17 when
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v = 17 (mod 20). Furthermore, there ezists a (57,5,1)-IDPBD(7) and
(77,5,1)-IDPBD(19)

Proof. For v = 7 (mod 20), v > 47, the construction is as follows:

1) Take a B[v — 6,5, 1] in increasing order.

2) Take a (v+86,5,1)-IPBD(13) in decreasing order, [18]. Place the points
{v+6,v+5,v+4,v+3,v+2,v+1} at the end of the blocks in which they
appear. Then replace v+6,by v, v+5byv—1,v+4byv—-2,v+3 by
v—3,v+2byv—4,and v+ 1by v— 5. Then it is readily checked that
the above two steps yield a (v, 5,1)-IDPBD(7) for v = 7 (mod 20), v > 47.

For v = 17 (mod 20), v > 97, the construction is as follows:

1) Take a (v — 8,5,1)-IPBD(9) in decreasing order, [18].

2) Take a B[v + 8, 5,1] with a hole of size 25 in increasing order, [12]. Fur-
ther, place the points {v +8,v+7,v+6,v+5,v+4,v+3,v+2,v + 1} at
the end of the blocks in which they appear. Then replace v+8 by v, v+ 7
byv—1,v+6byv—-2 v+5byv—-3,v+4byv—4,v+3byv-35,
v+2 by v—6, v+1 by v—7. Then it is readily checked that the above two
steps yield the blocks of a (v, 5,1)-TDPBD(17) for v = 17 (mod 20), v > 97.

For v = 57, apply Theorem 2.3 withu =3,s=0,m=5and h=1.
For v = 77, let X = Z3 x Z19 U {00} U Hyg, we first construct a 2-

RBJ[58,4,2], then for each parallel class we adjoin a new point at the indi-
cated place. The parallel classes are the following blocks mod (-, 19).

(= 00(0,0)(1,0)(2,0))
((07 1)(11 17) - (1) 2)(0, 18))

((277)(1a 6) - (11 13)(2’ 12))
((17 13)(0’ 3) - (0’ 16)(13 6))

((1,2)(2,4) — (2,15)(1,17))

(

((01 16)(2a 11) - (2)8)(()’ 3))

((21 8)(11 15) - (1a4)(21 11))
((0,5)(1,9) — (1,10)(0, 14))

1
((2,5)(0,9) — (0,10)(2, 14)).

((2a 0)(1! 0)(0> 0)00 _)

((la 7)(0’ 6) - (Oa 13)(1a 12))
((2,13)(1,3) — (1,16)(2,6))
((09 2)(1a 4) - (11 15)(0’ 17))
((2,2)(0,4) — (0,15)(2,17)).
((1,10)(2,18) — (2,1)(1,9))
((ls 14)(07 12) - (Oa 7)(1, 5))
((la 8)(01 15) - (074)(1’ 11))
((1,5)(2,9) - (2,10)(1,14))

241



Lemma 3.2. Letv =9 (mod 10), v > 29 be an integer. Then there ezists:
i) A (v,5,1)-IDPBD(29) for v=9 (mod 20), v > 129,

i) A (v,5,1)-IDPBD(19) for v = 19 (mod 20), v > 99,

iii) A (v,5,1)-IDPBD(T7) for v = 29,39,49,59,79, a (v, 5,1)-IDPBD(17)
for v = 69,89, and a (109,5,1)-IDPBD(19).

Proof. For the case (i); see [13].

For v = 19 (mod 20), v > 99, the construction is as follows:
1) Take a (v — 6,5,1)-IPBD(13) in increasing order, [18].
2) Take a B[v + 6,5, 1] with a hole of size 25 [12] in increasing order. Fur-
ther, place the points v+ 6, v+ 5, v+4, v+ 3, v+ 2, v + 1 at the end
of the blocks in which they appear. Then replace v + 6 by v, v + 5 by
v—-1,v+4byv—~2,v+3byv—-3,v+2byv—4,and v+ 1by v —5.
Then it is readily checked that the above two steps yield the blocks of a
(v,5,1)-IDPBD(19), where the hole is {v — 18,v - 17,...,v}.

For v = 29, let X = Z3 x Z7U {00} U Hy, we first construct a 2-
RB(22,4,2], then for each parallel class we adjoin a new point at the indi-
cated place. The parallel classes are the following blocks mod(—, 7).
((0,6)(1,5) — (1,2)(0,1)) ((1,4)(0,5) — (0,2)(1,3)).

((0,4)(1,1) — (1,6)(0,3)) ((1,6)(2,5) - (2,2)(1,1)).
((1,2)(2,4) - (2,3)(1,5)) {(2,6)(1,3) - (1,4)(2,1)).
((2,3)(0,1) - (0,6)(2,4))-

For v = 39,49, 59, 79, 89, see the table below.

For v = 69, if we take a RB[52,4,1] and adjoin a point to each of
its parallel classes, we obtain a (69, 5,1)-TPBD(17). Then, by taking two
copies of the (69, 5,1)-IPBD(17) in opposite order, we obtain a (69, 5,1)-
IDPBD(17).

For v = 109, apply Theorem 2.3 withh=1andm =9, s = 2, u=8.
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Point set

Base Blocks

Z3z2U He

(24104031) (025-1013)U (A1, he)
(011-152)U{hs,ha} {05-296)U{hs,he}
{2 18 h7 0 16 ) orbit length 2

{3 19 hy 17 1) orbit length 14

49

Zz X Z21
UH7

{(0,0)(1, 7)h3(1,15)(0, 3)) {(1,11)(0,0)ha(1,17)(0,4))
{(0,0)(1, 10)k5(0, 7)(1, 12)) {(1,16)(0, 0)hs(0, 8)(1, 11))
{(0,0)(1,6)R7(0,9)(1, 18)) ((0,5)(0, 11)(0, 3)(1, 19)(0,0))
((0,10)(1,14)(0,4)(0,9)(0,0)) ((1,9)(0, 7)(1,6)(1,20)(0,0))
{(1,4)(1,11)(1,0)(1,9)(1,3))

59

ZgaUH,

(16 4028 20) (1344019 14)

(9314032) (452-035)U{h,hs}

(037-215U {hs,h4} (4211-045)U {hs,hs}

{27 1 hy 0 26) orbit length 25 {26 0 hy 25 51) orbit length 1

79

Z73U Hy

(40 hy 36 40) orbit length 4

{ 8 40 hy 4 44 ) orbit length 32
(50-2845)U{hs,h3} (238-039)U{hs,hs}
(2411-053)U{hs,h7} (372101)
(0737199)(160152141)

{(38264890) (25031138)

89

Z72U Hyz

(0 36 hy7 38 2 ) orbit length 34
{ 34 70 hy7 36 0 ) orbit length 2
(32201440)(83530560)
(338-015) U{h],hg}
{09-3320) U{hs,hs}
(10-25) Ufhs, he}
{055-613) U{hs, hs}
(70-5025) U{hg,hlo}

(270 - 41 8 ) U{hyy, b1}
(940-0 19) U{hls,h“}

{26 55-110) U{hys, b6}

Lemma 38.3. There exists a (23,5,1)-IDPBD(3).

Proof. The construction consists of the following two steps:

1) Take a B[21,5,1] in increasing order.

2) Take a B[25, 5, 1] in decreasing order and delete the block { 25 24 23 22 21 ).
Further place the points 24 and 25 at the end of the blocks in which they
appear. Then replace 25 by 23 and 24 by 22.

o
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Lemma 3.4. Let v = 3 (mod 10) be an integer. Then
1) There ezists a (v,5,1)-IDPBD(33) when v = 13 (mod 20), v > 133.
2) There exists a (v,5,1)-IDPBD(23) when v =3 (mod 20), v > 93.

Proof. For v = 13 (mod 20), v > 133, see [13].

For v = 93, let X = Z3x Z33U{co}UH>3. we first construct a 2-RB[70, 4, 2],
then for each parallel class we adjoin a new point at the indicated place.
The parallel classes are the following blocks mod (—, 23).

((2’ 1)(0: 2) - (0’ 21)(27 22)) ((01 8)(11 16) - (11 7)(03 15))
((1,8)(2,16) - (2,7)(1,15)) ((2,8)(0,16) — (0,7)(2,15))
((0,3)(1,17) - (1,6)(0,20)) ((1,3)(2,17) — (2,6)(1,20))
((2,3)(0,17) - (0,6)(2,20)) ((0,18)(1,13) — (1,10)(0, 5))
((1: 18)(2’ 13) - (2) 10)(115)) ((2, 18)(01 13) - (Ol 10)(21 5))
((0,9)(1,5) — (1,18)(0,14)) {(1,9)(2,5) ~ (2,18)(1,14))
((2,9)(0,5) — (0,18)(2,14)) {(1,12)(0,6) — (0,17)(1,11))
((21 12)(]": 6) - (11 17)(23 11)) ((0) 12)(2) 6) - (2a 17)(()’ 11))
((1,15)(0,4) - (0,19)(1,8)) {(2,15)(1,4) - (1,19)(2,8))
((la 21)(21 19) - (2v 4)(1) 2)) ((2v 21)(0: 19) - (Oa 4)(2v 2))
((03 11)(1a 22) - (17 1)(0’ 12)) <(1) 11)(2722) - (2! 1)(]-: 12))
((21 11)(0a 22) - (0’ 1)(2v 12)) «Os 7)(1> 14) - (1: 9)(07 16))
((1’ 7)(2, 14) - (27 9)(1, 16)) ((2: 7)(07 14) - (Os 9)(2> 16))
((0,10)(1,20) — (1,3)(0,13))  ((1,10)(2,20) — (2,3)(1,13))

For v = 113, let W = {[j,h],j € Za,h € Zg} U{[gl,g € Zs} and
V = {(,9) : § € Zy,i € Zss} UW. Let o be the mapping given by
o((3,9)) = (4,5 + 1), a([j,h]) = [j,h] and o([g]) = [g + 1]. And 7 be the
mapping given by 7((5,4)) = (j + L,4), 7([4, h]) = [j + 1, ] and 7[g] = [g].
G is the group generated by (o, 7). The base blocks are the following:

((1,5)(0,5)[0)(0,0)(1,0)) {(0,12)(1,3)[0)(0, 1)(1,14))
((0,1)(1,4)[0](0, 13)(0, 22)) {(1,4)(0,0)[0,0](1,19)(0, 1))
{(1,20)(0, 1){0,1](0,0)(1,5)) ((1,1)(0,0)[0, 2](1,23)(0,2))
((0,2)(1,24)(0, 3](0,0)(1,8)) {(0,0)(1,10)[0,4](0, 3)(1,14))
{(0,3)(1,10){0,5)(0,0)(1,34)) ((1,16)(0,4)[0,6](0,0)(1,32))
{(0,0)(1,30)[0, 7](0,5)(1, 17)) {(0,14)(1,6)[0, 8](1, 29)(0, 0))
{(0,0)(0,25)(0,17)(0,8)(0,35))  {(0,6)(0,12)(0, 26)(0, 19)(0, 0))

By applying the maps {¢%,0?,...,0%4} on the first base block , we will
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get 45 blocks. And by applying the elements of G = {¢%,0,...,0%, 7,70

o!,...,700%} on the other 13 base blocks, we will get 90 blocks from each
base block. So we will have a total of 1215 blocks.

For v = 3 (mod 20), v > 3, take a (5,1) -DGDD of type 20* where
k= !"2—'031, see [11], add three points to the groups and on all the groups ex-
cept one we construct a (23, 5,1)-IDPBD(3), then take these three points
with that group to be the hole.

O

4 Directed Covering With Index One

Lemma 4.1. Letv = 7 ( mod 10) be a positive integer. Then DE(v,5,1) =
DL(v,5,1).

Proof. In view of Lemma 2.1, Lemma 3.1, and Lemma 4.1, we only need
to consider the cases v = 7,17,27,37.

For v =7, let X = Z+. Then the blocks are

(25314), (64521),

(32560), (40163),

(10254).

Forv = 17, let X = Z3x ZsU{a, b}. Then the construction is as follows:
1) On Z3 x Zs construct a (5,1)-DGDD of type 3%, [12].
2) On each group with {a,b} we construct a DB[5,5,1].
Then it is easily checked that the above construction yields a minimal
DC(17,5,1).

For v = 27, let X = Z5 x Z5 U {a,b}. Then the blocks are.

((0,4)(0, 3)(0,2)(0,1)(0, 0))
((3,4)(0,0)(0,4)(4,4)(4, 1))

((3v 0)(0a 0)(0a 1)(4s 0)(4: 2)) +(_’i)1i € Z4
((4r 3)(2s 0)(01 0)(Os 2)(31 0)) +(_a 1),2 € Z3
((4,1)(2,3)(0,0)(0,3)(3,3)) +(—,1%),% € Z2
((0,0)(2,1)(2,2)(3,4)(2,0)) mod (-, 5)
((2,1)(4,0)(0,0)(1,0)(2,3)) mod (-;5)
((4,2)(1,0)(3,3)(0,0)(1,1)) mod (-, 5)
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((2’ 2)(110)(47 0)(4a 3)(4, 4)) mod (_a 5)
((2, 4)(31 0)(4a 4)(1’ O)b) mod (-: 5)

((4) 3)(31 l)a(]-’ 0)(21 4)) mod (_a 5)

( b (1) 4)(2’ 4) a (0:0)) mod (_’ 5)

<(O) 0) ab (4a 3)(31 2)) mod (—,5).

For v =37, let X = Z7 x Z5U {z,y}. Then the blocks are

(6,03, 1), 2) (3, 3)(G, 4)) for i = 0, 1.
((114)(7"3)(7',2)(7') 1)(3,0)) for i = 0, 1.

And the following blocks are of mod (-, 5)

((4,1)(2,0)(3,0)(6,1)(5,2))
((1,0)(6,0)(3,0)(3,2)(6,4))
((1,0)(2,0)(3,1)(5,4)(5, 1))
((4,1)(1,0)(2,2)(4,4)(2, 1))
{(0,0)(3,0)(4,3)(4,0)(3,1))
((0,0)(5,0)(5,3)(3,4)(2,0))
((0,0)(2,1)(2,4)(6,3)(6,4))
((0,0)(6,1)(5,4)(4,2)(1,0))
((1,1)(0,0)(4,1)(5,1)(6,2))
((0,0)(5,2)(6,0)(4,4)(1,1))
((1,4)(0,0)(3,3)(2,2) = )
((0,0)(2,3)(3,2)(1,4) y )
((5,4)(4,0)(6,4) z y )

Lemma4.2. Letv =9 (mod 10), v > 19 be an integer. Then DE(v,5,1) =

((6,2)(3,0)(4,2)(5,4)(2,0))
((3,0)(6,3)(6,0)(3,4)(1,0))
((5,2)(3,2)(2,0)(1,0)(5,3))
((2,2)(1,0)(2,4)(4,3)(4,2))
((4,0)(3,2)(3,0)(4,1)(0,0))
((5,1)(2,0)(5,0)(3,3)(0,0))
((6,3)(6,1)(2,2)(2,3)(0,0))
((4,4)(5,3)(1,0)(6,2)(0,0))
((5,2)(4,2)(6,4)(0,0)(1,2))
((1,2)(6,0)(5,4)(4,3)(0,0))
(2 (2,4)(1,3)(3,1)(0,0))
(v (3,4)(2,1)(0,0)(1,3))
{(y z (6,3)(4,0)(5,3))

DL(v,5,1). Further, DE(9,5,1) = DL(9,5,1) + 1.

Proof. In view of Lemma 2.1 and Lemma 3.2, we only need to consider the

cases v = 9 and 19.

For v = 9, from [20] we know that DE(9,5,1) = DL(9,5,1) + 1. Let

X = Zy then the blocks are (05413 ) (mod 9)

For v =19, let X = Z5 x Z3U {w, z,y, 2z}. Then the blocks are

((0, 0)(3) 1)(01 1)(2$ 2)(1’ 2)) mod (—1 3)
((4’ 0)(2: 1)(1a 2)(07 1)(0s 0)) mod (_: 3)
((2,2)(0,0)(4,1)(3,2) 2 ) mod (-, 3)
((0: 0)(43 0) Yy (4) 2)(1’ 0)) mod (—’ 3)
((2) 1)(3: 0) Yy (1$ 0)(3$ 2)) mod (_: 3)
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((Sa 2)(4) 1)(0:0) z (3a 0)) mod (_13)
((3,1)(1,0)(0,0) (2,0) w) mod (-,3)

((4a 0) w (3a0)(47 1)(2a0)> mod (—’3)
{z(1,0)(1, )3, 1)(4,1))  ((L,1) 2 (1,2)(3,2)(4,2))
((1,0(1,2) z (3,0)(4,0))  {(1,0)(2,1)(2,2) = (4,2))
(1,1) z (2,0)(2,2)(4,0))  {(1,2)(2,0) z (2,1)(4,1))
(w z y z (0,0) (z y z w (0,1)
(w 2(1,2)(1,1)(1,0)) (v 2(2,2)(2,1)(2,0))
(z y z w (0,2)

O

Lemma 4.3. Letv = 3 (mod 10), v > 13 be an integer. Then DE(v,5, 1) =
DL(v,5,1) with the possible ezception of v = 53,63,73, 83.
Further DE(13,5,1) = DL(13,5,1) + 1.

Proof. Again, we only need to consider the cases where v = 13, 23, 33,43.
For v = 13, from [20] we know that DE(13,5,1) = DL(13,5,1) + 1. To
construct such design, let X = Z3. Then the blocks, are

(01234) (65210) (73085)
(84067 (09101112) (1211109 0)
(379110) (41589) (17611 12)
(12118101) (8321112) (109742)
(1112257 (261098) (121164 3)
(910536) (541211 10)

For v = 23, let X = Z7 X Z3U {z,y}. Then the blocks, taken mod
(-,3), are

((6,0)(4,1)(0,0)(0,1)(2,0)) ~ {(6,2)(1,1)(1,0)(4,1)(3,1))
((0,0)(1,0)(2,1)(4,2)(6,2))  ((5,0)(2,1)(3,2)(1,0)(2,2))
((1,1)(0,0)(5,2)(3,0)(5,0))  ((0,1)y(1,0) = (0,0))
((3,2)(0,0)(1,1)(5,1)(6,1)) (= (2,0)(3,0)(1,0) y )
((5,1)(4,2)(5,0)(1,2)(0,0)) ~ ((2,0)(3,2)(5,0) z (4,0))
((2,1)(2,0)(5,2)(0,0)(6,0))  ((6,0)(4,0) z (6,1)(5,2))
((3,1)(3,0)(6,1)(2,2)(0,0))  ((4,0) y (5,0)(2,0)(4,2))
((0,0)(3,1)(4,0)(4,1)(3,2))  {(6,0)(5,0) v (6,2)(3,0))
((4,2)(1,0)(6,1)(2,0)(1,1))

For v ='33, let X = Z1; x Z3. Then the blocks, taken mod (-, 3), are

((5,0)(0,1)(0,0)(6,0)(5,1))  ((6, )
0) 7

(5,0)(0 (0,0)(7,0)(5,2)(0, 1))
((0,0)(3,1)(2,2)(1,0)(4,2)) ((7,0)(0 (1,1))

2) 1
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((0,0)(8,0)(2,0)(1,2)(8,1))  {(0,0)(4,0)(3,2)(9,0)(9,1))
((0,0)(10,0)(9,2)(7,1)(3,0))  ((8,1)(10,0)(0,0)(4,1)(10,2))
((6,0)(10,1)(10,2)(9,2)(0,0))  {(7,1)(9,0)(8,0)(8,2)(0,0))
((9,1)(0,0)(7,2)(10,1)(8,2))  ((3,2)(5,1)(1,0)(8,0)(9, 2))
((8,2)(9,0)(1,0)(6,0)(3,0))  ((1,0)(4,1)(9,0)(6,2)(6,1))
((4,1)(8,0)(1,0)(7,2)(7,1))  ((5,0)(5,2)(9,2)(1,0)(10,1))
((7,0)(7,1)(1,0)(9,1)(5,1))  ((10,1)(6,1)(6,2)(1,0)(8, 1))
((2,0)(8,0)(9,0)(5,2)(3,2))  ((2,0)(3,0)(10,0)(5,1)(8,2))
((2,0)(6,2)(3,1)(7,1)(10,2))  ((7,0)(3,1)(10,0)(6,2)(2,0))
((9,2)(5,0)(2,0)(7,2)(4,2))  ((10,1)(2,0)(5,0)(4,1)(7,0))
((8,2)(10,2)(4,1)(5,2)(2,0))  ((8,1)(6,1)(7,1)(4,2)(2,0))
((5,2)(7,0)(3,0)(6,0)(4,2))  ((6,2)(4,2)(8,0)(5,1)(3,0))
((4,0)(3,0)(5,0)(8,0)(6,2))

((10,2)(1,2)(3,0)(3,1)(7,2)) orbit length 2
((1,0)(1,1)(5,0)(2,2)(10,0)) orbit length 2
((9,2)(4,0)(4,1)(10,0)(1,1)) orbit length 2
((9,1)(2,0)(2,1)(6,1)(6,2)) orbit length 2

Together with the following single blocks

((10,1)(1,1)(3,0)(3,2)(7,1))  ((1,0)(1,2)(5,2)(2,1)(10,2))
((9,1)(4,0)(4,2)(10,2)(1,0)) ~ ((9,0)(2,0)(2,2)(6,0)(6, 1))
((1,2)(1,1)(1,0)(0,1)(0,0))  ((2,2)(2,1)(2,0)(0,1)(0,0))
((3,2)(3,1)(3,0)(0,1)(0,0)) ~ {(4,2)(4,1)(4,0)(0,1)(0,0))
((3,0)(1,0)(4,0)(2,0)(0,2))  ((3,1)(1,1)(4,1)(2,1)(0,2))
((3,2)(1,2)(4,2)(2,2)(0,2))

For v = 43, let X = Z;3 x Z3U {w,z,y,2}. To shorten the list of
blocks we adopt the following notations: If a pair of points in a block are
highlighted, say, (a,1) (a, ), then when develop the block med (-, 3) and
J =2and i =0 we write (a,2) (a,0), that is, we write (a,j) before (a, i)
in the block. Further, if w,z,y, or z appear in such block, in addition to
the previous notation, the letter should appear in the middle in the case of
(a,2) (a,1), on the left of both in the case of (a,2) (a,0), and on the right
of both in the case of (a,1) (a,0). Now, the blocks are the following mod

(-a3)'

((0,0)(1,0)(2,0)(3,0)(4,0))  ((5,0)(4, 1) (4, 0)(1,1)(0,0))
{(0,0)(1,1)(5,0)(2,2)(6,0))  ((5,1)(6,0)(2,1)(0,0)(7,0))
{(0,0)(2,1)(1,2)(8, 1) (9, 0)) ((3,1)(0,0)(12,1)(8, 2) (8, 1))
((7,0)(0,0)(3,1)(10,0)(5,1))  ((6,2)(8,1)(1, 1) (1, 0)(7,1))
((0,0)(8,0)(10,1)(7,2)(3,2))  {(12,1)(4,0)(9,2)(2, 1) (2, 0))
((0,0)(4,1)(11,0)(5,2)(10,2))  {(6,2)(5,2)(3, 1) (3, 0)(7,0))
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((8,1)(10,1)(11,2)(0,0)(4,2))  {(9,1)(10,1)(6,2)(5,1)(4,0))
((11,1)(8,0)(9,0)(6,2)(0,0))  {(5,0)(9,0)(8,2)(10,1)(7,0))
((10,2)(6,1)(0,0)(11,1)(12,0)) ~ {(12,0)(0,0)(8, 2) (6, 1) y)
((7,2)(0,0)(9,2)(12,2)(11,2))  {(10,0)(11,0)y(9,1)(0,0) )
((3,1)(1,0)(12,0)(6,0)(11,1)) (v (2,1)(1,0)(3,2)(10,2))
((7,0)(11,2)(9,2)(3,2)(1,0))  ((9,0)(7,1)(1,0) y (4,1))
((7,2)(4,1)(10,1)(8,2)(1,0))  ((2,0)(5, 2) (5, 1) v (8,2))
((10,2)(1,0)(4,2)(8,1)(12,2))  ((7,1) z (4,2)(8,2)(0,0))
((9,1)(1,0)(8,2)(5,0)(11,2))  ((12,2)(9,2)(0,0) z (7,1))
((5,1)(12,0) (12,2)(10,0)(1,0)) ((6,0)(1,0)(10,1) z (2,2))
((1,0)(7,2)(6,1)(12,1)(10,0))  { 2 (1,0)(11,0)(5,1)(3,1))
((9,0)(3,1)(2,0)(11,2)(10,2))  ((8,1)(2,0)(4,1)(3,2) z )
((8,2)(12,2)(3,2)(11,1)(2,0))  ((12,1)(1,0)(9,0)(8,0) w )
((4,1)(6,0)(11,2)(10,0)(2,0))  ((11,0)(7, 1) (7, 0) w (2,0))
((2,0)(11,1)(4,2)(7,0)(12,1))  {(10,1) (10,0) w (3,0)(9,0))
((10,1)(2,0)(12,0)(7,1)(5,0))  { w (11,1)(8,1)(4,0)(6,1))
((8,0)(5,2)(2,0)(9,1)(12,2))  ((5,0)(11,1) (11,0) = (1,0))
((7,2)(2,0)(11,0)(8,1)(6,2)) ((2,0) = (10,0)(6,0)(8,0))
((4,1)(11,1)(12,2)(3,0)(5,1))  ((6,0)(4,0)(9,1)(3,0) = )
((3,0)(6,0)(9,2)(12,1)(4,2))  ((12,1) = (3,0)(4,1)(7,1))
((3,0)(6,1)(8,2)(9,1)(5,2)) ({w z (12,1)(5,2)(0,0))
((4,0)(7,2)(5,2)(9,0)(6,0))  {(3,0)(2,0)(1,0)(0, 1) (0, 0))
Together with the following single blocks
(3,003, 1)(3,2) wy ) {w(1,0)(1,1)(1,2)x)
(4,004, 1)4,2) yw ) (=2 (2,0)(2,1)(2,2) w)
(v (11,0)(11,1)(11,2) 2 )  (y (7,0(7,1)(7,2) z )
(zy(12,0)(12,1)(12,2)) ((8,0)(8,1)(8,2) z )
((5,0)(5,1)(5,2) w2z )  {z 2(9,0)(9,1)(9,2))
(z(6,0)(6,1)(6,2) w) (2 (10,0)(10,1)(10,2) z )
((0,0)(0,1)(0,2) w = )

5 Directed Covering with Index 3

Notice that if there exists a (v,5,1) - IDPBD(k), then, for any pos-
itive integer A, there exists a (v,5,A)-IDPBD(k). Hence, Lemma 3.1,
Lemma 3.2, and Lemma 3.3 hold in the case A = 3. Furthermore, there
exist a (37,5,3)-IDPBD(9). Such design can be constructed by tak-
ing a RB[28,4,1), then adding nine new points , a point for each par-
allel class, yields a (37,5,1)-IPBD(9). Now by taking three copies of a
(37,5,1)-IPBD(9) and another three copies in opposite direction we ob-
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tain a (37,5,3)-IDPBD(9).
Now we can prove the following Lemma.

Lemma 5.1. Letv = 3,7,9 (mod 10), v > 7 be an integer. Then DE(v,5,3) =
DL(v,5,3).

Proof. From the above discussion, it is clear that we only need to consider
the cases where v = 7,9,13,17,19, 23,27, 33,43, 53,63,73, and 83. For
v=7,let X = ZsU {a, b}, then the blocks are

(12340 )-three times (321ab)

(ba421) (432ab) (ba032)
(043ab) (bad31) (041lab)
(ba042) (021ab) (ba031)

Forv=9,let X = {1,2,...,9}. Then the blocks are

(18297) twice (37948) twice

(65987) (23586) (87632)
(65789) (72854) (29154)
(95321) (12376) (13649)
(28641) (18435) (47156)
(96531) (87351) (49623)
(64781) (54732) (45962)

For v = 17,27, the construction is as follows:

1. Take an optimal DP(v,5,2), [7]. In this design, there is a set {z,y}
the ordered pairs of which appear in zero blocks, while each other ordered
pair appears in two blocks.

2. Take the minimal DC(v,5,1) in Lemma 4.1. In this design there is a
set {z,y} the ordered pairs of which appear in five blocks, while each other
ordered pair appears exactly in one block. It is clear that the blocks of the
above two designs yield the blocks of a DC(v, 5, 3) for v = 17, 27.

For v = 19, the construction is as follows:

1. Take the blocks of the DC(19,5,1) as presented in Lemma 4.2 and
delete the block ( w z y 2 (0,0) ). Furthermore, replace the three blocks
(w2(1,2)(1,1)1,0)) (zyzw(0,1)) (zyzw(0,2))by
(zw(L,2)(1,1)(1,0)) (wzyz(0,1)) (wzyz(0,2))

2. Take the blocks of the DC(19,5,1) as presented in Lemma 4.2, re-
place w by (0,0) and (0,0) by w , and then delete the block ( (0,0) z y 2
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w ). Further, replace the single block { (3,2)(4,1) w = (3,0) ) by { (3,2)
(4,1) zw (3,0)).

3. Take the blocks of the DC(19,5,1) as presented in Lemma 4.2, re-
place z by (0,0) and (0,0) by z , and then delete the block (w (0,0) y 2 =
). Further, replace the single block { z y (0,0) w (0,1) ) by ( (0,0) 2 y w
(0,1) ).

4. Adjoin the block { w (0,0) z y z ).
It is easy to check that the above four steps yield a DC(19, 5, 3).

For v = 13 (mod 20) a DC(v,5,3) can be constructed by taking two
copies, in opposite direction, of a minimal (v, 5,3) covering design.

For v = 3 (mod 20) a DC(v, 5,3) can be constructed by taking a min-
imal DC(v,5,2) [5] and a minimal DC(v,5,1) which exists for all v with
the possible exceptions of v = 63,83 (Lemma 4.3).

For v = 83 the construction is as follows:
Take a ({5,6},1)-GDD of type 7°6', which is obtained by deleting one
point from one group. Inflate the GDD by a factor of two ( see [28] for a
(5,3) — GDD of type 2° and 26).
Now adjoin a new point to the groups and on the groups of size 14 we
construct, with the new; a DB[15,5,3] and on the group of size 12 with
the new point we construct a minimal DC(13, 5, 3).

For v = 63 take a (5,1)-RGDD of type 5° and inflate the design by a
factor 2. To each parallel class of the five parallel classes adjoin two new
points and construct a (5,3)-DGDD of type 28. To the groups we adjoin
3 new points and on each group we construct a (13, 5,3)-IDPBD(3), then
we take these three points with the ten points added to be the hole of size
13. This construction yields a (63,5, 3)-IDPBD(13).

To complete this construction we need to construct a (13, 5,3)-IDPBD(3).
For this purpose, let X = Z1oU {z,y, 2}. Then the required blocks are the
following (mod 10)

(03z15) (10y37)
(02z139) (23-07) U{z,y}
(0156 z ) half orbit. a
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6 Conclusion

In this short section we conclude our result.

Theorem 6.1. Let v > 5 be an odd integer greater than or equal 5. Then
(}) Ifv=1 or 5 (mod 10), then DE(v,5,)) = DL(v,5,\) with the excep-
tion of

DE (15,5,1) = DL(15,5,1) + 1.

(i) If v = 3, 7, or 9 (mod 10), then DE(v,5,)) = DL(v,5,)\) with the
exception of DE(9,5,1) = DL(9,5,1) + 1, DE(13,5,1) = DL(13,5,1) + 1
and the possible exceptions (v, \) = (53,1),(63,1), (73,1), or (83,1).

Proof. For (i), see [26). For (ii), see Lemma 4.1, 4.2,4.3,and 5.1 for A = 1, 3,

and [5] for A = 2,4. For A = 5, there exists a DB[v,5,5]. For A > 5, the re-

sult follows from Lemma 1.1 and [5] for (v, A) = (53, 6), (63, 6), (73, 6), (83, 6).
O

Remark: The following is an example of a (77, 5,2) covering design that
can not be directed.

Let X = Zy x Z39U {00;}}Z,, then the blocks are

((0,0)(0,6)(0,12)(0,18)(0,24)) + i, i € Zg, twice
((11 0)(1, 6)(1a 12)(1s 18)(1’ 24)) + Z, i€ ZB,
together with the following blocks, mod (—, 30).
((0,0)(0,14)(1, 2)(1, 14)(1, 15))
((0,0)(0,5)(0,13)(0, 20)) U {001,002}
((1,0)(1,3)(1,11)(1,20)) U {ooy,002}

((03 O)(0> 9)(0: 11)(1’ 22)) U {°°3y 004}
((0,0)(1,20)(1,25)(1, 27)) U {003,004}

((0’ 0)(0, 3)(0: 7)(]-’ 24)) U {°°5a 006}

((0’ 0)(11 5)(1a 19)(1y 26)) U {005’ 008}
{(0,0)(0,1)(0,17)(1,29)) U {oo7,008}

((0’ 0)(174)(11 8)(1’ 23)) U {007’ 008}
((0,0)(0,1)(1,27)(1,29) oog)
((0,0)(0,2)(1,24)(1,25) oo010)

((010)(0a 3)(]-)9)(1:19) 0011)
((0,0)(0,4)(1,7)(1,15) oco12)

((0’ 0)(0a 5)(13 7)(1’ 10) °013)

((Oa 0)(01 8)(1) 16)(11 21) °°14)

{(0,0)(o, 9)(1,12)(1,18) 0015)

«Oa 0)(0) 10)(1$ 10)(1a 14) °°16)
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((0,0)(0,11)(1,1)(1,17) oo17)

Proof. Consider the two blocks
((170)(1’ 6)(1v 12)(1a 18)(]-:24)) + ia 1€ Z67 and
((0’0)(01 9)(1v 12)(1) 18) 0015) mod (_1 30)
To direct the above design, the block {(0, 0)(0,9)(1,12)(1,18) oo1s) should
have 00;5 in the middle with (0,0) or (0,9) on the left or right of co;5 and
(1,12) or (1, 18) on the left or right of 0015 e.g. {(0,0)(1,18) oos5 (1,12)(0,9)).
But if this is the case then look at the blocks

((Oa 0)(11 18) o015 (0, 9)(1s 12))a ((Oa 6)(1> 24) 0015 (0) 15)(1) 18)):

((Oa 12)(1’ 0) 0015(07 21)(1) 24))9 ((O: 18)(1: 6) 0015 (01 27)(1’ 0))1

((0,24)(1,12) 0015 (0,3)(1,6)), taken from the blocks

{(0,0)(1,18) o035 (0,9)(1,12) mod (—,30) and the block ((1,0) (1,6)
(1,12) (1,18) (1,24) ). Then it is easy to see that the pairs ((1,18), (1,12)),
((1,24),(1,18)), ((1,0),(1,24)), ((1,6),(1,0)), and ((1,12),(1,6)) can not
be ordered.

O
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