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Abstract

Given an acyclic digraph D, we seek a smallest sized tournament
T having D as a minimum feedback arc set. The reversing number
of a digraph is defined to be 7(D) = |V(T)| — |V(D)]. We use
integer programming methods to obtain new results for reversing
number where D is a power of a directed Hamiltonian path. As a
result we establish that known reversing numbers for certain classes
of tournaments actually suffice for a larger class of digraphs.
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1 Introduction

A tournament is a digraph where the underlying undirected graph is com-
plete. A minimum feedback arc set of a digraph is a smallest sized set of
arcs whose reversal makes the resulting digraph acyclic. Given an acyclic
digraph D we seek a smallest sized tournament T that has D as a minimum
feedback arc set. It was shown in (2] that for any acyclic digraph D there
exists some such T, and the reversing number of a digraph, (D) was defined
to be |V(T)| — |V(D)|. Reversing numbers for several classes of digraphs
were determined in [1]-[9] and it was shown in [2] that 0 < 7(D) < 2n —4.
In particular, the case where D is the acyclic tournament on n vertices T,
was investigated in [2] and [4].

For given n and k < n, P¥ will denote the k-th power of a directed
Hamiltonian path on n vertices. That is, P¥ is the digraph containing the
directed Hamiltonian path on vertices vy, v2, ..., vp and having the arc set
consisting of all arcs (v;,v;) where ¢ < j and |i — j| < k. Of course, P3~!
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is simply the tournament, T,. In this paper we investigate the reversing
number of P¥.

Reversing numbers for various tournaments were investigated in [4].
This problem can be viewed in the context of player rankings. If the
players in a tournament T,, are ranked to minimize inconsistencies then
7(Ty) is a smallest sized tournament for which there are n players that are
all ranked inconsistently with respect to each other. In the investigation
of  (P¥) we have a similar correspondence to rankings but will require
most, but not all of the players be ranked inconsistently. Here we consider
rankings with many inconsistencies, but avoid inconsistencies where one
team defeats another and the winner receives a significantly lower rank
than the loser.

We use A(D) to denote the arc set of a digraph D. However when A(D)
forms a feedback arc set of T we may simply say ‘D is a feedback arc set
of T when there is no ambiguity. We next restate a lemma from [2] that
will be frequently used throughout the paper.

Lemma 1 Let D and D' be digraphs on n vertices. Then D' C D =
r(D') < (D).

We continue by reviewing some known results. As an immediate conse-
quence of the above lemma, r (P¥) < #(T,) for all k and n. It was shown
in [2] that r(P,) =n — 1, and 2n — 4logon < r(Ty) € 2n — 4. Precise
values for r (PY) for k < 7 were established in [7]. It was shown in [8] that
(%‘f-) n —c(k) < r(P2k) < 2n — 4 for all n > 4k where c(k) is a positive
constant depending only on k. This result shows that even for small values
of k, 7 (P¥) will side with r(T},) rather than r(P,), for large values of n.
This suggests that 7 (P¥) and r(T,) may coincide for values of k that are
close ton — 1.

As mentioned reversing numbers for T;, were determined for some values
of n by Isaak [4]. We restate this result as our next theorem.

Theorem 2 Let 0 <t < s. Then r(Tpo_g¢) =281 —2t41 _ g1,

Since A (P¥) C A(T.) we can combine Lemmas 1 and 2 with known
upper bounds for r (T,) to immediately obtain upper bounds for r (P¥ ).
For example r (PJ§) < r(T32) = 57. Surprisingly despite the fact that PJ§
has 120 fewer arcs than T3, they have the same reversing number. One
consequence of our main result will show that when n is a power of 2, it
is possible to remove approximately % of the arcs, with no change to the
reversing number.
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We will then use methods from integer programming to establish lower
bounds for r (P¥) which match these upper bounds. Our main result is
an extension of Theorem 2.

Theorem 3 Let PF be the k-th power of a directed Hamiltonian path Py,
and let T, be the acyclic tournament on n vertices. Then

(Z) ( 22:._;;) = T(Tzk_gt) whent=k—-1o0ork -2 and
(#)r(Tpe_p) — 1 <7 (Pﬁ" . ) < r(Tyr_ge) forall0 < ¢t < k—3.

2 Preliminaries

Let T (7, PF) be a tournament having the k-th power of a directed Hamil-
tonian path P¥ as a feedback arc set. Any tournament T (?, P¥) having
Pk as a feedback arc set will have this form for some set of extra vertices,
Z. Let V(P¥) = {v1,v2,...,9.} and A(PF) = {(vj,w) [0 < j —i < k}.
Then V (T (7, P¥)) = V(PE)U {ui[1 <i<n-1,0<j<z; -1} and
A(T (Z,PF)) = A(PF) U {(vi,v;)lk < 5 =5} U {(usj,us¢) 6 <s0OTE=35
and j < t} U {(vi,us ) | § < s}U{(ui ;,vs) | i < s}. Thatis, V (T (Z, P¥))
= V (P¥) along with a set of extra vertices dependent upon P and the
arc set consists of those arcs consistent with the ordering:

U1, Ug,05 +o0s U1,2, —1,V2, U209 0y U2,25—17 U3y ---y Un—1,Un—1,0y -y Un—-1,z41 -1 Un

except for arcs between vertices v; and v; where 0 < j —i < k, which are
inconsistent with the ordering.

Given PF we mvestlgate inequalities involving the number of extra ver-
tices specified by =. We note that r (P") equals the minimum Y7 ' 2;
such that a tournament on n + 3| 1 x; vertices has P¥ as a minimum
- feedback arc set. We will focus on two different types of sums involving
T and seek lower bounds for them. A sum involving subsets of ' having

t—1
the form 2[3—] iz; + Z‘:lr. 141 (t — 2)z; will be referred to as a sum of
type I A sum involving subsets of 2 having the form Y i, (t — i)z; will
be referred to as a sum of type I

These expressions were studied in [2] and [4]. We restate a bound from
[4] as our next lemma. .

=1
Lemma 4 We have Z[ ]'Lx'_,.a-i- > '"[ _1-|+1(t )Tiva = (3) for2 <
t<k+land0<a<n-t.
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We note that this bound from [4] was used in the context of tournaments.
However since Lemma 4 holds for P¥ where k >t — 1, it can be applied to
part of the family consisting of powers of directed Hamiltonian paths.

Next we examine sums of type II, zml (w —1)z; and seek lower bounds
for them. We build on results presented in [4] The first few cases are given

w 2 21
w=3: 2z1+z22>4
w=4

Z?=1(4 — i)z = 321 + 222 + 3
=(z1+22 +23)+22; >6+2=8

w=25: Ef=1(5 —i)z; =4z + 312 + 223 + 34
= (z1+ 222 +223 +24)+ (221 + 22) + 21 2 15

We observe a recursive pattern:

T 58z = Y1 (2 0z + T2 (3—6)z: + (21 + 233 + 223 + 24).

Similarly, 3°7_, (6 — i)z; = 2 (E?=1(3 - z')"1%')
+(zy + 222 + 323 + 224 + z5).

In general we decompose Y ;.- (w — i)z; into three parts:
Zr:-n;l] iz; + Zw rw'l-|+1(w i)z,

= (191 - )

and S (13] - 4) =,

and apply a lower bound for each part. A lower bound for the first part is
given in Lemma 4, and bounds for the other parts can be obtained recur-
sively ending with the given base cases. We generalize these methods in
the following lemma by Isaak [4].

Lemma 5 We have 77 (w —i)z; > (¥) + Z:r,_] ([2] -4) =
+ ST (18- 9=
Proof. The proof follows from the above and Lemma 4. m

We consider cases involving small values of k in our next lemma.

260



2k—l

Lemma 6 Let2<k<4. Thenr (P2L ) = 1(Tpr) =2k — k- 2.
Proof. We prove separate cases for k = 2,3, and 4.
(i) k=2

By Theorem 2 r(P?) < r(Ty) = 2% — 2 — 2 = 4. Application of Lemmas
4 and 5 give the following inequalities:

1 + Z2 > 3
2 + z3 > 3
I + z3 > 2

Summing the above inequalities yields 2 Zi;l ; >8=> Z?=1 ;> 4=
28 —2-2

Hence r(P?) > Y0 z; = 4.

(i) k=3

By Theorem 2 r(P$) < r(Tg) = 2 — 3 — 2 = 11. Application of
Lemmas 4 and 5 give the following inequalities:

1+ 229 +2x3 + 74 > 10

T2 +2z3 +224 + 23 > 10

+ z3 +2r4 +2r5 + x6 > 10

+ 24 +225 +21¢ + 7y =2 10

1+ 2z +z3 + 25 +2z5 + Ty =2 12
1+ T2 + ¢ +x7 2 6
z + 7z = 2
21‘1 + 21‘7 2 4

Summing the above inequalities yields 6 z;’zl T; > 64 =1(Pg) > ELI z;
> 11.

(iii) k = 4
By Theorem 2, r(Pf) < r(Tie) =2° —4 — 2 =26.

We investigate the coefficients of the terms present in these inequalities
in Table 1. The coefficients of z; are given in the i-th column.
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1[2]3[4[4]312]1
1(2|3|a(4[3]2[1
1(2(34]4a(3]2[1
_ 1(2(3[4(4]|3]2]1
First 1(2|3[4[4[3[2]1
Set 12344321
1(2(3|4[4]3[2]1
1(2(3|4]4[3]2[1
1(2(3(4a(3[2]1 (234321
T[2(3[3[2]1 123321
1(2(3]21 T[2[3[2[1
§:°nd1221 1(22[1
1121 121
11 11
1 1
Third 6142 21416
Set 412 2[4
3 3
Table 1

The first 8 rows of the table yield

23—0(2?=1 iZipe + (5 — 9)Tigase) 2 8(3)-
The next set of rows gives us
ict(Thoy i@ + 216-0) + (G + 1 = i)(@igj + Zr6-img))

+ T (Tl i@ + z16-i) + (5 = i)(@ies + Tr6-i=s))
2 221—2 (2) = 2(2)

Finally, entries in the last three rows correspond to two copies of

2%—2(2}—-1 x.‘l)

and two copies of

T2 (5016 = F)zr6—5)

Taking advantage of symmetry we formulate the bound,

ATia (5006 — )z5)) 2 4(8 + 4 + 1) = 52.
Summing over all rows in the table yields

20 312, 2 > 8(3) +2(5) + 52 = 508
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=>r(Ph) > [3B]=26=2°-4-2.m

We use the ideas of the above lemma to show the case when k = 5.
By Lemma 2 7(P3§) < r(T32) = 2% — 5 — 2 = 57. We obtain the reverse
inequality using the same methods that were used in part (iii) in the proof
above. Then it will follow that

16(4) +2(5) +4 (S (Tidi6 - 9)ss ))} =57 (1)

r(Pi3) 2 [ BI0

These methods will be described in a general setting in the next section.
We will show that we may replace k = 5 in inequality (1) with an arbitrary
k to get the generalized inequality (2):

@D EF 24D

. ( Pg:_l) 5 [2""(’k'zl"‘)+'.»("";‘“‘)+4(Zf:,:,2 (Z;:(i-j)z,-))]

= 2kl k2 (2)

3 The general case

In this section we present additional results involving r (P¥) . In the steps
leading up to our main results, our focus shall not be on obtaining bounds
for individual expressions E;_'__ll (i — 7)z; as in [4], but rather on the devel-
opment of bounds for collections of these expressions where the values of
form a set of consecutive integers. These lower bounds can be combined
with the inequalities corresponding to the first and second sets of rows in
Table 1 to create lower bounds for (PF). For certain n, these lower bounds
will be matched with values for 7 (T5,) from [4] to yield new values for r(P¥).

Next we will determine r (P;": ") . We will follow the construction

methods from the proof of Lemma 6 (iii) that were used to generate r (P) .

We note that in Table 1 each column sum is 20. That is the sum of all of
the expressions involving z; is (4)(5) Z:il z;. We will show for the general

case involving r (PZZ: _") the sum of all of the expressions involving z; is
(2k-2(2k-2 + 1)) 23;1—1 x;. The general expression corresponding to the

first set of rows in Table 1 is

ok=1_1 k=2 _ .
0 (Tl imiee + (25241 — d)zion-24).
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The expression corresponding to the second set of rows is

2k2

Y (T + zpes) + (G + 1 = i)(@igg + Tpry_y)).
Finally, the third expression equals

2k2

;_2 (E'-l .7)33:) +221_2 (2_7_1 j)x2*—j)-

The sum of all of the above expressions equals

(242(22 + 1)) T3 .

We state this in our next theorem.

-1_ k-2
Lemma 7 We have Zfiol W2, iz + (22 +1 - )T qok-2.4¢)
2k -2 3

+ JE (Z z(ml +$2“—t) + (.7 +1- z)(xH-J + z2"—t—]))
+ 221_2 E"= - 5z;) + 223_2 (23_1("' = J)T2x—;)
= (k2262 4+ 1) Y2 Mg,

Proof. Consider the coefficient of zox-1. Examination of the first
expression reveals that the first coefficient is the sum of the coefficients of
the terms

Tok-1 + 2Zqr—1 + -+ + 26 2pgu 4+ 2620001 4 o 4 Zgue,

and hence the coefficient of zox-1 equals (2"‘2) (2"'2 + 1) By sym-
metry we have z; = zgx_j forall j = 1, 2, ..., 25~1 — 1 in the sum of the
three expressions. Without loss of generahty assume 1 < j < 2k-1 — 1,
We consider two subcases, where 1 < j < 2¥=2 — 1 and 2¥2 < j < 2k-!
— 1. Assume 1< j <2872 — 1. Then the coefficient of z; is

2 (z*-zz:_ii) +2 (iz) +2(2k-2 - ) j

i=1 i=1

= (2+-2)% 4 (2+-2).

Finally we consider the case where 2¥=2 < j < 2%¥=1 _ 1 and that the
contributions to the coefficient of x; come only from the first two expres-
sions. The coefficient of z; =1 + 2 + 3 + -+ 4+ 2%=2 J 2k=2 4 ... 4
2+1=(2¥"2(2%2 4 1)). =

In the next section, we will use this equality to obtain lower bounds
for r (Pg: _l) . For completeness we provide all of the details. Application

of Lemma 4 yields lower bounds for the first two sets of inequalities from
Lemma 7:
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2k—l_1 2k—2 . _ R
=0 (2iz1 iTigt + (2572 4+ 1 — 92490240
2k-‘2 . .
and Y2_, YL (i@ +3ox i) + (G + 1 =0)(@ins + Z2e—imj))s
and we now seek a lower bound for the expressions

22?12‘ (Tizia - 9)ey)

2&2

2 Zi=2 (E;ﬂ(" j)fltzk_j).

As a preliminary step we present lower bounds for 21—1 (w — )z; in
Table 2.

LBon 0 (w — d)z

1
4
8
15
23
30
44

Table 2

oo| 1| o] en| x| ol o) &

Then Zw—-Q Z:_l (w — 1)x;)

)> (S5, (3)) + 4(T8 (T (w — i)as)) + Ticy (w — i)as — Loy (w
- i)z

= (1) = () + 4(112) +8 — 44 = 1020.

As mentioned earlier we develop lower bounds for a collection of expres-
sions which have the form 2;:11 (i — 7)z; and the values of i form a set of

consecutive integers. We use a bound for Zt_,zg_a +1(Z]—1 - Hz;) to

help determine a precise values for r (PZZ: '

Lemma 8 Letk > 6. Then 23;;—34.1(2,::1 (¢ - Hz;)
k=2 izl i . .
= 23«2* 3+1(Z I;—T-I JT; + Z;;[s_;_qﬂ(z - )x;)
2l -3 K

AT (S50 - ) - (2 (253 — j)z))
+ (Zj:l (284 - j)z;).
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Proof. The proof follows by induction and application of Lemma 5. =

The combination of Lemma 4,

ok-2

k-2 i
Ez-2k~8+1(2|;_1] jz; + E_,,_ ‘-!'|+1( - Jz5) 2 Z?:zk—s.;.l (2),
and bounds from (2] imply

(D2 (2573 = j)zj) > (224 — 26-2 — 2k=3(k — 2))
an

(X2 (254 — j)zj) > (22676 — 2k=3 _ 2k~4(k _ 3)),

We establish a lower bound for Ezﬁzk_s +1(2;:11 (¢ — 7)z;), which is
presented in our next lemma.

Lemma 9 Let k > 6. Then E?;;:_3+1(E;;11(i - Jz;) = F4 +
138" — &2k -1 15251k - 1) — 2451k - 1).

Proof. For the base case (k = 6) note that

Yite(TioiG = d)z5) 2 1020 > £45 + (L8 — Z25 — Los(5) —
&4 (5).

Next, assume the identity holds for k and show it holds for k + 1. By

Lemma 8,
2k 1

r—-2" 241 (EJ“‘I _7)27_,)
> Yl o001 (3) + 45 s (D016 — d)zy) — (22674 — 2+-2 —
25-3(k — 2))
+ (2266 — 2k=3 _ ok—4(k _3)).
Application of the induction hypothesis yields

2k-l

2i=2*—’+1(2;;11 (@ = j)z;)
k=1 .
s 4r z(f)) (3) + A(EF1 + g8 — F24t - otl(k 1) -
=45 -1
64
- (22k-4 _ 2k-2 - 2k‘3(k—2)) + (22Ic—6 - 2k—3 - 2k_4(k—3))

4k 4 58k — Lok _ lokk _ 34kk m

Dlen

Lemma 10 We have the inequality Z‘_l (CitE-Hz) > & &4k + {8k
- %2 - {525k - F4kk.
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Proof. The proof will follow by induction on k. The key observation is
that

k=1

.Z?=1 (21_1( - Jzj) = Z;_1 (Z ( 7)z;) +Z,_zk 2-;-1(2t 1(’
- 9)z;)-

Application of Lemma 9 yields

___,4k +1 28k — 41_82Ic _ %21:13 _ é‘lkk) + (%4k + 1;—28" - %2’: _
Lokp _ 34 k)
16 54

= 34k + L8k — lok _ lokg —kdkg

= g_44k+1 + ﬁgl&l _ %2k+1 _ %2k+l(k+l) _ 61_44k+1(k+1). -

Finally we obtain a lower bound for 2:;—2 (Z.;__l (@ = 9=z5)

+ 2 21_2 (Z;:ll — j)Zax_;). We use symmetry to obtain

2Y 2 (ST - g)ay) + 20, (Thik( — e =40, (Tima(

— j)z;j). Hence
ST - zy) 2 A4k + 58 — A2 — L2%k — 44tk
The above bound is used to establish the following result.

Theorem 11 Let k > 2. Thenr (Pg:-l) =7 (Tox) =28+ — k- 2.

Proof. We need only show r (Pzz,:L -1) > r (Ty) since the converse will
follow by Lemma 1. The cases where 2 < k < 5 are shown in Lemma 6.
If k > 6, earlier constructions yield

(B 2

_ _ 9k-1 k=141 +2 2k 141
/(2222 + 1)) ( (Ee “1’(28k _ )_2k E —2’%)—— 4tk )

= () (<24 — 4k +2 x 4 + 5 x 2% — 4).

Then
(2A+4)( 2kk—4k+2x4"+5x2’° 4)_2k+1+k+3

- _8
ka1
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Since k > 6, it follows that 0 < z& < 1 and hence r (PZ™") > 2+
— k — 2 =r(T). Application of Lemma 2 yields the reverse inequality.

]
In our next corollary we note that the reversing number for Th« estab-
lished in [4], actually applies to a larger family of digraphs.

Corollary 12 Let D be an acyclic digraph on 2* vertices containing Pg: .
Thenr (D) = r(Toe) = 25+ — k — 2,

Theorem 13 We have r (ng:'k_,) = r(Tpege-a) = 2(2% — 26-2) _
(k-1) - 2.

Proof._ !We have
r (szk_2k—2) 2

k=2 (2¥" 141 281y
werretay | 0TI R00) |
+4(§4 + 138" — 182 — 162"k — gad k)

Then

arenemy| | LOC 0 ) |

+4( G4k + 58F — A28 — Lotk - Lakk)
- (2@ -2 - (k-1) - 3)

= E,c-_qléﬁ

Since 0 < i’zlm < 1, it follows that

r(P2"“ ) > okl _k — 2 =22k —262) _ (k—1)—2
2k _ok-2 | = - .

Application of Theorem 2 yields the reverse inequality. m
Example 14 We will show thatr (P3f) = r (Tea) = 2(24)—(5-1)—2 = 42.

Theorem 15 Let0 <t <k —2. Thenr(Tox_g) > (Pzz:'_';.) 27 (Tor_gt)
-1=202%-2) - (k-1)-3.
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Proof. We first note that the upper bound follows from Lemma 1 and
Theorem 2. For the reverse inequality we note

r(PE2)

k=1 _ oty (2541 2:7l
1/(2k—2(9k—2 4 1 (2 -2 )( ) +2( 3 ) ]

v

= —qrary (-2 4F — 5-2F 4 25F0H 4 912 4 4 4 gk 4 2%).

Then —gbp(—2- 4% — 5.2% 4 25+tH1 4 9442 4 4 4 4k 4+ 2%k)
- -2 -k-1)-9

_42:42
= 4555
Since, 0 < 4%;“—'.*_"—?4 < 1 whenever 2 < t < k — 2, it follows that

r (ng:;,) > o6+ _ g _ 2= (Tye_ges) — 1. ®

Example 16 We have r (Tog) — 1 < 7 (P38} < r(Ths) = 50.

Next we show that Theorems 11 and 13 cannot be extended by decreas-
ing the path power while keeping the reversing number fixed. We will
show for each of the theorems that if we decrease the path power by one,
the reversing number must decrease by at least one. We will investigate
upper bounds for r(P¥). Until this point we have used known values for
7 (T,) as our upper bounds for 7(P¥). Now will use methods similar to
those presented in [4] and [8]. Upper bounds for r(P}) will be obtained
by explicitly describing a set of arc disjoint cycles in T (=, P¥) for a given
Z. We will adopt a method from (4] for viewing a collection of arc disjoint
3-cycles, it maybe helpful to refer to Figure 1. Each triangle corresponds
to an entry in an upper triangular portion of the array L, where the en-
tries Ln(4,7) for 1 < i < j < n are distinct integral ordered pairs (a,b)
where @ > i and a < j. The conditions a > i and @ < j are necessary
to construct a 3-cycle containing arc (v;,v;) and no other arcs of D. To
insure that the 3-cycles are disjoint, entries with the same second coordi-
nate may not appear in the same row or column. The entry (3,7) in L,
corresponds to vertex u;; in T (Z,P¥). The 3-cycle is represented by
(vi, i 5,v;). In the case that D is a tournament, the upper right corner of
the array is filled. However when D = P¥ only array positions {(%, 7),% < j
and j —i < k} are filled. We will refer to these positions as the first
k diagonals of L,. We give an example showing a collection of five arc
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disjoint 3-cycles found in T' (7', P?). Entries in the first two diagonals
of L, are used to construct the following set of five arc disjoint 3-cycles
{(v1,u1,0,v2), (v1,u2,1,v3), (v2, u2,0,v3), (v2, Ua,1,v4), (3, u3,0,v4) }-

23 4

1-171505]5251
2120 | 21
3|30

Figure 1. Five arc disjoint 3-cycles in T'(Z, P¥)

Theorem 17 We have r(Pf) < n —1+ [252] + [222] + - + [2527]
where m = |log, k|.

Proof. Using the definition of L, (i, j) described above, let:

LG, j) = (|%£],0) if i + 7 is odd
PN (5|2 k) if i+ g s even, 2% | (5 — i) and 2641 § (5 —4)

Then for a given k, the number of distinct entries present in the first
k diagonals of the array L, is given by n — 1 + ["2;2] -+ ["T_ﬂ + ---
+ [";,,2,'"] . These entries can be used to form a collection of |A(D)| arc
disjoint 3-cycles, yielding the desired upper bound for the reversing number.

Corollary 18 We haver (P2~ ~1) <r (P3™") =2+ — k2.

Proof. Following the arrangement of the array elements described in
Theorem 17. The number of distinct entries in the array is 2% + i%(?"c -2)
+ @ -+ (@ -2 =251 + L 4L e 5hy) - (k
—1)=2%¥1_k_-3 m

Corollary 19 We have r (Pg::;f_lz) <r (Pzz::;k_g) =2(2k-2k-2)
2

Proof. Following the arrangement of the array elements described in
Theorem 17. The number of distinct entries in the array is (2¥ — 2k=2 —
1)+ (2% =253 — 1) .00 (22 -20-1) =2k 4 2k-1 _ (p — 1) -
2} —20° =900k —~ 92— k-9 m

The combination of Theorems 11, 13 and 15 yields a proof for Theorem
3.
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4 Conclusion

Precise reversing numbers were presented in Theorems 11 and 13. A bound
that is within one of the correct answer is given in Theorem 15. It is
possible that the integer programming methods used in this paper may
be improved, possibly by adding additional inequalities, to raise the lower
bound enough to close the gap. It can be verified that r (P}§) = 49
(the lower bound) if all inequalities of the form given in Theorem 4 are
considered. We conjecture that in general it is the lower bound which
equals the reversing number. However it is not known for the general
case if there even exists an integer linear program having these types of
inequalities whose minimum value is 7 (P¥). Another strategy would be to
close the gap by improving the upper bounds. However since the existence
of an appropriately sized collection of arc disjoint 3-cycles is a sufficient,
but not necessary condition, this approach may not be suitable. Because
of the potential difficulties that arise in either raising the lower bound or
dropping the upper bound, the closing of this gap could conceivably be
more difficult than it appears. However getting the bounds to match for
particular families of path powers may be quite reasonable.
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