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Abstract

For any graph G = (V, E), D ¢ V is a global dominating set
if D dominates both G and its complement G . The global
domination number y,(G) of a graph G is the fewest number of
vertices required of a global dominating set. In general,
max{Y(G), ¥(G )} <¥{(G) <¥G)*¥( G ), where y(G) and ¥(G )
are the respective domination numbers of G and G . We show,
when G is a planar graph, that 7,(G) < max{y(G)+1, 4}.
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1. Intreduction

In a graph G = (V, E), D < V is said to dominate G when every vertex in V-D is
adjacent to (a neighbor of) a vertex in D. A global dominating set is a set of
vertices that dominates both G and the complement graph G . The number of
vertices in a smallest dominating set of G is ¥(G), and the number in a smallest
global dominating set is denoted by Y,(G). A minimum (global) dominating set
of vertices is referred to as a y—set (yg—set). Global domination was introduced
by Sampathkumar [6] and, independently, by Brigham and Dutton [2] as a
special case of factor domination of a graph G. Further results on factor
domination appear in Dankelman and Laskar [3]. A survey of global
domination, as of 1998, was given by Brigham and Carrington [1]. Additional
global domination results are given by Dutton [4] and by Dutton and Brigham
(51

The global domination number for several families of graphs is known or at
least restricted to within a fairly limited range [1]; for example, when G (or G)
is disconnected, y,(G) = max{y(G), ¥(G )}; for triangle—free graphs, ¥(G) <
Y(G) < ¥(G)+1 [1, Corollary 1]; and the special case for trees has been
completely characterized [1, Theorem 14]. The work presented here examines
the global domination number for planar graphs.

Additional notation used includes: the order of a graph G is n = |V|;
diam(G) is the diameter and r(G) is the radius; and y.(G) is the connected
domination number. For any vertex v € V, Ng(v) is the open neighborhood of v
in G and is the set of vertices adjacent to v. The closed neighborhood of v is
Ng[v] = Ng(v) v {v}. The subscript in the neighborhood notation will be
omitted unless referring specifically to a graph. other than G. For example,
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Na(v) = V-N[v] is the open neighborhood of v in the complement graph G .

For W ¢ V, N(W) and N[W] are the unions of the open and closed
neighborhoods, respectively, for every v € W, and <W> is the subgraph of G
induced by W. A full explanation of these and other graph theory terms can be
found in [7].

2. Preliminary Results
In this section, results are presented that hold for all graphs, and are useful in the
next section on planar graphs. The first is obvious and appears in [1].

Lemma 1. For any graph G, max{Y(G), ¥(G )} <1(G) <¥(G)+¥( G ).

It was also stated in [1] that for any integers m, n, and k such that2 <m <n
<k <mn, there exists a graph G for which Y(G) = m, ¥(G ) =n, and 7,(G) = k.
Next, Lemma 2 shows that v,(G) < y(G)+2 for graphs with sufficiently large
diameter.

Lemma 2. For any graph G, diam(G) > 3 if and only if /(G ) <y(G ) <2 and
G #K,.

Proof: Suppose G has two vertices x and y that are distance 3. Then G is not a
K, and, in G, x and y are a connected dominating set. When diam(G) < 2,
every pair of non adjacent vertices has a common neighbor. Thus, in G , no pair
of adjacent vertices can be a dominating set. m

Lemma 3. For any graph G, if i(G) 2 3, then every dominating set of G is a
dominating set of G .

Proof: Let D be an arbitrary dominating set of G and suppose D does not
dominate G . Then there exists a vertex v € V-D for which D N).

Therefore, the distance in G between v and any other vertex is at most 2, that is
1G)<2. =m

An immediate consequence of Lemma's 2 and 3, since diam(G) > r(G), is
that when 1(G) > 3, then W(G ) <Y(G ) <2<y(G) = Y5(G).

Lemma 4. For any graph G, every set of y(G )-1 vertices has a common
neighbor, and every maximal complete subgraph of G has at least (G )
vertices.

Proof: No set of y(G )-1 vertices can dominate G . Thus, in G, every such set
of vertices has a common neighbor. Suppose G has a maximal complete
subgraph W on k < y(G ) vertices. Since k < y(G ), the vertices of W must have
a common neighbor, contradicting that W is maximal complete subgraph. m
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3. Planar Graphs

For any graph G, the graph formed by either deleting an edge or identifying two
adjacent vertices (an "edge contraction") is a "minor” of G. From Wagner's
Theorem, a graph G is planar if and only if no subgraph of G has a minor
isomorphic to K or K 5.

Lemma 5. If G is a planar graph, ¥(G ) <4.
Proof: If y(G ) > 4, from Lemma 4, G must have a subgraph isomorphic to a
Ks, a contradiction for planar graphs. =

From Lemmas 1 and 5 it is immediate that 1,(G) < y(G)+4 for any planar
graph G. We show in the remainder of this section that equality is not possible
and, in fact, that y,(G) is rarely larger than y(G)+1.

Theorem 6. If G is planar graph and y(G) = 3, then y,(G) < y(G)+1.

Proof: Let D be an arbitrary y—set of G and X = {v | N(v) 2 D}. If [X| = 0, then
D is a global dominating set and y,(G) = ¥(G). If |X| = 1, then D U X is a global
dominating set of y(G)+1 vertices. If [X| > 3, then <D U X> has a K3 3 minor, a
contradiction for planar graphs. Thus, we must have that [X| = 2. If there exists a
vertex w € V-D for which N(w) N X is empty, then D U {w} is a global
dominating set with y(G)+1 vertices. Otherwise, X is a dominating set of G, a
contradiction since |X|=2<y(G). =

The next result is not surprising, although its proof is not straightforward.

Theorem 7. If G is a planar graph, 7,(G) <max{y(G)+1, 4}.
Proof: By way of contradiction, assume G is planar and y,(G) > max{y(G)*1,
4}. We present a series of claims resulting from this assumption. A culminating
contradiction will establish that y,(G) < max{y(G)+1, 4}.
Claim 1. G and G are connected and (G ) > ¥(G) = r(G) = (G ) =
diam(G) = 2.
Proof: From Lemma 5, max {y(G)+1, 4} > max{y(G), (G )}. Thus, v,(G) >
max {y(G), ¥(G )} and, hence, no y-set of G can be a dominating set of G .
Then from Lemma 3, 1(G) <2 and 1(G ) < 2. Therefore, both G and G are
connected. This in turn implies r(G) > 1 and r(G ) > 1. Thus, G) = (G )
= 2 and ¥(G) = 2. From Theorem 6, y(G) < 2 implying y(G) = 2. From
Lemma 1, v,(G) < ¥(G)+y( G ). Since we assume yg(G) > 4, we must have
that 5 < y(G) <¥(G )+2. Hence, (G ) 2 3. Finally, from Lemma 4, every
pair of vertices in G has a common neighbor and, therefore, diam(G) = 2.

The following definitions are similar to those made in the proof of Theorem
6.LetD = {a, b} beay-setof G and X = {v|N(v) 2 D}. Also, let X,={v|v &
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D v X and vis adjacent to a € D} and X, = {v|v € D U X and v is adjacent to

b € D}. Then X,, Xy, X, and D form a partition of V.
Claim 2. Every vertex in V-D has exactly two neighbors in X.
Proof: Consider any vertex w € V-D and let Z = N(w) N X. If|Z| < 1, then
D U {w} U Zis a global dominating set of at most 4 vertices, contradicting
the assumption that 4 < y(G). If |Z| > 3, then <D U Z U {w}> has a K;;
minor, where one partite set is {a, b, w} and the other is any three vertices
in Z, a contradiction for planar graphs.
Claim 3. D is an independent set and <X> is a cycle.
Proof: From Claim 2, <X> is a collection of one or more cycles. In any of
the cycles, contract edges until the cycle has exactly three vertices that we
denote by {x, y, z}. If ab is an edge, then D and {x, y, z} form a K, a
contradiction for planar graphs. Thus, D must be an independent set. If <X>
contains another cycle, let w be any vertex in the second cycle and identify
w with a € D, thereby creating a K5 minor, a contradiction showing <X> is
a single cycle.
Claim 4. |X,| > 2, [X,| > 2, and |X| > 4.
Proof: If X, is empty, b € D and any vertex in X is a connected y-set, and
if Xy = {w}, then b € D and any neighbor of w in X is a connected y—set.
Both instances contradict Claim 3. Therefore, [X,| > 2. A similar argument
shows |Xy| = 2. From Claim 3, <X> is a cycle, hence, |X| > 3. If |X| = 3, any
two vertices of X, by Claim 2, is a connected dominating set of G, again
contradicting Claim 3.
Claim §. Every w € X, U X,, has two adjacent neighbors in X.
Proof: From Claim 2, w has exactly two neighbors in X. If they are not
adjacent, w can be identified with either neighbor in X, resulting in a vertex
w' having three neighbors in X. As in the proof of Claim 2, this graph, and
hence G, has a K; ; minor, a contradiction.
Claim 6. If v and w are two vertices in X, U X, that have two common
neighbors in X, then |{v, w} N X =[{v, W} " Xy| = 1.
Proof: Suppose both of v and w are, without loss of generality, in X, and
have common neighbors x and y in X. Then xy is an edge by Claim 5.
Select any z € X—{x, y} and identify z and a € D, creating the vertex a' and
edge a'b. Then K;; is a minor of <{v, w, b, a', y, x}> where{v, w, b} is a
partite set, a contradiction,
Claim 7. X, U X, is an independent set.
Proof: If v and w are adjacent vertices in X, U X, they must have the same
two neighbors in X. If not, contracting the edge vw produces a vertex with
three neighbors in X. Thus, similar to the proof of Claim 2, G has a K3 ;
minor, a contradiction. Therefore, if v and w have common neighbors x and
y (adjacent, by Claim S) in X, they must have different neighbors in D, by
Claim 6. Therefore, without loss of generality, v € X, and w € X,,. Then
identifying a € D with any vertex z € X—{x, y} creates the vertex a' with
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edge a'b. A subgraph results that has a K; 3 minor, where the partite sets are
{a', x, w} and {b, v, y}, a contradiction.

Claim 8. If v € X, and w € Xy, then v and w must have a common
neighbor in X.

Proof: The set X, U X, is independent, by Claim 7. Since diam(G) =

and w must have a common neighbor that can only be in X.

Finally, consider distinct vertices guaranteed by Claim 4, {a,, a,} € X, and
{by, b2} < X,. By Claim 5, a, and a, each have two adjacent neighbors in X. Let
the two neighbors for a, be {x,, x,} and those of a; be {x3, X4}. Then by Claim 6,
{x), X2} # {X3, X4}. Therefore, either the two sets have one vertex in common, or
none. We examine each case.

(1) First, suppose X, = x3, that is, {X;, X, X4} induces a path. Since by Claim
5, |X| = 4, x, must have a neighbor in X other than x,, and it can not be
x; by Claim 3. Next, b, must have two adjacent neighbors in X and,
from Claim 8, a neighbor in common with each of a, and a;. We may
assume these are x; and X,. Furthermore, b, also must have two
adjacent neighbors in X and a common neighbor with each of a, and a,.
These can not be x; and x,, from Claim 6. Since x, is not adjacent to x,,
they also can not be x; and x4. Hence, they must be x; and x4. Suppose
there is another vertex z in either X, or X,. Then z also must have {x,,
X2}, OF {Xs, X4}, as neighbors, contradicting Claim 6. Therefore [X,| =
|Xp| = 2 and x, is a common neighbor of the four vertices in X, U Xp,.
Since ax, is an edge, the set {a, x,} is a connected y-set of G,
contradicting Claim 3.

(2) Next, assume {x), x»} and {x3, X4} are distinct sets of vertices. From
Claim 8, b, must have a neighbor in each of these sets and we may
assume they are x, and x; and, hence, that x, and x; must be adjacent
by Claim 5. Similarly, b, also must have a neighbor in each set, but
neither can be x, or x;. Thus, the neighbors of b, must be x, and x4
which implies x; and x, are adjacent, that is, [X| = 4. As above, there
can be no other vertices in X, or X;. As constructed, {a,, X3, b;} forms a
global dominating set, contradicting that y,(G) = 5.

Therefore, Y,(G) < max{y(G)+l, 4} and the proof of the theorem is

complete. =

Consider the class of graphs G = (V, E) having a vertex v € V for which (1)
deg(v) = [V|-1, and (2) G—{v} is a collection of cycles and/or paths. From this
class, let H; = {K,} and H; be the subset having 3(G) = 1. Finally, let H, be the
remaining graphs in the class. It is straightforward for any graph G in this class,
that y(G) = 1 and, for 1 <i<3, if G € H;, then y,(G) = (G ) = i+1. Notice that
no graph in H,, H,, and H; possesses a subgraph isomorphic to K 3, but all other
graphs with y(G) = 1 do have K, ; as a subgraph.
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Theorem 8. If G is planar and has no subgraph isomorphic to a K, 3, then

(1) 1(G)=v(G )=i+*l, whenG e H;, for1 <i<3, and

(2) 7,(G) < ¥(G)+1, otherwise.
Proof: The comments in the preceding paragraph establish the validity of (1)
and that we may assume y(G) > 2. Suppose G is a counterexample to (2). Then
Y(G)+1 < 1,(G) and, from Theorem 7, ¥(G) = 2 and v,(G) = 4.

As in the proof of Theorem 6, let D be a y-set of G and X = {v | N(v) 2 D}.
Then [D| = 2. If [X] < 1, then D U X is a global dominating set with at most 3
vertices. That is, y;(G) <3 = y(G)+1, a contradiction for a counterexample. If |X|
2 3, then D with any three vertices in X has a subgraph isomorphic to a K, .
Therefore, we may assume |X| = 2. For any w € V-D, let Z=N(w) n X. If |Z| =
0, then D U {w} is a global dominating set with three vertices and, again, y,(G)
<3.1f|Z] = 2, then w ¢ X and the three vertices in D U {w} and X has a
subgraph isomorphic to K, 3, a contradiction. Therefore, every vertex in V-D
has exactly one neighbor in X. Thus, X is a connected y—set of G and we may
consider that D is connected. Then D U X induces a K,. Since G # K4, there is a
vertex w with one neighbor in X and one in D. These 5 vertices have a subgraph
isomorphic to K,3, where one partite set is N(w) N (D U X). This final
contradiction establishes the theorem. =

It is well known that a graph G is outerplanar if and only if no subgraph of
G has a K;3 or K4 minor. Specifically, an outerplanar graph has no subgraph
isomorphic to a K; ;. Thus, we have the following.

Corollary 9. If G is outerplanar then
(D) 1(G)=Y(G )=i+l, whenGeH; forl <i <3,and
(2) Y5(G) =¥(G)+1, otherwise.
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