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Let Q = {0,1,...,g— 1} be a finite set, consisting of ¢ elements, and let n €
N. Consider the n-dimensitional g-ary Hamming space, i.e. the Cartesian
power X := Q", equipped with the Hamming distance: For words y =
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Abstract

The covering problem in the n-dimensional g-ary Hamming space
consists of the determination of the minimal cardinality K,(n, R) of
an R-covering code. It is known that the sphere covering bound can
be improved by considering decompositions of the underlying space,
leading to integer programming problems. We describe the method
in an elementary way and derive about 50 new computational and
theoretical records for lower bounds on Ky(n, R).

Introduction

(1,.-,yn) and y' = (y1, ..., Yp) Put

A ball (or sphere) of radius R around y € X is the set of all words with a

du(y,y") := {z € {1,..,n} | y= # 4L}

Hamming distance of at most R from the center y, i.e.

Br(y) :={y' € X | du(y,y') < R}.
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It is easy to see that its volume is

R n
Ve:=1Baw =3 (1)@=

k=0

A subset C C X is called g-ary code of length n, its elements are called
codewords. C is furthermore called R-covering, iff the union of balls with
radius R around the codewords exhaust the whole space X, i.e. iff

U Bry) = X.
yeC

The covering problem consists of the determination (or at least estimation)
of the minimal cardinality K,(n, R) of a g-ary R-covering code of length n.
Hence, three parameters are involved in this problem. Every explicit con-
struction of an R-covering code implies an upper bound on K,(n,R). For
every lower bound, theoretical or computational arguments are necessary.
The standard work on covering codes is Cohen et al. [3]. The presently best
known bounds are compiled by Kéri [8].

A very simple lower bound on K,(n, R) is the sphere covering bound. It
is known, that it can be improved in several cases by considering decompo-
sitions of the underlying space, leading to integer programming problems.
The aim of the present paper is to describe the method in an elementary
way and to derive about 50 new computational and theoretical records for
lower bounds on K,(n, R).

The paper is organized as follows: The sphere covering bound and its
improvements by decompositions are recalled in Section 2, together with
some remarks on the computation we applied throughout the paper. In
Section 3, the decomposition of the space into ¢> subspaces, called blocks,
is discussed. The induced integer programming problem is presented and
21 new computational records are compiled. Additionally, a new theo-
rem, based on the same decomposition in certain cases, proves another 25
records. In the final section, the decomposition into ¢® subspaces with s > 3
is briefly discussed and a few further computational records are presented.

2 The Sphere Covering Bound and its Im-
provements by Decompositions

Clearly, each single codeword covers Vr words of the space. If C is an
R-covering code of cardinality u := |C| then

U Br@y) = X,
yeC
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implying

u-Va= Y |1Br@) 2 ||J Br)| = 1X| =¢"
yeC yeC
and consequently
qn
> 1=1.
“= [VR]

Since these arguments hold for every R-covering code, the sphere covering
bound

K,(n,R) > [%] 1)

follows. It is possible to improve this bound by decompositions of the space
into proper subspaces. This method was introduced by Kamps/Van Lint
[6] and Stanton/Kalbfleisch [14]. It has been applied by Ostergard et al.
[12, 1, 9] and was recently discussed by Kaski/ Ostergérd [7, Section 7.2.2]
and, in a more general setting, by Quistorff [13].

If the space is decomposed into g subspaces

Xj={yeX|mn=j}

for j € Q, which might be called bands, the following improvement can be
achieved: Each codeword from X covers on the one hand

Vg = i (n R 1) (g—1)*

k=0
words of X; and on the other hand
(1) =L n—1
1) . _ _ 1}

words of every band X with j' # j. Let C be an R-covering code with
IC| = u. Put u; := |C N Xj|. Clearly, |C| =3, u;. Since every band has
to be covered, one gets the following g constraints:

VR + Y g VR > X5 =g
J'#3

for every j € Q. The pigeon hole principle proves the existence of a band
with at most %J codewords, say up < I_%_I , implying

u- V,(gl) + l%} (V,(io) - V,(zl)) >up- V,(ZO) + (u — ug) - V,(z” >q" L
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Hence, we have the following implicit bound, which is due to Himaéliinen
according to Chen/Honkala [2, Theorem 5):

K,(n,R)- Vl(il) + lKQ(Za R)J (V}(EO) _ Vl(il)) > qn—l. )

A decomposition of the space into g° proper subspaces with 2 < s <n
leads to an integer programming problem. Solving this problem can imply
further improvements of the sphere covering bound, i.e. sharpened lower
bounds on K,(n, R). In case of s = n, the integer programming problem is
equivalent to the determination of K,(n, R).

Some remarks on the computation we applied throughout the paper:
To create the integer programs, we used a model generator written in Java
and kept the generated models as MPS files. MPS is an industry standard,
adopted by most commercial codes [11]. To solve the programs, we em-
ployed the mixed integer solver Cbc (Coin-or branch and cut) along with
Clp (Coin-or linear programming) [4]. Cbc and Clp are projects of the
COIN-OR Foundation (COmputational INfrastructure for Operations Re-
search) [5], an open source initiative dedicated to advance open source for
the operations research community. For further reading see [10]. The mod-
els have been solved on an Intel Core 2 Duo with 2.4 GHz and 4 GB RAM,
running SUSE Linux 10.1. The solver runtime increased rapidly with the
number ¢° of problem variables. Models up to 32 variables were mostly
solved within seconds. Larger problems used minutes or hours of cpu time
and few problems with 100 or more variables could be solved within a preset
time limit of eight hours.

3 Decomposition into Blocks
In this section, the case s = 2 is discussed. Let

X(jria) = {y € X |1 =41 and y2 = jo}

for all (j1,42) € Q2. These subspaces might be called blocks. It is easy to
see that each codeword from X(q,0) covers exactly

v =3 (" )@t

k=0

words of Xg,0), exactly

=3 (" -

k=0
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words of each of the 2(q — 1) blocks X(q j), X(j,0) With j # 0, and finally

exactly
2) R2 n—2
v =Y ( . )(q—l)k
k=0

words of each of the (g — 1) blocks X(j, j,) with ji # 0 # j2. Similar
statements hold for every codeword from any other block. Let C be an R-
covering code. Put u(;j, j,) = |C' N X(j,jp)|- Clearly, |C] = 3. . U(i.52)-
Since every block has to be covered, one gets g* constraints of the following
type:

2 -
u0,0) VA +Z wo.5) +uG0) Ve + 3wV, VP > ¢™2, (3)
Ji#0 J1#0#j2

one for every (j1,j2) € Q2. Note that each u;, j,) is a non-negative integer
< ¢"~2. Together with the objective function

z:= Z U(j,,5,) — min, 4)
Judz

the constraints form an integer programming problem. Its solution z{(/®)
satisfies K,(n, R) > zUP).

Since the integer programming problem is non-trivial, it is worth to
consider the linear programming problem (3), (4) with real u;, j,) = 0
which can be solved easily as a consequence of the symmetry of the problem.
Denote its solution by z(ZP). Additionally, an upper bound on z{/?) is given
in the following theorem.

Theorem 1.

@ _uncun 2 [T
Vr - - Ve |’

Proof. The sum of all ¢? inequalities of (3) shows on the one hand z(LP)
> iy U(j ja) = ¥=. On the other hand, it is easy to see that u;,,j,)

lp— for all (ji, ]2) satisfies (3), leading to z(F) < L Since the linear
programming problem is a relaxation of the integer programmmg problem,

2(EP) < 2UP) follows. Clearly, u(j,,j,) = [9—] € N for all (j1, j2) satisfies

n—2

(3), yielding 2UIP) < g2 [9——] O

In Table 1, our 21 new computational records are compiled. The case
g=3,n =11, R = 3 is further improved in Section 4.
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Table 1: New Computational Lower Bounds on K4(n,R) for s = 2

Sphere  Implicit | Old New
g n R| Covering Bound | Bound Bound | ¢?- I-’-:,;.I
Bound (1) (2) 8] 2IP)

3 11 3 114 114 115 116 117
4 9 1 9363 9364 9365 9368 9376
4 9 2 745 747 748 751 752
5 5 2 18 20 20 21 25
5 8 2 813 815 815 821 825
5 8 3 97 98 98 99 100
5 8 4 18 20 20 21 25
5 9 4 52 53 53 55 75
5 10 3 1157 1160 1161 1163 1175
5 11 5 86 87 87 90 100
6 5 2 29 30 30 33 36
6 6 2 115 117 119 120 144
6 6 3 17 18 18 19 36
6 7 3 57 60 60 62 72
6 8 4 33 35 35 36 36
7 5 2 43 45 45 47 49
7 7 3 99 100 100 101 147
7 8 4 56 56 57 58 98
7 9 2 29870 20871 | 29871 29889 29890
8 9 5 55 56 57 58 64
8 10 6 37 39 39 40 64

If the number of problem variables is too large, solving the integer pro-
gramming problem is not practical. In certain cases, the following new the-
orem is useful which is also based on decompostions into blocks. The resuits
are at most as good as the integer programming. Note that K,(n,R) > ¢
if n > R is well-known, see Cohen et al. [3, Theorem 3.7.1].

Theorem 2. Letn > Randu € Nwithgq < u < ¢°. Puta := I.%J >1
and (2) (@)
g = " -u- Vg [ _ | " —u Vg
vOvP | T | G-

as well as § := I_mi“("'("':)’(ﬁ"')’“}_'. Ifu<(g-a)-(B-a)or (<
min{q, 8} and u < (g —0) - (8 — §)) then Ky(n,R) 2 u+1.

Proof. Let C C Q" with |C| < u be an R-covering code. Put u(;,) :=
Zg____; u(;,j) and (e j) 1= 3927 u(; ). The pigeon hole principle proves the
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existence of a horizontal band with at most o < g codewords, say u(g,.) < @.
W.lo.g., let ugq) = ... = #g,q-1) = 0. For every j € {e,...,q - 1}, a
constraint of type (3) implies

0 -
VO 4 (wgo) + Ugerg)) - V& + (IC] = uo,0) — o) V& > 4"
2 -
Ue,j) * (Vl(zl) - Vi )) >q"? = |C]- Vg =~ uo) - (V;(zl) - Vz(f))
Ufe,j) * (Vf(al) - V}f)) >¢" 2 -u- VP -a- (Vz(a” - V;(zz))
= u(.vj) 2 6 - a.

4 4 o

Thus,
g—1 q—-1
u>|Cl =) v 2 > ues>@-a)-(B-a)
3=0 j=a

Let § < min{q, 8}. The pigeon hole principle also proves the existence of a
vertical band, labeled by j € {0,...,a — 1}, with at most § < ¢ codewords,
say uge,0) < 6. Wlog., let i) = o = Ug-10) = 0. For every i €
{6, ...,q — 1}, a constraint of type (3) implies
VI + (ugie) + o) VA + (IC] = ugie) — ue0) - V& 204"
1 2 - 2 1 2
i - (VA ~ V) 2 2 — 101V — ey - (VS - Vi)

- (V) V) 2 72 =V — 6 (v - V)
= U(i,e0) 2 B - 9.

v U 5

Thus,
g—1 g—1
u>[Cl= uge 2 Y uie) 2 (g-9)-(8-9).
i=0 i=6
The assumption follows by contraposition. (]

Example: Consider ¢ = 7, n = 6, R = 3, implying V},(l) = 241 and
Vs(z) =25. In case of u = 27, we have a =3, 8 = [%2—5] =8,6=2.

Since 27 < 5 - 6, the bound K7(6,3) > 28 follows.
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Table 2: New Lower Bounds on Ky(n, R) by Theorem 2

g n R|OldBound New Bound
6 9 5 23 24
7 6 3 27 28
7T 7 4 17 19
7 10 6 26 27
8 6 3 37 40
9 6 3 50 52
9 7 4 31 35
10 6 3 66 70
10 7 4 41 42
11 7 4 55 o6
12 7 4 67 71
13 7 4 84 87
13 8 5 57 60
14 7 4 99 107
14 8 5 69 70
15 7 4 123 125
15 8 5§ 80 88
16 7 4 144 147
16 8 5 96 100
17 8 5 114 120
18 8 5 133 141
19 7 4 233 234
19 8 5 152 158
20 8 5 180 184
21 8 5 204 210

4 Further Decompositions

In this section, the case s > 3 is briefly discussed, analogously to s = 2 in
Section 3. Let

X(rywi) ={y€ X |y1 =51 and ... and y, = j,}
for all (j1,...,s) € Q°. Each codeword from X(o,...,0) covers exactly

=y ("7 °)@-

k=0
words of X(o,... 0), exactly

Vi) = Rf (n . 8) (q—1)*

k=0
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words e.g. of X(1.0,..,0), and so on. Similar statements hold for every code-
word from any other block. Let C be an R-covering code. Put uj, .. j,) :=
IC n X(jl.....j.)l- Clearly, |C| = Z:jx,--..j. U(jy,eenrda)” Since every X(J'x.---,j.)
has to be covered, one gets ¢° constraints of the following type:

()} _
oo VA + et D Ui Vi 24
F17#0,...,J4 #0
The objective function is
z= Z u(jlv'"’jl) - min'
jl y--njs

Table 3 compiles four further computational records.

Table 3: New Computational Lower Bounds on Kg(n, R) for s > 3

g n R|s|OldBound New Bound

3 9 3|3 25 27

3 11 3|3 116 117

3 13 313 611 612

2 14 214 157 159
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