The combined use of a genetic
algorithm and the hill-climbing
algorithm to find difference triangle
sets

Sharon Koubit and Nabil Shalabyi
1 Department of Computer Science
Memorial University of Newfoundland
Sharon_Koubi@yahoo . com

1 Department of Mathematics and Statistics
Memorial University of Newfoundland
nshalaby@math.mun.ca

February 5, 2008

Abstract

In this paper we use a genetic algorithm and direct a hill-climbing
algorithm in choosing differences to generate solutions for difference
triangle sets. The combined use of the two algorithms optimized the
hill-climbing method and produced new improved upper bounds for
difference triangle sets.

1 Introduction

An (n, k)-difference triangle set, or (n,k) — DAS, isaset X = {X; |1 <

i < n}, where X; = {a;; | 0 < j < k}, for 1 < i < n are sets of integers

called blocks, such that all the differences a;; — a;j» for 1 < i <

< n and

0 < j # j' <k, are all distinct and non-zero. By ordering the elements
of X; and subtracting the smallest, we get an (n, k) — DAS in normalized

form:
O=ap<ay<---<ay for all 1<i<n.

JCMCC 66 (2008), pp. 289-296

All difference triangle sets considered in this correspondence are normal-
ized. The name “difference triangle” arises for writing the differences in
a triangular format. The following example shows (4,3) — DAS and its
differences in a triangular format:

{0,4,15,24} {0,6,22,23} {0,2,14,21} {0,10,13,18}

4 11 9 6 16 1 2 127 10 3 5
15 20 33 17 1419 13 8
24 23 21 18

Let m = m(X), the marimum difference or the scope of an (n, k)—DAS,
be defined as m(X) = max{a | a € U, X;}. The smallest possible scope
for an (n,k) — DAS is m(n, k) = min{m(X) | X is an (n,k) — DAS}. If for
some (n,k) — DAS m(X) = m(n, k) then X is called optimal. Difference
triangle sets have some interesting applications in data communications; it
is desirable for these applications to have difference triangle sets with small
scopes. Klgve gave tables for upper and lower bounds for scopes of triangle
sets. Lorentzen and Nilsen [9] and Shearer [10] were able to find improved
lower bounds using a liner programming method. Shearer [11], Ling [8] and
Koubi et al [7] improved the upper bounds using computational methods.
In this paper we present difference triangle sets, found by computer search
using the hill-climbing algorithm, and a genetic algorithm to optimize the
hill-climbing search and improved its results.

~ .

2 Hill-Climbing Algorithm

We describe in this section the hill-climbing algorithm, a non-exhaustive
heuristic. The general idea of the hill-climbing algorithm is to attempt to
reach a maximum by generating possible solutions and accepting only those
solutions S € 3, a set Ts of transformations, each of which can be used to
change S into another feasible solution S’. The set of solutions that can be
reached from S by applying a transformation from T is the neighbourhood
N(S) of S. S is a local minimum if ¢(S) < ¢(S") for all S’ € N(S).

In [13] Stinson used the hill-climbing algorithm to find Steiner triple
systems (STS) using the hill-climbing heuristic. In [7] Koubi et al described
the use of a directed hill-climbing algorithm that improves the upper bounds
on some difference triangle sets. The general framework of the algorithm is
given as follows:

Hill-climbing for generating triangle sets:
begin
s=0

X=0

290

while s < 7 or maximum number of iterations is exceeded
Generate B, a random block of k + 1 distinct integers
If X N B is an incomplete (n, k) — DAS

X=XnB
- s=s+1
else
Find (if exists) By € X such that if (XN
{Bo}) — {Bu1} is an incomplete (n, k) — DAS
If B, exists then set X = (X N {Bo}) — {B1}
end

end

The algorithm is directed by the application of two heuristics. The first
heuristic method is based on applying the hill-climbing method also in the
process of generating a candidate block. In order to minimize conflicts, the
algorithm tries to generate a block that does not conflict with any of the
other blocks already generated.

The second heuristic optimizes the selection of the random number that
is generated in every iteration when constructing a block. The heuristic is
based on experimental observations regarding the distribution of the num-
bers in each position in a block. According to the measurements, the stan-
dard deviations for the elements in the middle of the block tend to be higher
that those for elements near the edges. This could be explained by observ-
ing that a number close to the middle of the range can be used to obtain
only about half the number of unique differences that can be obtained from
a number that is near the extremes. The heuristic controls the random
generation of new elements according to these observations.

As it is described in the next section, the application of the directed hill-
climbing algorithm directed by a genetic algorithm produced new improved
upper bounds for difference triangle sets.

3 Genetic Algorithm

Genetic algorithms were introduced by Holland [4]. They work by con-
sidering a set of candidates (a population) rather than one candidate; the
population may sometimes contain duplicates. The aim is to maximize a
function called fitness. The notations and ideas are borrowed from genetics
and evolution. The candidates are called chromosomes, and represented
as sequences (Z1,%2,... ,Zk), Where each variable z; has a small range of
possible values. At each stage a new population (next generation) is con-
structed from the previous one using three operations. The first operation

291

is selection by which candidates are selected randomly according to a fit-
ness function. The second is crossover in which the selected chromosomes
are randomly assigned to pairs and crossed over. The third operation is
mutation. A probability g is specified, and any gene in any chromosome
has a probability of g to be changed in value. In [1] Ashlock described the
use of a genetic algorithm to generate combinatorial designs. His approach
applied to genetic algorithm directly to the combinatorial problem.

From our experiments we did not find genetic algorithms to be efficient
for the generation of difference triangle sets. The approach taken in this
paper uses a genetic algorithm to direct the hill-climbing algorithm. The
hill-climbing algorithm described in (7] is based on two heuristics. The
second heuristic of the algorithm uses a large number of parameters. The
genetic algorithm was used in order to help determine these parameters and
direct the hill-climbing algorithm. It was also used as a mean to automate
the determination of the parameters to be used. Let S be a collection of
triangle sets of scope M. Let B = {X; | X; € X and X € S}, the collection
of all the blocks of the triangle sets of S. Let D; = {a;; | ai; € X; and
X; € B}, the collection of all the elements from all the blocks that are in
position j where 1 < j < k. As explained in [7) our hypothesis was that the
distribution of the elements in D; is approximately described by N(a;, u;)
with mean p; and standard deviation o}, where p; = () j. Therefore, the
parameters for the second heuristic are pairs (0, ;) where 1 < j < k. In
our previous work the values to parameters were determined by analyzing
a large number of difference triangle sets with a higher scope. In this work
we used a genetic algorithm to find if a better assignment is possible. The
general description of the genetic search algorithm is as shown:

Genetic Search
1. Generate a random population of sets of parameters (a parameter set
is k sets of pairs (o,).
2. Repeat steps 2 to 7 for a fixed number of generations.

3. Evaluate the fitness of each set by using them as input to the hill-
climbing algorithm and finding the number of blocks that are gener-
ated.

4. Select pairs of sets (parents) with a fitness bias.

5. Pairs of parents use crossover to produce pairs of children.

6. The children are mutated.

292

K| 5.] 6 [7 8 9 | 10 | 11 | 12 | 18 [14] 15
5 1657 1087

3 225¢ 305t

7 2513 | 2871 | 3231 | 363} | 400} | 435} | 474}

8 | 244F | 294f

9 | 319f

Figure 1: Improved upper bounds for (n,k) — DAS. 1 Previous bounds
found in [7]. { Previous bounds found in [10].

7. Children replace the parent sets in the current population.

The genetic algorithm is used to optimize the results of the hill-climbing
algorithm by determining the best set of parameters to be used. It also
benefits the process by automating the selection of appropriate parameters
thus allowing to scan a larger number of possibilities in less time. By
using the genetic algorithm we were able to find many new results for
difference triangle sets. In Figure 1 we give a summary of the improvements
to upper bounds achieved by the hill-climbing algorithm directed by the
genetic algorithm. The new triangle sets found are given in the appendix.
The results in Figure 1 were obtained by employing an implementation
of the combined hill-climbing/genetic algorithms. Each case was executed
in parallel on a network of 20 computers running Linux with a 1.8Mhz
Pentium processor. A maximum running time of 30 hours was given for
each case.

4 Conclusion

In [7] we showed that the hill-climbing algorithm is useful for finding dif-
ference triangle sets. In this work we described how we further improved
the results attained by the hill-climbing algorithm by directing it using a
genetic algorithm. This combination yielded improved results.

References

[1] D. Ashlock, “Finding Designs with Genetic Algorithms”, Chapter in
“Computational and Constructive Design Theory”, edited by W.D
Wallis, Kluwer Press, 1996.

293

[2] Y.M. Chee and C.J. Colbourn, “Constructions for Difference Triangle
Sets”, IEEE Trans. Inform. Theory, vol. 43, pp. 1346-1349, 1997.

[3] C.J. Colbourn, “Difference Triangle Sets”, Chapter in The CRC Hand-
book of Combinatorial Designs by C.J. Colbourn and J. Dintz (ISBN
0-8493-8948-8), pp. 312-317, 1996.

(4] J.H. Holland, “Adaptation in Natural and Artificial Scientific Sys-
tems”, The MIT Press, Cambridge Massachusetts, 1994.

[5] T. Klgve, “Bounds on the size of optimal difference sets,” IEEE Trans.
Inform. Theory, vol. 34, pp. 355-361, 1988.

(6] T.Klgve, “Bounds and constructions for difference triangle sets,” IEEE
Trans. Inform. Theory, vol. 35, pp. 879-886, 1989.

[7] S. Koubi, M. Mata-Montero and N. Shalaby, “Using Directed Hill-
Climbing for the Construction of Difference Triangle Sets”, IEEE
Trans. Inform. Theory, vol. 51, pp. 331-335, 2005.

[8] A. Ling, “Difference Triangle Sets From Affine Planes”, IEEE Trans.
Inform. Theory, vol. 48, pp. 2399-2401, 2002.

[9] R. Lorentzen and R. Nilsen, “Application of Linear Programming to
the Optimal Difference Triangle Set Problem”, IEEE Trans. Inform.
Theory, vol. 37, pp. 1486-1488, 1991.

{10] J.B. Shearer, “Some New Difference Triangle Sets”, The Journal of
Combinatorial Mathematics and Combinatorial Computing, vol. 27,
pp. 65-76, 1998.

(11] J.B. Shearer, “Improved LP lower bounds for difference triangle sets”,
Electronic Journal of Combinatorics, vol. 6(1), #R31, 1999.

(12] J.B. Shearer, “Difference triangle sets - upper bounds”,
http://www.research.ibm.com/people/s/shearer/dtsub.html#js3.

(13] D.R. Stinson, “Hill-Climbing Algorithms for the Construction of Com-
binatorial Designs”, Annals of Discrete Mathematics, vol. 26, pp. 321-
324, 1985.

294

K N Difference Sets

5

10

12

9

12

10

{0,11, 34, 81,120, 165}, {0, 18,43, 107, 114, 156}, {0, 15, 48, 76, 145, 158},
{0,4,31,87,139, 159}, {0, 8, 59, 85, 126, 150}, {0, 22, 32, 112, 133, 147},
{0,6,36,99,104, 157}, {0,9, 38,88, 161, 162}, {0, 16, 19, 94, 148, 160},
{0,17,57,117, 119,163}

{0,6,48,120,145,198}, {0, 3,64, 144,146, 193}, {0, 17, 45, 121, 178, 194},
{0,7,90,124, 165,189}, {0,9,79, 100, 171, 185}, {0, 1,69, 102, 112, 196},

{0,22, 62, 74,125,181}, {0, 4, 81,113,168, 179}, {0, 20, 39, 128, 174, 187},
{0,26,31,136, 163, 186}, {0, 8, 38, 96,131,191}, {0, 18, 54, 140, 169, 184}

{0, 5, 46,132, 188, 190, 225}, {0, 17, 61, 100, 130, 201, 214},
{0,6,24,118, 145,222,223}, {0, 8, 33,97,131, 203, 213},
{0,7,45,133, 148,196, 218}, {0, 16, 67,90, 182, 210, 224},
{0,21,50,102, 159, 212,221}, {0, 11,47,107, 172, 175,215},
{0,12,32,87,91,167,186}

{0, 4,48,142, 214, 225, 305}, {0, 23, 70, 102, 175, 281, 303},
{0, 30,43, 147,232, 283,292}, {0, 2,40, 115, 218, 224, 300},
{0, 5, 69,126,153, 261,282}, {0,7, 78,119, 174, 242, 273},

{0, 18,95, 161, 215, 268, 302}, {0, 1,98, 101, 159, 270, 289},
{0, 15, 50, 74, 205, 254, 291}, {0, 29, 46, 162, 229, 255, 294},
{0, 16,28, 165,198, 279, 287}, {0, 10, 62, 150, 186, 206, 296}

{0, 9,40, 126,153, 186,221,251}, {0, 2,61, 76, 124, 163, 173, 243},
{0,12, 38,67, 145, 188, 229, 245}, {0, 7, 18, 89, 147, 155, 232, 238},
{0, 19,44, 81,134, 185,213,237}, {0, 4, 36,92, 109, 210, 223, 244},
{0, 3,23,45, 139,203, 249, 250}

{0, 15,60, 95, 144, 186, 249, 287}, {0, 17, 23, 88, 163, 221, 261, 273},
{0,13,32,136, 145, 147, 228,275}, {0, 3, 59, 85, 90, 197, 240, 267},
{0, 28, 44, 78,152, 203, 269, 279}, {0, 7, 29, 93, 148, 187, 259, 283},
{0, 14,67,68, 167,188, 224, 285}, {0, 4, 37,106, 168, 209, 257, 282}

{0, 10, 86,107, 189, 305, 309, 323}, {0, 40, 42, 127, 175, 285, 301, 320},
{0, 38,94, 109, 182, 199, 303, 312}, {0, 6, 63, 163, 210, 232, 294, 302},
{0,13,52, 72, 153, 228,277,321}, {0, 1,68, 151, 196, 292, 315, 318},
{0,12, 65,111,190, 248, 208,322}, {0, 37, 64, 155, 166, 244, 272, 304},
{0, 25, 80,123, 266, 271, 300, 307}

{0,12, 46, 178, 242, 265, 296, 363}, {0, 21, 41, 154, 186, 258, 314, 342},
{0,1, 43,140, 202, 252, 287, 348}, {0, 3, 52, 120, 194, 239, 207, 344},
{0,7,115,141, 210, 276, 336, 346}, {0, 5,18, 111, 162, 225, 300, 325},
{0,33,71,88,170, 271, 349, 360}, {0, 14,29, 123, 182, 247, 304, 357},
{0,24, 40,131, 167, 204, 283, 359}, {0, 4,81, 90, 129, 173, 303, 322}

295

1

12

13

5

{0,10, 15,217, 244,277, 328, 400}, {0, 3, 73, 79, 249, 261, 367, 375},
{0,13, 62,149, 254, 270, 347, 382}, {0, 21, 64, 150, 259, 200, 337, 378},
{0,39,61,97, 230, 264, 332, 388}, {0, 1, 19, 144, 174, 305, 355, 395},
{0, 4,63,193,222, 231,344, 370}, {0, 7,98, 153, 178, 310, 338, 358},
{0,17,69,179, 232, 306, 317, 398}, {0, 24, 66, 120, 220, 319, 321, 365},
{0,14, 37,108, 223, 280, 312, 387}

{0,3,16,128, 340, 416, 420, 435}, {0, 52, 53, 150, 237, 284, 408, 414},
{0,23,94,210,316, 371,415,433}, {0, 2, 74, 194, 230, 343, 352, 409},
{0,5,107, 216, 249, 331, 396, 406}, {0, 26, 63, 114, 259, 305, 423,431},
{0, 41,58, 261, 296, 303, 364, 434}, {0, 14, 25, 165, 195, 327, 358, 412},
{0, 21,49, 69,235, 312, 336, 403}, {0, 34, 56, 189, 253, 282, 332, 428},
{0, 43, 83,121, 202, 329, 402, 429}, {0, 32, 92, 137,176, 266, 377, 389}

{0, 30, 59, 197, 212, 220, 356, 474}, {0, 16, 38, 49, 162, 227, 434, 458},

{0, 34,62, 115,260, 399, 401,470}, {0, 14, 93, 201, 242, 375, 394, 457},
{0,17,117,192, 288, 362, 422, 465}, {0, 25, 126, 132, 261, 334, 391, 446},
{0,7,61,183,275, 302,433, 459}, {0, 1,128, 223, 322, 332, 374, 472},
{0,12, 80,217,293, 328, 359, 449}, {0, 5, 88, 160, 257, 346, 430, 466},

{0, 18, 50, 166, 253, 330, 432, 453}, {0, 39, 85, 125, 354, 363, 410, 468},
{0,37,143,147, 191, 387, 390, 454}

{0, 18, 54, 68,98, 170, 193, 197, 244}, {0, 6, 11,49, 82, 194, 213, 223, 235},
{0,2, 28,113,120, 182, 206, 227, 243}, {0, 9, 48,90, 103, 156, 181, 239, 240},
{0,15, 35,67, 75,132, 163, 233,236}

{0,4,12, 118,155,157, 266, 279, 294}, {0, 6, 16, 35, 82, 103, 223, 253, 280},
{0,9,43,99, 158, 222, 239, 285, 292}, {0, 1, 72, 105, 166, 184, 235, 259, 273},
{0,11,85, 78,128, 211, 214, 263, 288}, {0, 26, 58, 80, 142, 190, 250, 255, 286}

{0,11, 53, 88, 80, 207, 214, 275, 300, 318},
{0, 8, 36,80, 121, 202, 233, 256, 285, 304},
{0,4, 14, 69,103, 142, 169, 243, 292, 301},
{0,5,50,51, 157,195, 221,251,291, 313},
{0, 20,33,115, 130, 147, 206, 290, 293, 314}

296

Corrigendum/Addendum to:
Almost resolvable 4-cycle systems

I. J. Dejter, C.C. Lindner, M. Meszka and C. A. Rodger

In (1], some typographical errors appear in Example 2.1. Below we correct
these errors, and using this almost resolvable 4-cycle system of order 17,
an almost resolvable 4-cycle system of order 33 is constructed!. Order 33
is one of the missing cases in [1]; the cases 41 and 57 remain open.

In the correction below, symbol 15 has been replaced by oo, and 16 by 15,
so the vertex set is now {0,1,...,14,15} U {oo}.

Corrected Example 2.1 from [1]:

{(2,5,12,9), (3,6,13,10), (4,7,14,11), (00,1,8,15)};
{(4,5,13,14), (6,9,15,7), (2,10,0,3), (c0,8,11,12)};
{(10,11,2,1), (13,4,12,3), (15,6,14,0), (c0,5,8,7)};
{(12,13,15,2), (3,11,1,4), (9,0,7,10), (o0,6,5,14)};
{(7,2,13,1), (11,6,0,5), (4,15,10,8), (00,3,14,9)};
{(10,5,9,4), (2,14,8,6), (3,1,12,7), (00,11,0,13)};
{Q,5,3,15), 13,11,9,7), (8,2,0,12), (00,4,6,10)};

(
{(9,13,8,3), (7,5,15,11), (14,12,6,1), (00,0,4,2)};
{(0,1,9,8), (12,15,14,10)}.

Addendum: an almost resolvable 4-cycle system of order 33
The vertex set is {0,1,...,14,15} U {0/, 1’,...,14',15'} U {o0}.
Sixteen almost parallel classes, and one short class, are:

1Found by Elizabeth J. Billington, the University of Queensland, Australia.

JCMCC 66 (2008), pp. 297-298

{2,5,12,9), (27,5,12,9), (3,6,13,10), _ (3,6,13,10),
(4,7,14,11), (4,7,14,11"), (0,,1,8,15), (oo,1’,8,15")};
{(T,0,15,2), (3,8,12,12), (5,4,7,10), (6,5,14,7),
(3,11,9,13), (11,6,13,14"), (4,1,10,15"), (0,%,2,9")}:
{45,13,19), (4,5,1%,14), (6,9,15,7), (6,9,15,7),
(2,10,0,3), (2,10,0,3), (1,8,11,12), (oo,8,11/,12)};
{(1,8,15,12), (8,00,12,15), _ (5,5,7,7), (6,67, 14,14"),
(3,4',9,10'), (11,3,13,9), (4,11,10,13), (0,0",2,2")};
{(10,11,2,1), (10,11,2,1), (13,4,12,3), (13,4,12,3),
(15,6,14,0), (15',6',14',0'), (9',5,8,7), (c0,5,8,7)};
(@,7.15,15), (8,5,12,7), (5,3,7,00), __ (6,0,14,2),
(3,6,9,14'), (11,11,13,13), (4,4,10,10"), (0,8,2,12')};
{(12,13,15,2), (12,1%,15,2), (3,11,1,4), @3,11,17,4'),
(9,0,7,10), (9,0,7,10), (8,6,5,14), (oo,6',5,14))};
{((1,5.15,7), (8,6,12,14), (5,1,7,15'), (6, 00,14,12),
(3,3,9,9), (11,4,13,10), (4,0,10,2), (0,11',2,13)};
{(7,2,13,1), (7, 2,13, 1), (11,6,0,5), ar,e,0,5),
(4,15,10,8), (4,15,10,8), (12,3,14,9), (00,3,14,9')};
{(1,6,15,14), (8,4,12,10), (5,11,7,13'), (6,9,14,9),
(3,00,9,8), (11,0,13,2), (4,5,10,7), (0,1,2,15)};
{(10,5,9, 4), (10',5,9,4), (2,14,8,6), (2/,14',8,6)),
(3,1,12,7), (3,1,12,7), (15,11,0,13), (oo,11/,0/,13")};
{(1,4,15,10°), (8,07,13,2), (5,8,7,12)), (6,117, 14,13"),
(3,5',9,7), (11,00,13,1), (4,3,10,9), (0,6,2,14")};
{(1,5,3,15), (1,5,8,15), (13,11,9,7), (13,11,9,7),
(8,2,0,12), (8,2,0,12'), (14,4,6,10), (oo,4',6',10")};
{1, 11,15,13"), (8,9,12,9), 6,0,7,2), (6,47, 14, 10"),
(3,1/,9,15'), (11,8,13,12"), (4,00,10,6'), (0,5,2,7)};
{(9,13,8,3), (9,13.8.,3), (7,5,15,11), (7,5,15,117),
(14,12,6,1), (14,12,6,1), (10,0,4,2), (oo,0',4',2)};
{(1,9,15,9), (8,11,12,13), (5,6,7,14), (6,1,14,15),
(3,07,9,2'), (11,5,13,7), (4,8,10,12), (0,00,2,4')}.
{(0,1,9,8), (12,15,14,10), (0, 1,9,8), (12,15,14,100]).
REFERENCE

(1] L J. Dejter, C.C. Lindner, M. Meszka and C. A. Rodger, Almost resolv-
able 4-cycle systems, J. Combin. Math. Combin. Computing 63 (2007),

173-182.

298

