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Abstract

Let G = (V,E) be a graph with a vertex labeling f : V — Z;
that induces an edge labeling f* : E — Z; defined by f*(zy) =
f(z) + f(y). For each i € Zy, let vs(i) = card{v € V : f(v) =i} and
ef(i) = card{e € E : f*(e) = i}. A labeling f of a graph G is said
to be friendly if {vs(0) — vs(1)] £ 1. The friendly index set of G is
defined as {|es(1) —es(0)| : the vertex labeling f is friendly}. In this
paper, we determine the friendly index sets of generalized books.

1 Introduction

Let G be a graph with vertex set V(G) and edge set E(G), and let A be an
abelian group. A vertex labeling f : V(G) — A induces an edge labeling
f* : E(G) — A defined by f*(zy) = f(z) + f(y). For each i € A, let
vf(i) = card{v € V(G) : f(v) = i} and es(i) = card{e € E(G) : f*(e) = i}.
A vertex labeling f of a graph G is said to be A-friendly if |vs(i)—vf(5)| < 1
for all (i,5) € Ax A. If |es(i) —ep(5)| < 1for all (3,7) € Ax A, wesay fis
A-cordial. The notion of A-cordial labeling was first introduced by Hovey
[4] to generalize the concept of cordial graphs [1] of Cahit, who considered
A = Zs. In this paper, we will exclusively focus on A = Z;, and omit the
reference to the group. When the context is clear, we will also drop the
subscript f. In [3], the following concept was introduced.
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Definition. The friendly indez set FI(G) of a graph G is defined as
{les(1) — ef(0)] : £ is friendly}.

Note that G is cordial if 0 or 1 is in FI(G). Hence friendly index sets
could be viewed as a generalization of cordiality. Cairnie and Edwards
[2] proved that deciding whether a graph admits a cordial labeling is NP-
complete. Even the restricted problem of deciding whether a connected
graph of diameter 2 has a cordial labeling is still NP-complete. Thus, in
general, it is difficult to find friendly index sets. In [5, 6, 7, 8] the friendly
index sets of a few classes of graphs, including complete bipartite graphs
and cycles, are determined. The following result was established.

Theorem 1.1 For any graph with q edges,

{0,2,4,...,9} ifq is even,
FIG) ¢ {{1,3,5,;..,q} if q is odd.

Example 1. The labelings in Figure 1 illustrates FI(K33) = {1,9} a.nd
FI(C3 X Kz) = {1 3, 5}

les(1) —es(0) =1 les(1) —e(0)l =

o 0 Q
oG F—0 F—o
N &Ny N

les (1) —ef(0)| = 1 les(1) —es(0) =3 les(1) — ef(0)| =5

Figure 1: Friendly Labelings of K33 and C3 x K.

In {6], we found



Theorem 1.2 The friendly indez set of a cycle is

{0,4,8,...,n} ifn=0 (mod 4),
FI(C,) =< {2,4,6,...,n} ifn=2 (mod 4),
{1,3,5,...,n =2} ifn is odd.

Conjecture. The numbers in FI(T) form an arithmetic progression for
any tree T.

In [7], we showed that for a cycle with an arbitrary nonempty set of
parallel chords, the values in its friendly index set always form an arithmetic
progression with common difference 2. However, this is not true if the
chords are not parallel. Interestingly, the friendly index set of a union of
disjoint cycles may not consist of an arithmetic progression either [5].

The book By is the graph consisting of & triangles sharing a common
edge known as its “base.” For example, the book B, is displayed below
in Figure 2. A generalized book B(ni,ns,...,nk) consists of k cycles of
length ny,mns,...,n; that share a common edge.

w

Figure 2: The book By consists of four triangles sharing one common edge.

When n; = ng = -+ = nx = n, we denote the book B(nl*l). We study
the special cases of n = 3,4 in Section 2. Although the solution method is
difficult to extend and is different from the approach we use to attack the
general problem, the results provide valuable data for verifying the general
solution. The central idea behind the general solution is demonstrated
in Section 3, in which we focus on B(nj,n2). The complete solution is
presented in Section 4. In Section 5, we look at its applications in several
special cases.

2 Friendly Index Sets of B(3%) and B(4/*)

Let the two vertices in the base of B(n!®l) be w and w’, and write each n-
cycle as wwows . . . wp—1w’'. Observe that, in any friendly labeling, replacing
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each vertex label with its two’s complement yields another friendly labeling
with the same value in |e(1) —e(0)|. Hence, it suffices to consider two cases,
depending on whether w and w' are labeled 0-0 or 0-1, respectively. In this
section, we study the cases of n = 3,4.

Theorem 2.1 For k > 2,
ik _ J {1,3} ifk is even,
FIBET) = {{1,5} if k is odd.

Proof. The graph G = B(3/¥) has k +2 vertices and 2k +1 edges. Let m;
and mg be the number of 0-vertices and 1-vertices, respectively, amongst
the k copies of wa's. Since m; +my = k, we obtain the following solutions:

k=2t+1:
wlw | m | m e(0) e(1) le(1) — (0)]
0|0 ¢t [t+1 142t 2(t+1) 1
00 [t—-1|t+2[14+2(t-1) 2(t+2) 5
0|1 |t+1] ¢ E+1)+t |1+t+(t+1) 1
01 t [t+1]| t+(+1) [1+t+(2+1) 1
k=2t:

wl|lw | m | mg ¢(0) e(1) le(1) — e(0)]
010 Jt—-1]t+1|1+2(t—-1)| 2(t+1) 3
0]1 t t 2t +1) |1+2(t+1) 1

from which the result follows immediately. 0

Theorem 2.2 Fork > 2,
{1,3,5,...,k+1}

kY U{k+5,k+9,...,3k+1} ifk is even,
FIBE™) =19 (0,4,8,....3k+ 1} ifk=1 (mod 4),
{2,6,10,...,3k + 1} ifk=3 (mod 4).

Proof. The vertices ws and ws can be labeled as 0-0, 0-1, 1-0 or 1-1.
Let my, m2, ma and my, respectively, be the number of 4-cycles with such
labelings. We need 0 < my,mp,mg,mg < k,and my +mao+maz+my=k.
If w and w’ are both labeled 0, we find
v(0) = 2+ 2m; + my + m3,
v(l) = mgo+m3+2my;
Since B(4*!) has an even number of vertices, we need v(0) = v(1); hence
1+ my = my4. We also find
e(0) = 1+ 3my+mg+mz+my,
e(l) = 2mgy+2m3+ 2my.
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Thus
e(0)—e(l)=14+3my —mg —m3 —myg = —(k—1) + 4dm,.

We could set mo = m3 = 0. Since 1+m; = my, we obtain k = 1+ 2m,. It
follows that 0 < m; < (k —1)/2.
If w and w’ are labeled 0 and 1, similar argument leads to m; = my,
and
e(0) — e(1l) = —(k — 1) + dmg.

By setting m; = my = 0, we find my + m3 = k. Thus 0 < m3 < k.
Combining the two cases, we determine that

FI(B(4*)) = {| - (k—1) + 44| : 0 < i < k}.
A careful examination of the values yields the sets stated above. m]

Example 2. From {-5+4i:0 < ¢ < 6} = {-5,-1,3,7,11,15,19} we
conclude that

FI(B(4%))) = {1,3,5,7,11,15,19} = {1,3,5,7} U {11,115, 19}.

This example illustrates why, when k is even, FI(B(4%%)) consists of two
disjoint arithmetic progressions. O

This approach of distinguishing the possible labelings of the & disjoint
copies of P,_» resulting from the removal of w and v’ becomes impractical
as k increases. For example, finding FI(B(5%)) requires solving equations
with eight variables my,mg,...,mg. We need to develop a more effective
way of computing |e(1) — e(0)].

3 Friendly Index Sets of B(n;,n;)

To analyze the general problem, we find it helpful to study the labeling of
each cycle as a stand-alone cycle. To demonstrate the idea, we will derive
the friendly index set of B(n;,ng) in this section. Due to symmetry, we
may assume n; < np. Given a graph G with any vertex labeling (which
needs not be friendly), define its friendly indez [9] as i(G) = e(1) — e(0).
In B(n,,ny), the edge ww' is counted twice in the sum i(C,,) + i(Cy,).
Hence
i(B(ny1,n2)) = i(Chn,) +#(Cr,) £ 1,

depending on whether the edge ww’ is labeled 0 or 1, respectively.
Consider any vertex labeling of C,,. Group the vertices into 2b blocks,
where the (25 — 1)th block consists of z; consecutive O-vertices and the
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(27)th block of y; consecutive 1-vertices. In the event that all vertices in
C., are labeled the same, define b = 0. Then e(1) = 2b and e(0) = n — 2b;
hence i(Cy) = e(1) — e(0) = —n + 4b. 1t is easy to find a friendly labeling
of C,, with 2b blocks for any b satisfying 1 < b < [n/2]. Thus

FI(Ca) = {|-n+4b:1<b< |n/2]}

_ {n—4k,n-4k+4,...,n—-4,n} ifn=4kor 4k +2,
- 1{1,3,5,...,n—2} if n is odd.

This is exactly what Theorem 1.2 asserts.

For B(n1,n2), we have i(B(n1,n2)) = —(n1+n2) +4(b1 +b2) £ 1, where
2b; is the number of blocks in C,,. This friendly index can be written in a
form similar to that of a cycle, namely,

i(B(ny,ng)) = —n £ 1 + 4b,

where n = n; + np. To find FI(B(n,,nz)), we first determine the bounds
for b. Next, for each value for b, we find a friendly labeling with b, + b, = b.
The friendly index set is obtained by gathering | — n + 1 + 4b| into a set.

Since #(Cy,) is independent of the individual block sizes, we may label
the vertices in such a way that, with the exception of the last two blocks,
and sometimes (see below) the first 0-block, most blocks are of size 1. The
trick is to pick zi and y;p in such a way that the overall vertex labeling is
friendly.

Theorem 3.1 Let G = B(ny,n2), where 3 <ny < ny. Then

{0,2,4,...,ny +np — 3} if ny + ny is odd,
FIG) =< {1,3,5,...,n1 +n2 — 3} if n1,no are odd,
{1,8,5,...,n1 4+ n2 — 5} U {ny + na — 1} if ny,n; are even.

Proof. If w and w' are labeled 0 and 1, then 1 < b; < |n;/2]. We shall
label the vertices in the order of wwows...wn_1w’. For any b; and b,
within their respective ranges, setting z;; = 4;; = 1if 1 < j < b;, and
picking

Ty, = |_(n1 -2b + 2)/2], Yib, = |'(n1 -2b + 2)/2],

T2, = [(n2 ~ 202 +2)/2],  yab, = [(n2 — 202+ 2)/2],

yields a friendly labeling. Pictorially, the two cycles are labeled as follows:

Cny:  f(w)=0101...0100 ... 011...1= f(u'),
2(b;-1) L(n1-2b1+2)/2) [(n1—2b1+2)/2]

Cnp: f(w)=0101...0100 ... 011...1= f(v').
2(b—1) [(na-2b2+2)/2]  |(na—2b3+2)/2)
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We find i(G) = —(n1+n2)—1+44b, where 2 < b = by +by < |n1/2]+(n2/2].
More specifically, if [s,t]s denotes an arithmetic progression with common
difference d that starts with s and ends with ¢, then

[—(n1 +ng — 7),n1 +n2 — 5]y if ny,n, are odd,
‘L(G) € [-—(TL1 +ng ~7),n +ng — 3]4 if ny + ng is odd,
[—(n1 +n2 — 7)y,n1 +n2 — 1]y if ny,ny are even.

If w and w’ are both O-vertices, then 0 < b; < |(n; — 1)/2], and i(G) =
—(ny +n2) + 1 + 4b, where b < |(ny — 1)/2] + |(n2 — 1)/2]. The lower
bound of b is a bit trickier. We cannot have b = 0, because it would require
by = by = 0, which in turn implies that all vertices are labeled 0. We now
describe the vertex labels in the order of w'wwows. .. wn-1.

If by,bs > 2, letting ©17 = w21 = 2 and y;1 = y12 = 1 produces a
partially completed labeling which is friendly. The remaining vertices can
be labeled in the same manner described above; that is, zi; = yi; = 1 if
j < b;, and

T, = [(n1 — 201 +1)/2], Y1s, = [(m1 — 2y +1)/2],
Top, = [(‘nz — 2by + 1)/2], Yob, = |_(n2 —2by + 1)/2].

It remains to analyze 1 < b < 3.

For b; = 1, we need z;, = [n;/2] to ensure z;; > 2, hence we would
set y11 = |n1/2]. For by = 2, we could pick z2; = 2 and y2; = 1. Thus far,
the partially completed labeling has

_J 0 ifn;isodd,
v(1) —v(0) = { 1 if n is even.

Choosing z22 = [(n2 — 3)/2] and y22 = |(n2 — 3)/2] settles the case of
b= 3. For by = 1, letting z2; = [n2/2] and y21 = |n2/2] if n; or ny is odd,
but 29; = n2/2+ 1 and yo; = n2/2 — 1 if both n; and ny are even, yields
a friendly labeling with b = 2.

The last case is b = 1. We need b; = 0 and b, = 1. Friendliness also
requires 1 < na. Since all n; vertices in C,, are labeled 0, at least n; — 1
vertices in Cyp, must be labeled 1, leaving ny — (n; + 1) vertices that need
to be evenly labeled 0 and 1. We could select 22y = 2 + |(ng — n1 — 1)/2]
and Y21 = N2 — 2— I_(nz -_ny — 1))/2J

To summarize the event in which both w and w’ are labeled 0, we have
{(G) = —(n1 + n2) + 1 + 4b, where b < |(ny — 1)/2] + |(n2 — 1)/2]. If
ny1 < ng, then b > 1, in which case,

[—(n1 +n2 —5),n1 +na — 3]y if ny < ny are both odd,
i(G) € ¢ [—(n1 +n2 —5),n1 +n2 —5]s if ny or ny is odd,
[=(n1 +ng2 —5),n1 +n2 — 7]y if n; < ny are both even.
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If ny = ng, then b > 2, in which case,
[—(n1 +n2 —9),n; + ny — 3]s if n; = ny are both odd,
i(G) €

[—(n1+n2 —9),n; + np — 7]g if ny = ny are both even.

Finally, we need to combine these friendly indices with those from the case
in which w and w’ are labeled 0 and 1.

e Case 1. When n; + ns is odd,
i(B(n1,n2)) € [—(n1 + n2 — 5),n1 + ng — 3.
Consequently, FI(G) = [0,n; + na — 3)2.
| e Case 2. When n, and n, are odd,

. [—(m + ng — 5),71.1 + ng — 3]4 if n; < ng,

i(B(ni,n2)) € .

(B(m1,m2)) { [-(n1+n2—=T7),n1 +n2—3]y ifny =no.
In either case, we find FI(G) = [1,n; + n2 — 3}2.

e Case 3. When n; and n, are even,

[—(n1 + Ng — 5),n1 + ng — 1]4 if ny < ngy,
[~(m1 +n2=T),n1 +n2—1]4 if ny =n,.

(B, ) € {
Hence FI(G) = [1,n1 + na — 52U {n1 + na — 1}.
The proof is now complete. m]

Example 3. Besides Theorems 2.1 and 2.2, it is an easy exercise to deduce
FI(B(51?)) = {1,3,5,7}, and

_ {1,3,5,...,n+2} ifnisodd,
FI(B(,m) = {{0,2,4,...,n+2} if n is even,
_ {0,2,4,...,n+3} if n is odd,
FI(B(6,n)) = { {1,3,5,...,n+1}U{n+5} ifniseven,
from Theorem 3.1. m]

4 Friendly Index Sets of B(ni,na,...,ng)

In this section, we discuss how to find FI(B(n,nas,...,n)), where k > 2
and n; > 3 for each i. Following (9], we define the full friendly index set
of a graph G to be

FFI(G) = {is(G) : f is a friendly labeling of G};
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hence FI(G) = {|z| : z € FFI(G)}. For G = B(ny,ny,...,nk), define

$1 = {if(G): f(w)=0and f(w') =1},
S = {if(G): f(w)=0and f(w') =0},

so that FFI(B(ny,ng,...,nk)) = 81 U Sa.
Set n = n; +ng +---+ng, and let £ denote the number of odd numbers
among n,,ng,...,nk. If w and w' are labeled 0 and 1, respectively, then

i(B(ny,ng,...,nk)) = —n— (k— 1) + 4b,

where b = by + by + -+ + bg. Since 1 < b; < |n;/2] for each %, we find
k<b< Zf=1 |n:i/2] = |n/2] — |£/2]. Rename and rearrange the n;’s as
m;'s such that m; < mo < --- < my areodd, and mey; < Mgz < -+ <My
are even. We can now apply the same labeling method we used in Section 3
to obtain every possible value of b. We determine that S; = {—n—k+1+4b:
k<b<|(n/2) - |4/2]}.

The situation is much more complicated if w and w’ are both 0-vertices.
In this case, we have i(B(ny,ng,...,nk)) = —n + (k — 1) + 4b. Although
0 < b; £ |(n: — 1)/2] for each ¢, we cannot have Z:;l b; = 0, because it
would have implied that all vertices are 0-vertices. Let m be the maximum
number of b;’s that could equal 0, so that ¥ — m is the lower bound for b.
Since n; < ng < --- < ng, we may assume n) =ng =--- =n,, = 0. For a
vertex labeling to be friendly, we need 2+3_. . (ni—2) < 3. . (ni—2)+1.
This implies -

2—2m+Zni$n—Zn,~—2(k—m)+1.

i<m i<m

Thus } ;.. ni < (n—1)/2+2m — k.
The upper bound for b is also problematic. Supposedly, the upper bound

for Y°F_, b; is .
s e s

i=1

However, this upper bound may not be attainable. If n; is even, we can
label the vertices between w and w’ alternately with 1 and O to obtain
b; < |[(ni — 1)/2]. More importantly, this gives an equal number of 0-
and 1-vertices between w and w', thereby preserving the friendliness of the
labeling.

If n; is odd, to obtain the maximum value in b;, the vertices between
w and w’ must be labeled as 1010...101. Therefore each odd-sized cycle
contains an extra unmatched 1-vertex. Since w and w’ are O-vertices, the
overall labeling is still friendly, provided £ < 3. If £ > 4, the vertices between
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w and w’ on half of these odd-sized cycles beyond the first three must be
labeled 1010.. . 100 so as to maintain friendliness. In other words, |£/2) —1
of the odd-sized cycles can only have b; < |(n; — 1)/2| — 1. Consequently,
the upper bound for b must be reduced by [£/2] — 1 if £ > 4.

It remains to show that any b within the lower and upper bounds is
attainable. First consider b > k. We need to pick b;'s such that b = ZLI b;.
We could use an greedy algorithm to select b;. Start with b;, and work
backward: choose the largest possible by, then the largest possible bx_;,
and so forth, until b = Ef=1 b;, where b; > 1 for each i. When we pick the
largest possible value of b; when n; is odd, take into account the remark
above pertaining to the overall value of b, and make appropriate adjustment
whenever necessary.

We now describe a labeling method that would produce a friendly la-
beling. If b; < |(n; —1)/2] for each ¢, we first use the same labeling method
in Section 3 to label Cy,, and Cy,. If there are any cycles with b;’s reaching
the maximum values allowed, that is, with b; = [(n; — 1)/2], they must
be labeled first, because they do not allow much flexibility in their vertex
labeling. Compute v(1) and v(0) in this partially completed labeling. If
v(1) > v(0), we need to select v(1) — v(0) — 1 vertices from the unlabeled
cycles and label them 0 to maintain friendliness. Likewise, if v(1) < v(0),
we need to select v(0) — v(1) — 1 vertices from the unlabeled cycles and
label them 1. Again, we use a greedy algorithm to select these vertices.
From the next unlabeled cycle of the largest size, pick as many vertices as
possible until the remaining vertices, when they are eventually labeled al-
ternately with 0 and 1, together with the selected and subsequently labeled
vertices, would yield the desired b; for that cycle. Repeat the process until
all required vertices are selected.

Thus far, in both cases, since w and w' have been counted, and the
partially constructed labeling is friendly, the remaining unlabeled vertices
can be labeled using the same method described above, with the under-
standing that, if necessary, we may need to use ceiling functions before
floor functions to ensure friendliness.

Example 4. Consider B(4,5,7,7,8,10) with w and w’ both labeled 0. The
maximum value for the b;’s are recorded as (1,2, 3, 3, 3,4), hence b < 16. To
obtain b = 10, we could use (by, bo, b3, bg, bs, bs) = (1,1,1,1,2,4), in which
b1 and be reach their maximum values. We need to start the labeling with
the first and the last cycles:

w w’ 04 Cs,. C7 C7 Cs CIO
0] 0 ]0110 | xox0 | Oxooex0 | Oxooexx0 | Oxoooeex0 | 0101010100

At this stage, v(0) = 6 and v(1) = 6, so the partially finished labeling is
friendly. Since Cs has an even number of unlabeled vertices, we will label
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it next.

w | w C4 Cs C7 C? CB CIO
0] 0 | 0110 | Oxxx0 | Oxoexxx0 | Oxocxxx0 | 00100110 | 0101010100

Each unfinished cycle has an odd number of unlabeled vertices, label them
with the usual approach via floor and ceiling functions:

w|w | Cy Cs Cr Cy Cs Cio
0| 0 (0110 | 00110 | 0000110 | 0001110 | 00100110 | 0101010100

The result is a friendly labeling with v(0) = 15, v(1) =16, and b=10. O

Example 5. Consider B(4,5,7,7,7,9) with w and w’ both labeled 0. The
maximum value for each b; is recorded as (1,2,3,3,3,4), hence b < 16. To
obtain b = 11, we could use (b1, b2, b3, bs, b5, bg) = (1,1,1,1, 3,4), in which
by, bs and b reach their maximum values. We need to start the labeling
with their respective cycles:

w|w | Cy Cs Cr Cy Cy Co
0] 0 | 0110 | Oxxx0 | Oxoexx0 | Oxxooxx0 | 0101010 | 010101010

At this stage, v(0) = 7 and v(1) = 9, so we need an extra O-vertex. Put it
in the last unfinished C-.

w|w [ Cy Cs Cy Cy Cy Co
01 0 | 0110 | 0xxx0 | Oxoooxx0 | 00x0ox0 [ 0101010 | 010101010

The last unfinished C7 has an even number of unlabeled vertices, so we will
label it next:

w|w | Cy Cs Cy Cy Cr Co
0] 0 | 0110 | Oxxx0 | Oxcexx0 | 0000110 | 0101010 | 010101010

Finally, the two remaining cycles will be filled.

w|w [ Cy Cs Cy Cy Cy Cy
01 O | 0110 | 00010 | 0001110 | 0000110 | 0101010 | 010101010

The result is a friendly labeling with v(0) = 14, v(1) =15, and b=11. O

Example 6. For B(3,3,3,3,3,7,10), we have n = 32, k = 7, £ = 6, and
M = 2. The maximum value for each b; is recorded as (1,1,1,1,1,3,4),
hence b < 10. To obtain b = 8 with b; > 1 for each i, and w and w'
labeled 0, we could use (b1, b2, b3, b, bs, bs, b7) = (1,1,1,1,1,1,2), in which
b; reaches its maximum value for each i < 5. We could start with the
following labeling

53



w w’ 03 03 C3 C3 C3 07 Cm
0] 0 [010]| 010|010 | 010 | 010 | Oxxxxx0 | OO0

Thus far, v(0) = 2 and v(1) = 5, so we need to add two O-vertices in Cg:

w w’ Cs Ca Cs Cs Ca C7 Cm
0| O [010]010 | 010 | 010 | 010 | Oxoocxx0 | 000xxxxxx0
Here is the final labeling:
w w’ Cs Cs Cs 03 C3 C7 C]_o
0] 0 | 010|010 | 010 | 010 | 010 | 0000110 | 000100110
This is a friendly labeling with v(0) = 10, v(1) = 10, and b = 8. O

If Kk — m < b < k, all vertices in the first k — b cycles must be labeled
0, and we want b; = 1 for each ¢ > k — b. First, select 1+, ,_,(n; —2)
vertices between w and w’ from the last b cycles, and select them as evenly
as possible from each cycle. Label them with 1. The partially completed
labeling is friendly. We still need to label the remaining unlabeled vertices.

If the number of unlabeled vertices in a cycle is even, label half of them
with 0 and the other half with 1. Among the remaining cycles with odd
number of unlabeled vertices, use the same old strategy (of applying floor
and ceiling functions alternately) to label them with 0’s and 1’s. The result
is a friendly labeling with b; =0ifi <k —band b; =1ifi > k—b.

Example 7. For B(4,5,7,7,8,10), we have n = 41 and k = 6. We find
m = 3, hence b > 3. To obtain a friendly labeling f with f(w) = f(w') =0
and b = 3, all the vertices in the first three cycles must be labeled 0.

w|w [ Cy Cs Cy Cy Cs Cio
0| O | 6000 | 00000 | 0000000 | Oxoxxx0 | Oxxxxxx0 | Oxcoooooex0

We now have twelve 0-vertices, so we need eleven 1l-vertices to maintain
friendliness. Distribute them as evenly as possible among the last three
cycles. We could use four in C7 and Cs and three in Cjq:

w|w | Cs Cs Cy Cy Cs Cio
0| 0 | 0000 | 00000 | 0000000 | 0x11110 | Oxx11110 | Oxxoxx1110

Only Cs has an even number of unlabeled vertices, half of which we will
label with 0, and the other half with 1:

w|w | Cs Cs C Cy Cs Cio
0] O | 0000 | 00000 | 0000000 | 0x11110 | 00111110 | Oxoxxxx1110

The remaining vertices are labeled as follows:

54



wl|w | C Cs C; Cq Cs Cio
0| 0 | 06000 | 000CO | 000CCCO | 0111110 | 00111110 | 0000111110

This gives v(0) = 16, v(1) = 15, and b = 3.

What if we want b = 4?7 We may proceed as follows:
w' C'4 C5 C'7 C7 Cs OID
0000 | 00000 | Oxoxcxxx0 | Oxoocxx0 | Oxoooexx0 | Oxoxasoooox0

0
0 | 0000 | 00000 | Oxxx110 | Oxxx110 | Oxxxxx10 | Oxxxxxxx10
0 | 0000 | 00000 | 0001110 | 0011110 | 00001110 | 0000111110

o|lojo|e

This gives v(0) = 16, v(1) = 15, and b = 4. o
We summarize the result in the next theorem.

Theorem 4.1 Let m be the largest nonnegative integer such that 3., n;
<(n-1)/2+2m—k. Let M be 0 if £ < 3, but set M = |£/2] —1 if £ > 4.

Define
n 4
51 {—n—k+1+4b.kaS|-—2'J—l§J},

S, = {—n+k—1+4b:k—m$b5 {";kJ—{k;eJ —M}.

Then FIB(ny,ng,...,ng)) ={|2| : 2 € S1 U Sz}.

5 Some Special Cases

It is straightforward to verify that Theorem 4.1 reduces to Theorem 3.1
when k = 2. If the n;’s are constant, we obtain the following result.

Theorem 5.1 Letr >3 and k > 2. Set M =0 if r is even or if k < 3,
otherwise let M = |k/2| — 1. Define

Si = {—(r+Dk+1+4b:k<b<[552]k},
S, = {_(r-1)k-1+4b:['%l]sbs(rgz)k—”f}-

Then FIB(r*)) = {|z| : z € S, U S2}.

Proof. We want to find the largest nonnegative integer m such that rm <
(rk —1)/2 + 2m — k, which is equivalent to

(r—2)k—1
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Therefore m = |(k—1)/2). This gives k—m = [(k+1)/2]. The remammg
bounds are obtained from direct computation.

It is an easy exercise to deduce Theorems 2.1 and 2.2 from Theorem 5.1.
We also obtain the following new result.

Theorem 5.2 For k > 2,

(kyy — {1,3,5,...,2k + 3} if k is even,
FIBE™) {{,3,, 2k + 1} U {2k +5} ifk is odd.

Proof. For B(5¥), we have

S) = {-6k+1+4b:k<b<2k} = [—(2k—1),2k+1]y,
S = {—4k—1+4b:[(k+1)/2] <b<2k— M}.

Direct computation gives

—(2k+3) ifk is even,
—4k—1+4f(k +1)/2] ={—E2k—1; if b is odd.

and
4k -1 if k<3,

—4k-1+4(2k-M) = {4k- lk/2] +3 ifk>4.

Notice that
2k + 3 if k is even,

4k'Lk/2J+3={2k+5 if k is odd;

1 _f8=2%+3 ifk=2,

k-1= {11=2k+5 if k= 3.

Therefore S; — {£(2k + 3)} C S, if k is even, but S, — {2k +5} C S, if &
is odd. We conclude that

and

kv _ J iU {2k+3} if k is even,
FIBE™) = {T1 U {2k +5} if k is odd,

where Ty = {|z| : z € $1} ={1,3,5,...,2k + 1}. m]

The last problem we study is B(3!¥), n), where t > 2 and n > 4, in which
we may regard C, as the (¢ + 1)st cycle. We find an interesting result.

Theorem 5.3 FI(C,) C FI(B(3!8,,n)) for alin > 4.
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Proof. Consider any friendly labeling of C,,. It must contain a 0-vertex
adjacent to an 1-vertex. Let them be w and w’ respectively. Each ws in the
t copies of C3 can be labeled either 0 or 1 without altering the overall value
of e(1) — e(0), so we can easily distribute 0’s and 1’s among them and Cp
to produce a friendly labeling of B(3!t],n). This proves that every fnendly
labeling of C;, induces a friendly labeling of B(3(, n).

It is clear that any friendly labeling of B(3!,n) with w and w’ labeled
0 and 1 has a friendly index that can be found in FI{C,). Consequently, we
only need to analyze the vertex labelings that assign 0 to both w and w'.
Note that it is possible for b;+; = 0, and the upper bound for b;4+; could
be lowered, depending on how many 0- and 1-vertices are there among the
we’s in the Cs’s, which in turn could change the value of e(1) — e(0). By
carefully studying whether e(1) — e(0) could attain new values not found
in FI(C,,), we could derive the following results. Nonetheless, it is easier to
prove them with Theorem 4.1.

Theorem 5.4 Forn >4,

{0,4,8,...,n} ifn=0 (mod 4),
FI(B(3? n)) ={ {2,6,10,...,n}  ifn=2 (mod 4),
{1,3,5,...,n+2} ifn is odd.

Proof. Apply Theorem 4.1. Wefind m=1ifn=4,but m=2ifn > 5.
For n = 2t, where t > 3,

S, = {-n-8+4b:3<b<t+2} = [-(n—4),nl4,
So = {-n—4+44b:1<b<t+1} = [-n,nfs

When n = 4, the only change is in S5, in which b > 2; hence it starts with
—(n — 4), which does not affect the friendly index set. We conclude that
FI(B(3?,n)) = {0< z< n:z=n (mod 4)}.

Forn =2t + 1, wheret > 2,

S = {—n—-4+4b:1<b<t+2} = [-n,n+2
Since S C S;, we find FI(B(31,n)) = {1,3,5,...,n+2}. O

Theorem 5.5 Forn >4,
{0,2,4,...,n+2} ifn is even,

FI(B(3®,n)) = { {1,3,5} ifn=>5,
{1,3,5,....,.n+2} ifn>5is odd
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Proof. Wefindm=2if n=4,5; but m =3 if n > 6. For n = 2t, where
t > 3, we have

S1 = {-n-12+4b:4<b<t+3} = [—(n-4),n)a,
S, = {-n-6+4b:1<b<t+2} = [~(n+2),n+2a.

Since ~(n + 2) ¢ Sz when n = 4, FI(B(3®, 7)) = {1,3,5,...,n + 2}.
If n =2t + 1, where t > 3, we have

S = {-n—-12+4+4b:4<b<t+3} = [-(n—4),n—24,
S = {-n—-6+4b:1<b<t+2} = [-(n+2),n).

Since —(n +2) ¢ Sz if n = 5, we find S, = {-3,1,5} and S, = {-1,3}.
Thus FI(B(31,5)) = {1,3,5}, and FI(B(3B,n)) = {1,3,5,...,n + 2} if
n > 5 is odd. a
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