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Abstract

In this paper we derive some necessary existence conditions for a bi-
level balanced arrays (B-arrays) with strength ¢t = 5. We then describe
how these existence conditions can be used to obtain an upper bound
on the number of constraints of these arrays, and give some illustrative
examples to this effect.

1 Introduction and Preliminaries
First of all, for ease of reference, we list here some basic definitions and concepts.

Definition 1.1 A matrix T of size (m x N) and with two elements (say, 0 and
1) is called a balanced array (B-array) with m rows (constraints), N columns
(runs, treatment-combinations), with two levels (0 and 1) and having strength
t (t £ m) if in every (t x N) submatrix T* of T (clearly there are T such
submatrices), every (¢ x 1) vector a of weight i (0 < i < ¢; the weight of o
means the number of non-zero elements in it) occurs with the same frequency
(say) ui. The vector i’ = (g, 41, ..., pt) is called the index set of the array T
It is quite obvious that N = 3"i_, ( : i

Note: The above definition of a B-array with two symbols can be easily
extended to B-arrays with s symbols.

In this paper we restrict ourselves to arrays with ¢ = 5. For these arrays,
N = po + 5uy + 10p0 + 10u3 + Spq + ps.
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Definition 1.2 If u; = i for each ¢, then the B-array is reduced to an orthogonal
array (O-array) with index set p. For this case then N = u2°.

Thus O-arrays form a subset of B-arrays. B-arrays, a generalization of O-
arrays, are also related to other combinatorial structures such as balanced in-
complete block (BIB) designs, group divisible designs, nested BIB designs, rect-
angular designs, etc. These combinatorial arrays have been extensively used
to construct fractional factorial designs in statistical design of experiments. B-
arrays with different values of the strength ¢ give rise to, under certain con-
ditions, factorial designs of different resolutions. For example, a B-array with
t = 5 will provide us with a balanced factorial design of resolution VI which
would allow us to estimate all the effects up to and including two-factor inter-
actions in the presence of three factor interactions under the assumption that
higher order interactions are negligible. O-arrays, a subset of B-arrays, have
been widely used in coding and information theory, in quality control in indus-
try, in medicine, etc. To gain further insight into the importance of these arrays
in combinatorics and statistical design of experiments, the interested reader may
consult the list of references (by no means an exhaustive one) at the end of this
paper, and also further references cited therein.

Thus, the existence and construction of these combinatorial arrays is very
important from the point of view of applications and to study other combina-
torial structures. It is quite obvious that to construct B-arrays for an arbitrary
set of parameters is a very different problem. In particular we address here the
problem of obtaining the maximum value of m for a given y’ with ¢ = 5 which
is a nontrivial problem. Such problems for B-arrays and O-arrays have been
discussed, among others, by Bose and Bush [1], Chopra and/or Bsharat {5, 6),
Dios and Chopra [7], Hedayat et al (8], Rafter and Seiden [12], Rao [13], Seiden
and Zemach [14], etc.

First of all, we derive some inequalities involving the parameters m and y' for
arrays with ¢t = 5. For a given u' (i.e. given N) these are inequalities involving
only m. If any one of these inequalities is contradicted for a certain value of m
(> 5;m = m*), then the maximum value of m is (m* — 1). On the other hand,
the B-array may or may not exist even if all the inequalities are satisfied for a
given m (> 5) and g'. These inequalities consequently would allow us to find
an upper bound on the number of constraints m for a given y'.

2 Main Results On Balanced Arrays with ¢t =5
The following results are easy to establish.

Lemma 2.1 4 B-array T with m =t =5 always erists for any index set y'.
Lemma 2.2 A B-arrey T witht =5 is also of strength k where 0 < k < 5.

Remark: Let A(j, k) be the j-th element (0 < j < k) of the parameter vector
of T when it is of strength k. Clearly A(j,5) = uj, A(j,0) = N and A(j, k) is a
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linear combination of u;’s and is given by

Sk e g

AGH =3 (°7F ) M
=l

Definition 2.1. Two columns of a B-array T having m rows are said to have

J coincidences (0 < j < m) if they have exactly the same symbols in j of the

rows.

Lemma 2.3 Consider a B-array T with m rows and having a certain column
(say, the first one) of weight | (0 < { < m). Let X; be the number of columns
in T (other than the first one) having ezactly j coincidences with the first one,
then the following results hold:

m
Bo=) X;j=N-1, uhere By = Y _j*X; (2
j=0
k-1 k l m—1
Bk=2b(j,k)B,~+k!Z(i)( i )(A(i,k)-l) k=1,2...,5
j=l =0

where A(i, k) =p; fork=5(0<i<k).

Remark: One can easily obtain (2) by counting the number of coincidences in
two ways — through rows and columns. The constants b(j, k) for various values of
k are known, and these appear in the process of deriving (2). For computational
ease we provide next the values of b(j,k), 0 < j < k for k = 1,2,3,4 and 5.
These values are 0, 1, (-2, 3), (6, —11,6) and (—24, 50, —35, 10) respectively.

Theorem 2.1 For a B-array T(m, N,2,5) with indez set y' to ezist, the fol-
lowing must hold:

N?Bs —2NB,;B3 + B1B3 >0 3)
where By ’s are defined as above.
Proof: Consider 3_7", j(j2 —a)?X; where @ = £2. Clearly Y0 d(?-a)’X; 2

0 for each j > 0. We obtain (3) if we expand the L.HS.

Theorem 2.2 Consider a B-array T with m rows andt = 5. For T to erist,
the following must be satisfied:

N*Bs —2N?B3B} + B} > 0. (4)

Proof: Let a = £+. Consider im0 (3% —a®)*X; which is clearly non-negative.
We obtain (4) by using this mequaht.y

Theorem 2.3 A necessary condition for BA(m, N, 2,5) with the indez set (1o, 1, - - - , 45)
to exist, the following must be satisfied:

1
(Bi+3Bugu +3Bugs + B))* < (B} +(Bu)} (5)

where k,1 < ¢.

61



Proof: First of all we state here the Minkowski’s inequality for use to derive the
above result. If X;,Y; >0 and p > 1, then

oo <[] ]

i=]

which can be extended to (for Z; > 0):
1 1 1 1
n P n P n ? n P
[Z (Xi+Yi+ Zi)P] < [Z X{’] + [Z Y,."] + [ Z{']
i=1 i=1 i=1 i=1

We set p = 3, replace X; by jﬁxj% and Y; by j§XJ§ and i from 1 to n by j from
1 to m,

¥ 4

m s 18 [
[Z (44 +j’3‘)°x,] < [thx

J=1

m
+ [ijx_.i
Jj=1

Expanding L.H.S. and using By = ¥ j*X;, we obtain the result.

Corollary 2.1 For a B-array with t = 5 to exist, we must have the following
result:
(Bs +3B3 +3Bs + By)} < (Bs)} +(B2)}. (6)

Proof: It can be easily obtained by setting £ = 5 and | = 2 in equation (5).

Theorem 2.4 For a B-array with m rows and of strength t = 5 the following
must be true:

[Bk+B.+B,+3(B:_?_,+B¥+B%ﬁ+3g#+3%ﬂ+3%ﬂ)+sauw]*
< (Bo)Y + (B} + (B}
where each of k,l and f < 5.

Proof: In order to establish this result, we use the extended Minkowski's in-

equality with p = 3, replacing each of X;, Y; and Z; by ﬂX*,J*X5 and ]ij
respectively and changing ¢ (from 1 to n) to j (from 1 to m) Then expandmg
the L.H.S., we obtain the desired result.

The following result is a special case of Theorem 2.4.

Result: Take (k,!, f) = (2,2,5), then we obtain .

(8B» + 12B;3 +6B4 + Bs)} <2¥/B, + ¥/Bs. )

Theorem 2.5 A necessary condition for the existence of a B-array T of strength
5 with m rows is

/Bs < ¥/Ba+ V/Bs —3Bs + 3B;3 — Ba (8)
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. ) L4 .
Proof outline: Here we replace X; by (jé - j3) X; and replace Y; by j3X j&
where k& > r are positive integers not exceeding t = 5. Using these with p =3 in
Minkowski's inequality, we obtain ¥/Bx < VB-+ V By — 332183_11 +3B ktar = B,.

We obtain (8) by setting k£ = 5 and r = 2 in the above.

Remark: All the above inequalities are merely functions of m for a given
#'. A computer program was prepared to check if the obtained inequalities
are satisfied for a given p' starting with m = 6. If any of these inequalities is
contradicted for the first time for m = k+1 (say), then m = k is an upper bound
for the number of constraints of 7. Next, we give some illustrative examples.

Examples: We took three arrays with indexsets (1,1,1,1,1,1),(1,1,1,1,1,2)
and (1,1,1,1,2,1). We observed that, with [ = 0 condition (6) is contradicted
for m = 8. Hence the maximum value of m for each array is 7. It means none of
these arrays can exist for m = 8 having a column of weight 0. However, we do
not claim that any of these arrays exists for m = 7 since all these are necessary
conditions.
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