Distance Two Vertex-Magic Graphs

Ebrahim Salehi

Department of Mathematical Sciences
University of Nevada Las Vegas
Las Vegas, NV 89154-4020
ebrahim.salehi@unlv.edu

Abstract

Given an abelian group A, a graph G = (V, E) is said to have a distance
two magic labeling in A if there exists a labeling ! : E(G) — A — {0} such
that the induced vertex labeling {*: V(G) — A defined by

Fy= Y e
c€E(v)
is a constant map, where E(v) = {e € E(G) : d(v,e) < 2}. The set of all
h € Z; for which G has a distance two magic labeling in Z,, is called the
distance two magic spectrum of G and is denoted by AM(G). In this paper,
the distance two magic spectra of certain classes of graphs will be determined.
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1 Introduction

In this paper all graphs G = (V, E) are connected, finite, simple, and undirected.
For graph theory notations and terminology not described in this paper, the read-
ers are referred to [1]. Given a nontrivial abelian group A, written additively, a
standard magic labeling of a graph G in A is any mapping ! : E(G) — A - {0}
with the property that the induced vertex labeling !* : V(G) — A defined by

F)= Y i(w), (1.1)

uwekl

is a constant map. Here, {*(v) is the sum of the labels of all edges incident with
v. The integer-magic spectrum of G, denoted by IM(G), is defined to be the set
of all positive integers h € N such that G has a magic labeling in Z,. Variations
of graph labeling, especially magic labeling, have been studied by many authors
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and the integer-magic spectra of different classes of graphs have been determined.
Interested readers are directed to (3, 5].

The standard definition of magic graphs can be modified so that the local re-
quirement that “the sum of the labels of all edges incident with any vertex be
constant” is replaced by a more global requirement. To achieve this, we restate
the requirement (1.1) in terms of distance; namely, I*(v) = 3 ¢, (,) !(€), where
E;(v) = {e € E(G) : d(v,e) < 1} is the set of all edges incident with v. Defining
the standard vertex-magic graphs in this fashion suggests the extension of this con-
cept. Given an abelian group A4 and a fixed integer k£ > 0, a graph G is said to have
a distance k magic labeling in A if there is an edge labeling ! : E(G) — A — {0}
such that its induced vertex labeling [ : V(G) —» A defined by

Bw)= ) e (1.2)

e€Er(v)

is constant. Here, Ex(v) = {e € E(G) : d(v,e) < k}. The distance k spectrum
of G, denoted by A*M(G), is defined to be the set of all positive integers h € N
such that G has a distance k magic labeling in Z,. Note that when k = 1, these
definitions are equivalent to those of the standard vertex-magic labeling of G.

2 Distance Two Magic Graphs

In this paper we study the distance two magic graphs and when there is no am-
biguity, we drop the index 2; that is, we use I*(v), E(v) and AM(G) instead of
13(v), E2(v) and A2M(G), respectively. Given an abelian group A, a graph G
is said to have a distance two magic labeling in A if there is an edge labeling
l: E(G) — A — {0} such that its induced vertex labeling I* : V(G) —» A defined
by I*(v) = e p(v) Ue) i8 constant, where E(v) = {e € E(G) : d(v,e) < 2}. We
say G is dmagic in A (or A-dmagic) if G admits such a distance two magic labeling
in A. In general, a graph G may admit more than one dmagic labeling; for example,
if |JA| > 2 and {: E(G) —» A - {0} is a dmagic labeling of G with sum S, then
A: E(G) — A — {0}, the inverse labeling of I, defined by A(uv) = —I(uv) provides
another dmagic labeling of G with sum —S. An interesting observation is that a
labeling that makes a graph A-magic does not necessarily make it A-dmagic and
vice versa. This fact is illustrated by an example in Figure 1. The left hand side
shows a magic labeling of the graph in Z with [* = 2, which is not a dmagic label-
ing. Because, {*(u) = 2 and !*(v) = 5. The one on the right has a dmagic labeling
in Z with * = 3, which is not a magic labeling; here, I*(u) = 2 and I*(v) = 1.

A graph G = (V, E) is called fully dmagic if it admits a dmagic labeling in every
non-trivial abelian group A. The following theorem identifies a number of fully
dmagic graphs.

Theorem 2.1. If diam(G) < 2, then G is fully dmagic.

Proof. Since diam(G) < 2, then E(v) = E(G) holds for every v € V(G). Therefore,
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Figure 1: A magic labeling that is not a dmagic labeling and vice versa.

I'v)= z l(e) is constant. ]
c€E(G)

Figure 2: Amalgamation of K, and star.

As a result of this theorem all complete graphs K,,, complete k-partite graphs
K(ny,--- ,ng), and wheels W, = C, + v are fully dmagic. In particular, the stars
ST(n) = K(1,n) are fully dmagic.

Corollary 2.2. Given a complete graph K, end a star ST(m), if we identify the
center of star with one of the vertices of K,, the resulting graph is fully dmagic.

A graph G is called non-dmagic if for every abelian group A, the graph does not
have a dmagic labeling in A. The most obvious class of non-dmagic graphs is
P, (n > 4), the path of order n. Consider a typical labeling of P, that is illustrated
in Figure 3.

uQ

<0
Q
(o]

Figure 3: A typical labeling of Py.
Here, {*(u) = a + b and I*(v) = a + b+ . The requirement of [*(u) = {*(v) would
result in z = 0, which is not an acceptable dmagic label.
Observation 2.3. Any graph with a pendant path of length n > 3 is non-dmagic.
As another example of a non-dmagic graph, consider the graph H Figure 4. Given

any labeling ! : E(G) — A — {0} of this graph in A, let ¢ be the sum of all labels
of the edges.

Then *(u) = ¢ while I*(v) = ¢ — z. The requirement *(u) = *(v) would result in
x = 0, which is not acceptable. Thus, H does not have a dmagic labeling in A. On
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Figure 4: A non-dmagic graph H.

the other hand, if |A| > 2, then the graph H is A-magic, as illustrated in Figure
5

Figure 5: IM(H) =N - {2}.

Observation 2.4. Given an abelian group A, a graph that is A-magic is not nec-
essarily A-dmagic and vice versa.

Theorem 2.5. Any complete graph K,, (n > 2) with ezactly two pendant edges is
non-dmagic.

Proof. The graph K, with two pendant edges is P;, which is non-dmagic (see
Figure 3). Suppose n > 3 and let ¢ = 3" ¢ g(g) {(€). Then I*(u) = c+ z +y while
I*(v) = ¢+ z. The requirement {*(u) = {*(v) implies that y = 0, which is not an
acceptable dmagic label. (m]

Figure 6: K, with two pendant edges.

3 Dmagic Spectra of Graphs

In this section we focus on group Zj, integers modulo h € N. For convenience,
the notation 1-dmagic will be used to indicate Z-dmagic and Z;-dmagic graphs
will be referred to as h-dmagic graphs. Clearly, if a graph is h-dmagic, it is not
necessarily k-dmagic (b # k). In fact, as we will see in Corollary 3.5, for any
two distinct positive integers h < k, there is a graph G that is k-dmagic but not
h-dmagic. However, it is often useful to observe that if G has a dmagic labeling
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l: E(G) — Z, then it is k-dmagic for all k¥ > max{l(e) : e € E(G)}. Moreover, G
would be k-dmagic as long as k does not divide {(e), Ve € E(G).

Definition 3.1. Given a graph G, the set of all positive integers h for which G is
h-dmagic is called the dmagic spectrum of G and is denoted by AM(G).

Any fully dmagic graph is h-dmagic for all positive integers k; therefore, AM(G) =
N. On the other hand, the graph H, Figure 4, is non-dmagic, hence AM(H) = 0.

Observation 3.2. A graph G is 2-dmagic if and only if the numbers |E(v)| have
the same parity.

Frucht and Harary [2] introduced the corona of two graphs G and H, denoted by
G@©H, to be the graph with base G such that each vertex v € V(G) is joined to
all vertices of a separate copy of H.

Theorem 3.3. Given a complete graph K, (n > 3), let p3*p3? - - - pr* be the prime
factorization of n—1. Then the dmagic spectrum of the corona K,,©K) is U:f:l p:N.

Proof. Consider any dmagic labeling of K,©K in Z, and let ¢ be the sum of
labels of the edges of K,,. For any two distinct terminal vertices u,v of K,,©Kj,
the requirement I*(u) = {*(v) implies that the label of the terminal edges must be
the same nonzero element = € Z;,. Let w be any vertex of K,. The requirement
*(w) = I*(u) implies nz + ¢ = = + ¢ (mod h) or

{n — 1)z =0 (mod h) (3.1)

and this equation has a nonzero solution for « if and only if ged(n — 1, k) > 1; that
is, h € Uf=, piN. Also, we observe that the equation (3.1) does not have a nonzero
solution in Z, hence K,©K) is not Z-dmagic. O

Figure 7: K,©K;.

Consider two complete graphs K, and K, and assume that

V(Km) = {u1,u2,--- ,un,} and V(K,) = {v1,v2,--- ,v,}. Using these two graphs
we Construct the new graph G, », by 1) joining the vertices u; and v, with the
edge u;v;; 2) adding a pendent edge to all other vertices, as illustrated in Figure 8.
The following theorem determines the dmagic spectrum of G, ».

Theorem 3.4. For any two positive integers m,n (m > n > 3), let m —n =
prips?---ppk, andm—2 = pf‘pg‘ .. -p‘:“ be the prime factorizations of m —n and
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o Ob,

Figure 8: The graph G, .

k
m — 2, respectively. Then AM(G,, ) = U A;, where

i=1

a0 if Bi 2 o
T PPN otherwise,

Proof. Given an arbitrary labeling £ of Gmn, let ¢ = 3 cp (k.. ée) and d =
2 eeE(k.,) £(€)- The condition £*(az) = £*(a;) implies (a;u;) =z forall2 < i < m.
Also, the condition £*(u;) = £*(ug) implies that (m—1)z+c+2z2+d = (m—1)z+c+2
or d = 0. Similarly, ¢ = 0. The condition £*(a2) = £*(b2) implies that £(byv2) =
£(azuz); that is, all the terminal edges of Gmn are labeled the same element z.
The condition £*(u;) = €*(v,) implies (m — 1)z +z2=(n- 1)z + z or

(m-n)z=0 (mod h). (3.2)

Finally, the condition #*(ap) = €*(u2) givesus z = (m — 1)z + z or
(m-2)z+z=0 (mod h). (3.3)

The question of finding the dmagic spectrum of G, ,,, is reduced to determining
those numbers h € N for which the equations (3.2) and (3.3) have nonzero solutions
for z and z. If m — n =1 or (m — n)|(n — 2), then the equations (3.2) and (3.3)
lead us to x = 0, or z = 0, respectively, which are not acceptable dmagic labels.
Therefore, in these cases, DM(Gm ) = 0. Assume that m—~n > 1 and that m—n
does not divide m — 2. Note that the equation (3.2) has nonzero solution for z if
and only if ged(m —n,h) > 1; that is, h € UL;p.-N. To see if this nonzero solution
for = provides a nonzero solution for z we consider the following two cases:

Case 1. Suppose §; > a; and let gcd(m — n,r) = 1. Then the system

{ (m-n)z=0  (mod rp);
(m-2)z+2z2=0  (mod rp}),

does not have nonzero solution for z. Because, if rpf |(m — n)z, then rpf J(m - 2)z,
which results in 2 = 0.
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Case II. Suppose f§; < a;. If ged(m —n,7) = 1 and j < §;, then as we saw in case

I, the system
{ (m-n)z=0  (mod rpl);
(m-2)z+2=0  (mod rpl),

does not have nonzero solution for 2. However, the system

{ (m-n)z=0  (mod rp*!);
(m-2z+2=0  (mod rp*?!),

has nonzero solutions for = and z; if we choose = r, then y = —(m —2)r£ 0
(mod 7pf*'). Therefore, pP**'N c AM(Gpm ).

This shows that U5 ;A; € AM(Gm,n). Now suppose G n is h-dmagic. Then
h|(m ~ 2)z but kt (m - 2)z. Therefore, in the prime factorization of h there is a
prime factor p® with the property that p°|(m — n)z but p°{ (m — 2)z. Let 8 > 0
be the number such that b%|(m — 2) but pP+! t (m — 2). Then, by case II, G n
is p#*l-dmagic and h € pf+IN. The proof would be complete if one can show
that the edges of K,, and K, can be labeled so that c = 3, E(Kom) £(e) =0 and
d =3 .cp(k,) ¢(e) = 0. This fact has been established in [4]. o

Corollary 3.5. Given any two distinct positive integers h and k with h < k, there
is a graph G that is k-dmagic but it is not h-dmagic.

Proof. Assume h < k and consider G, , with m =k + h 4+ 2 and n = h + 2. This
graph is k-dmagic, but is not h-dmagic. O

Corollary 3.6. Using the notation of Theorem 3.4, if m—n = 1 or (m—n)|(m-2),
then the graph G, . is non-dmagic.

4 Trees with Diameter at most four

Trees of diameter two are stars ST(n) = K(1,n) and are fully dmagic. Therefore,
AM(ST(n)) = N. Trees of diameter three, also known as double-stars, have two
central vertices ¢ and d plus leaves. We use DS(m,n) to denote the double-star
whose two central vertices have degrees m and n, respectively. Note that if m =1
or n = 1, then DS(m,n) would be a star.

Theorem 4.1. Let m,n > 2. Then

¢ ifmorn=2;
AM(DS(m, n)) = N if m,n are odd;
N - {2} otherwise.

Proof. We observe that if m = 2 or n = 2, then DS(m,n) would be non-dmagic.
Because, if degc = 2, then {*(v;) = I*(d) implies that I(cu;) = 0, which is not an
acceptable dmagic label. Suppose m,n > 3, deg(c) = m and deg(d) = n. First,
we observe that |E(u;)] = m, |E(v;)| = n, and |E(c)] = m + n — 1. Therefore,
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L

Figure 9: DS(8,4)

by observation 3.2, DS(m,n) is 2-dmagic if and only if m,n are both odd. Now,
let ! be any labeling of DS(m, n) by elements of Z,. Then the conditions I*(c) =
1*(u;) = I*(v;) provide Y l(cu;) = Y U(dv;) =0 (mod k). So, it is enough to show
that such a dmagic labeling is possible.

If m is odd, then let l{cy;) = (-1)* (1 € i € m —1). If m is even, then let
l(cuy) = 2, lcuz) = l(cuz) = -1, and.l(cw;) = (-1) (4 € i £ m —1). This
guarantees that Y [(cu;) = 0 and {* = z is a constant, where z is the label of the
edge cd. : m|

Definition 4.2. A tree of diameter four, denoted by Ty(ay, a3, ,a,), consists of
n stars ST(a;), ST(az),- -+ , ST(a,), one of their edges is incident with a common
vertex and a; > 2 for at least two values of i. The common vertex is the center of
tree and is denoted by ¢. Equivalently, Ty(a1, 2, - ,a,) is a tree with center-vertex
¢, in which n edges {cd;,cdy, -+ ,cd,} are emanated from ¢, and deg(d;) = a; for
i=1,2,.-.,n, as illustrated in the Figure 10.

dy

4
"\ " Lo
dg Y
[, / : c Y d;vo
Ys
%

Ug

Figure 10: T4(13,4,5,6); An example of & tree of diameter 4.

In order to have a tree of diameter four, one needs n > 2 and a; > 2 for at least
two values of i. Let b;,--- ,b, be any permutation of a;,---,a,. Then the tree
Ts(ay,--- ,ap) is isomorphic with Ty(by,-- ,b,). Therefore, when considering a
tree of diameter four, without loss of generality, we may assume that ¢; < a3 <
-++ £ ay. Also, we use the notation Ty(a”) when a; =a (1 < i < n).

Theorem 4.3. Given a tree of diameter four Ty = Ty(a1,--- ,an), let pY'p3? - - - pp*
be the prime factorization of n — 1. Then
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0 if a1 =1 and ¢; = 2 for some i > 2;
— Uf—_-l »N if n is odd and
M) = a; (1 £ i < n) have the same parity;
Uf:l p:N — {2} otherwise.

Proof. Let u;; (1 < i £ n) be the terminal vertices adjacent to d;. Note that
|E(uij)l = ai, | E(di)] = a; +n — 1, and |E(c)} = Y[, a:. By 3.2, Ty is 2-dmagic if
and only if these numbers have the same parity. That is, n is odd and the numbers
a; have the same parity (1 < i < n).

Assume h > 2 is a positive integer and consider the labeling { : E(Ty) — Z;, and
let !{cd;) = y:. First a couple of observations:

(A) The conditions I*(d;) = [*(d;) imply that the sum of labels of the terminal
edges incident with ¢; must be the same (1 < ¢ < n). We denote this common
value by z. Note that if a; = 1, then z = 0.

(B) The condition {*(u;;) = I*(u;1) and observation (A) imply that y; = y;.
Therefore, all the edges cd; (1 < i £ n) have the same label, we denote this
common label by y.

Now we prove the theorem by considering three cases.
Case 1. If a; = 1 and a; = 2 for some ¢ > 1, then by (A), £ = 0 is the label of

the only terminal edge incident with d;, which is not an acceptable dmagic label.
Thus, T} is non-dmagic and its dmagic spectrum is 0.

Figure 11: a; = 1 and a3 =2 imply £ = 0.

Case 2. Suppose a; =1 and a; 2 3 (i > 2). Then by (A) the sum of labels of
the terminal edges incident with d; must be 0 (2 < i < n), and *(c) = {*(up1) or
(n~-1)y =0 (mod k). This equation has a nonzero solution for y € Z;, if and only
if ged(n - 1,h) > 1; That is, h € Uf=1 p:N. It only remains to show that we can
label the terminal edges that are incident with d; with nonzero elements of Zj, so
that they add up to 0, and this is similar to the labeling that was presented in 4.1.
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Case 3. Suppose a; = 2. The condition I*(d;) = I*(un;) givesus z+ny=z+y
or (n — 1)y = 0 (mod h). Also, I*(c) = I*(d;) gives us nz + ny = = + ny or
(n = 1)z = 0 (mod k). And these two equations have nonzero solutions in Zj if
and only if h € Uf=1 piN. Note that in this case one can choose z = y. a

Corollary 4.4. Let p{ip3?---pp* be the prime factorizetion of n — 1. Then
1 P2 k

k
AMT(2) = [ piN.

i=1

Figure 12; T4(2") and its dmagic labeling.

5 Caterpillars

Caterpillar is a tree having the property that the removal of its end-vertices results
in a path (the spine). We use CR(a,,as,- -+ ,an) to denote the caterpillar with a
P,-spine, where d;, the ith vertex of P, has degree a;. Since CR(1,a1,: - ,an,1) =
CR(a;,--- ,a,) and a; # 1 (2 < i < n — 1), we assume that a; > 2.

Figure 13: A Caterpillar of diameter n + 1 (P,-spine).

Theorem 5.1. If aj,a, > 3 and a; 2 2 for 1 < i < n, then the caterpillar
G = CR(ay,ay,...,ay,) is Z-dmagic.

Proof. Let | : E(G) — Z be a labeling of G = CR(ay,**an), ¥ be the label of
u;uip; (1 € i € n-1), and u;; be one of the terminal vertices adjacent to d;,
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as illustrated in Figure 13. Also, let o; be the sum of the labels of all terminal
edges incident with d;. For [ : E(G) — Z to be a dmagic labeling of G, we require
P(ug) =1*(d;) for 1 <i<mnand I*(uy) = (1) for 1 <i<n-1

The condition I*(u;;) = 1*(d;) implies that
ya+02=0 (mod k), (5.1)

and the condition I*(uy;) = I*(up;) together with equation (5.1) imply that oy =0
(mod h). Now we proceed by induction to show that o; = —y; and yi_1 =31 (2 <
i < n—1). Note that [*(u;) = I*(d2), which is the same as I*(ug;) = I*(u21)+y3+o3
implies that

y3+03=0 (mod h), (5.2)

and *(ug;) = {*(u3;) together with equation (5.2) imply that

Suppose yx = y1 and yi + 0% = 0 (mod k) for all k£ (2 < k < n —1). Then the
condition I*(ug;) = *(d;) and the induction hypothesis imply that yx41+0x+1 =0
(mod k). Furthermore, the condition {*(ux1) = I*(t(k41)1) provides yrt) = ¥ =
y1, which completes the induction. Finally, it is easy to see that o, = 0 (mod h).
Therefore, the caterpillar G is Z-dmagic if and only if

01,0, =0 (mod h),

all the edges of the spine be labeled thesame y; =y (1 <i<n),and 0; = -y (1 <
¢ < n), which would provide I* = y.

The above dmagic labeling can be done by just using at most for integers +1,+2 €
Z. Label all the edges of spine by 1. If ¢; = deg(d;) is odd, label all the terminal
edges incident with d; alternatively by 1 and —1. If a; is even, label one of the
terminal edges by 2, the next two by —1, and the rest by 1 and —1, alternatively.
This guarantees that ¢; = 0. Similar scheme applies to 6, =0 and 6; = -1 (2 <
i<n). (]

Corollary 5.2. Using the notations of theorem 5.1, G = CR(ay,a2,...,a,) is

non-dmagic if and only ifa; =2 or e, = 2.

Proof. Suppose a; = 2. Using the labeling of Figure 13, we notice that [*(d;) =
I*(ug1) implies that I(djuyy) + {*(u21) = *(ua1), or i{dyu11) = 0, which is not an
acceptable dmagic label. O

Corollary 5.3. For the dmagic spectrum of caterpillar CR(ay, a3, - ,a,) we have

] ifa; =2o0ra, =2;
AM(G)=¢ N ifa;isodd1<i<m
N - {2} otherwise.

Examples 5.4.

(a) The dmagic spectrum of the graph in Figure 10 is 5N. Because, n — 1 = 5.
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(b) AM(T4(1,2,6,7%)) = 9. Here, ¢; =1 and a3 = 2.

(c) AM(Ty(13,4%,5,15)) = 2NU3N — {2}. Here, n — 1 = 6 and the numbers a;
do not have the same parity, which means the graph is not 2-dmagic.

(d) AM(CR(13,9,6)) = N - {2}.
(e) AM(CR(17,10,2)) = 0. Here, a, = 2.
(f) AM(CR(5,11,15,81)) = N. Here, a;,-+- ,a, all are odd.

6 Some Open Problems

The observation 3.2 characterizes all the graphs that have distance two magic
labeling in Z,. It would be desirable to find some kind of characterization for other
Zy, groups. This issue has not even been resolved for standard 3-magic graphs.

Problem 6.1. Characterize all graphs that have distance two magic labeling in Z3.
Figure 1 illustrates a graph that is both magic and dmagic. The given labelings

are either magic but not dmagic, or vice versa. However, there is another labeling
shown in Figure 14 that simultaneously provides both magic and dmagic labelings.

Figure 14: A magic labeling that is dmagic too.

Problem 6.2. Characterize the graphs for which there erists a magic labeling that
is dmagic as well.
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