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Abstract

For an integer [ > 1, the l-edge-connectivity of a graph G with
|V(G)| > 1 denoted by A((G), is the smallest number of edges whose
removal results in a graph with [ components. In this paper, we
study lower bounds of A\;(G) and optimal graphs that reach the lower
bounds. Former results by Boesch and Chen are extended.

We also present in this paper an optimal model of interconnection
network G with a given A\/(G) such that A2(G) is maximized while
|E(G)| is minimized.

Key workds: edge-connectivity, generalized edge-connectivity, circulant
graphs

1 Introduction

Graphs in this paper are finite and loopless. Undefined terms and notations
can be found in [3]. For a graph G and for an edge subset X which have
ends in V(G) and which are not in E(G), G + X denotes the graph with
V(G+ X)=V(G) and E(G+ X) = E(G)UX.

For an integer | > 2, Boesch and Chen [1] defined the I-edge-connectivity
Ai(G) of a connected graph G to be the minimum number of edges that are
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required to be deleted from G to produce a graph with at least ! compo-
nents if |[V(G)| > I, or to be |E(G)|, if |V(G)| < . In particular, A2(G) is
the edge-connectivity of G. The parameter A\;(G) has been studied by
many researchers. For overviews of the related literature, see [8], [9], and
[10], among others.

For disjoint non empty subsets A, B C V(G), the set [A, B] denotes all
edges in G with one vertex in A, and the other in B. We assume that G;
and G are two graphs with disjoint vertex sets. We use the notation that
the degree of vertex v; is deg v;. We also use the notations [z] to denote
the smallest integer greater than or equal to z, and |z] for the largest
integer less than or equal to z. Let G be a graph and let X C E(G) be
an edge subset. The contraction G/X is the graph obtained from G by
identifying the two ends of each edge in X and by deleting the resulting
loops. Thus G/X is loopless and may have multiple edges, even when G is
simple. If H is a subgraph of G, then G/H denotes G/E(H). Note that
each vertex v in G/X is the contraction image of a connected subgraph H,
of G. Thus H, is called the preimage of v. A vertex v in the contraction
G/X is nontrivial if |V (H,)| > 1.

In Section 2, some former results on lower bounds of A\;(G) and a new
best possible lower bound of A\;(G) in terms of A2(G) are given. We also
investigate in Section 2 when equality holds in our new lower bound. Sec-
tion 3 is a brief introduction to circulant graphs and generalized circulant
graphs, which will be used in Section 4 to determine the minimum size of
optimal graphs.

2 Lower Bound of )\

We start with some former results concerning I-edge-connectivity.

Theorem 2.1 (Boesch and Chen [1]) Let G be a connected graph with
n = |V(G)| vertices. For each i with 1 <i<l-1<mn,

(-1)(t-i+1)
+1)(-i-1)

M(G) 2 A-i(G).

Theorem 2.2 (Boesch and Chen [1]) Let n > ! > 1 be two integers, and
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let G be a graph with n vertices and minimum degree §(G). If 6(G) > |},
then A\(G) > 4(G).

Since §(G), the minimum degree of a graph G, satisfies 6(G) > X2(G)
for any graph G, Theorem 2.2 has an immediate corollary.

Corollary 2.3 (Boesch and Chen [1]) Let n > | > 1 be two integers, and
let G be a graph with n vertices and minimum degree §(G). If X2(G) > |1,
then \(G) > §(G).

Theorem 2.4 (Harary [6]) Among all graphs G with |V(G)| = n, and
|[E(G)| = m the maximum value of A2(G) is zero when m < n —1 and is
|'2nm'| when m > n - 1.

Theorem 2.5 Let n > [ > 1 be two integers, and let G be a connected
graph with n vertices. Then

X2(G)
A(G) 2 ZT

Proof. Let G be a connected graph and Y be a set of A\;(G) edges of G,
such that G—Y has ! components C},Ca,...,C; of G-Y. By the definition
of edge-connectivity we have,

[[V(C;), V(G = C;)]| = X2(G) for each i with 1 <i < L.
Take the sum from i = 1 to { to get,

]
D IV(C), V(G = Ci)l| 2 ra(G).

i=1

It follows that
l . —— -
/\C(G) - Zi:l |[V(Ct)2’ V(G Cl)]l 2 IAQ(G)D

NI

Note that if [ = n then A\, = m. Thus Theorem 2.5 implies Theorem
2.4. When i = [ — 2, Theorem 2.1 asserts that A;(G) > ﬂll_‘__—ll)/\z(G) for any
connected graphs with n vertices such that n > [ > 2. Simple algebraic
manipulation yields

>
2

[

(-1
T = t-20-3)>0.
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Therefore when I = 3 and i = [ — 2, both Theorems 2.1 and 2.5 give the
same bound and when [ > 3 and i = [ — 2,, Theorem 2.5 gives a better
bound than Theorem 2.1.

Theorem 2.5 also extends Corollary 2.3 when [V(G)| > 26(G).

Corollary 2.6 Let G be a connected graph. If Az(G) > [%] then N(G) >
8(G).

By Theorem 2.5, when A;(G) is given, the maximum A3(G) can reach is
to have the equality ©
(G
2 M)
To investigate graphs satisfying (1), we first note that A;(G) is an integer.
Thus if (1) holds for a graph, then {A3(G) must be an even integer.

A(G) =

Lemma 2.7. Let G be a graph satisfying (1). Let Y be a set of A;(G)

edges of G such that G - Y has | components C;,Cs,...,C;. Then

IV(C:), V(G - C)]l = Xa(G) foralll <i<lL

Proof: By the definition of A\2(G),

IV(C:), V(G = Ci)]| 2 A2(G) foralll1 <i<L ()
By (1) and by the definition of Y,

!
o IVIC), V(G = Gl = Y] = M(G) = £)a(G)
i=1

N

and so we have,

3
Y IV(Ci), V(G - Ci)]| = 1xa(G). (3)

i=1

It follows by (2) and (3) that |[V(C}), V(G - C;)]| = A2(G).0

Lemma 2.8 Let G be a graph satisfying (1). Let Y be a set of \;(G) edges
of G such that G — Y has ! components C1,C3,...,C;. If a component
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C; has at least two vertices, then the number of vertices in C; is at least
A2(G), foreach i with1 <i <l

Proof: Fix an i with 1 < i <[ and let n; = |V(C;)|. By Lemma 2.7,
IV(C:), V(G - Gl = A2(G).

Thus ni(n; — 1) + A2(G) > number of incidences with vertices in V(C;) >
niX2(G), and so (n;—A2(G))(ni—1) = 0. Lemma 2.8 now follows by n; > 1.
(]

Theorem 2.9 Assume that [ > 3 is an integer. Let G be a simple graph
with A2(G) = s and )(G) = t. Then G satisfies (1) if and only if each of
the following holds:

(i) G can be contracted to an s-regular graph G’ with |V(G’)| = | and
|E(G) =t

(ii) the preimage of each nontrivial vertex in G’ has at least s vertices; and
(iii) there is at most one edge joining two trivial vertices in G’.

Proof: Suppose first (1) holds. Then G has Y C E(G) such that G- Y
has ! components C,Cs,...,C;. Let X = U!_ E(C;) and G' = G/X.
Then the ! components of G — Y are vertices of G’ and the edges in ¥
are the edges of G'. By Lemma 2.7, |[V(C;), V(G — C;)]| = A2(G) = s for
all1 €¢ <! and so G’ is an s-regular graph. Note that |V(G’)| = and
|E(G")| = s|V(G")|/2 = sl/2 =t. This proves (i). Theorem 2.9 (ii) and
(iii) follows by Lemma 2.8 and the simpleness of G respectively.

Conversely, by (i) G’ is an s-regular graph with [V(G')| = l and |E(G")| =
t. It is well known that for an s-regular graph G', |E(G')| = s|V(G')|/2.
Thus is=2¢. O

Corollary 2.10 Let G satisfy (1) and G’ be the graph defined in The-
orem 2.9. Let b denote the number of nontrivial vertices in G’. Then
V(G| = (I - b) + bAe.
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3 Circulant Component Graphs

Let |V(G)| = n be a positive integer. Assume that the vertices of a graph
are labeled 0,1,2, - - - ,n—1, and we refer to vertex ¢ instead of saying the ver-
tex labeled with i. The circulant graph Cy[a1,az,- -, ak] or briefly Cy[ai],
where 0 < @) <@z <--- <ar < !, has i + ay,i  as,---,i + ax(mod n)
adjacent to each vertex i. The sequence (a;) is called the jump sequence
and the a;’s are called the jumps. Notice that our definition precludes
jumps a of size greater than § as such jumps would produce the same re-
sult as a jump of size (n — a), as n —a < . Also note that if ax # %
then the circulant is always regular of degree 2k. When n is even we have
allowed a; = % (called a diagonal jump), and when ax = % the circulant
has degree 2k — 1. ‘

Now we extend the definition of circulant graphs to define circulant
component graphs. Let G be a graph and T be a set of edges of G
such that G — T has ! components, Cy,Ci,...,Ci-1. If a component
has only one vertex then it is called a trivial component. Two compo-
nents C; and C; are said to be adjacent in G if there is a vertex z in
C; and vertex y in C; such that the edge zy € T. The circulant com-
ponent graph CCila;(b1),a2(b2), . . .,ak(bx)] or briefly CCj[a;(b;)], where
O<ay1<ax<- - <ap< [é], represents a family of graphs. ‘A graph G is
in CCila1(by), az(bz),- - - ,ax(be)] if and only if G has an edge set T such that
G —T has | components Cy,Cs, -+, Cy, such that foreachi =1,2,---,1, C;
is adjacent to Ciio,(mod 1)s Citas(mod 1)s - - - Citar(mod 1y With by, ba,- -+, b
edges, respectively. Figure 3.1 gives CCj5[1(2),2(1)]. For notational con-
vention, we also use CCjla1(b1), a2(b2),...,ak(bi)] or CCi[ai(b:)] to denote
a member in it.
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Ca)— —{ C2

Figure 3.1 Circulant component graph CCs[1(2),2(1)]

Intuitively, a graph G in CCia1(b1),a2(b2), ..., ar(bk)] can be obtained
from Cifay,az2,...,ax] by replacing each edge in Cifay,as,...,ax] joining
vertex i and vertex i + a;(mod ) by b; edges, and by expanding each
vertex % in Cifay,as, ..., ax) by a (possibly trivial) connected graph C;. We
shall refer these C,,C,,---,C; as the components of G. Note that the
definition of circulant component graph does not say any thing about the
structure of the components Cy,Cs,:+-,C; of G — T. In Section 4 we use
circulant component graphs in the construction of minimal graphs. Then
all we have to do is to give the structure of each component of G - T.
Proposition 3.1 Let G be a circulant component graph, where T is an
edge subset of G such that G — T has | components C4y,C2,:-+,C;. Then
G can be contracted to an 2|T|/l-regular graph G’ with |V(G')| = { and
|E(G")| = |T|.

Proof: Let E(G)—T = X and G’ = G/X. Then the | components of G- T
are vertices of G’ and the edges in T are the edges of G’. Thus |[V(G')| =1
and |E(G")| =|T|. O

Let G be a circulant component graph and T be an edge subset of G
such that G — T has ! components. Let C be a component of G —T. A
vertex v of C is internal if v is not incident with any edge of T'; otherwise,
v will be external. If e € T then the edge e joins two external vertices of
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two different components of G — T. Furthermore e is called an external
edge of the circulant component graph. Thus all the edges of T are ex-
ternal edges of the circulant component graph. Therefore the definition of
the circulant component graph gives only the arrangement of the external
edges.

4 Graphs reaching the lower bound with min-
imum number of edges

In this section, we present a best possible lower bound of the size of graphs
satisfying (1).

Theorem 4.1 Let n > | > 1 be integers.

(i) Let G be a simple graph satisfying (1) with |V(G)| = n vertices. Then
1 .

IE(G)| 2 522(G)IV(G)I.

(ii) There exists a graph H satisfying (1) with n = |V(H)| such that
1

(E(H)| = S2a(H)IV(H).

Proof: (i). Let T be a set of A\(G) edges of G such that G — T has
! components C1,Cs,...,C;. Consider a component C; of G — T. Let
v € V(C;). Then

degg v > A2(G). 4)

Let |V(C;i)| = ni. By Lemma 2.7, |[V(C}), V(G — Ci)]| = X2(G). By

(4) and by Lemma 2.8, A\on; < Zvev(ci)deg v = 2|E(C;)| + A2 and so
A2(n; — 1) < 2|E(C;)|. It follows that

1B(c)) > 229

(ni—1),1<i<L. (5)

Note that |E(C;)| is an integer. If the equality of (5) holds for a graph
G, then \o(G)(n; — 1) must be even. Thus,

S IE(C) + M(G) > Z D1 D0

i=1

245) (Z Z1)+ 2 3a(G)

i=1
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4(0) M(GIVEGI

2

(ii). We shall construct a family of graphs satisfying (1) and |E(H)| =
1X2(H)|V(H)|. We use terminology from Theorem 2.9 in the construction
of graph H. Thus H can be contracted to a s-regular graph H’ with
[V(H')| =l and |E(H')] = t. We shall prove that such constructed H
satisfies A2(H) = s and A\(H) = t. It is convenient to give construction
separately for even and odd values of s. It is well known that

sl _ s|V(H')|

2 2

For even s let H' be the graph Ci[1(s/2)], and so H is a CCi[1(s/2)].

Figure 4.1 gives the graph CC5[1(3)] = CCs[1(6/2)], that is s = 6 and

[ = 5. When s is odd ! must be even. In this case we let H' be the

graph Ci[1(251), £(1)] and so H is in CCi[1(232), £(1)]. Figure 4.2 gives

the graph CCs[1(2),3(1)] = CCs[1(23%), §(1)], that is s =5 and { = 6. In

both Figure 4.1 and Figure 4.2 the structure of the components were not
given. Note that in both cases, we have

= ’\2(G) 22We) - 220+ A (G) =

= |E(H")| =t. (6)

Ma(H') = 5 = 6(H') = A(H'). (™)

Figure 4.1 Circulant component graph CC;[1(3)]

Note also that E(H') = T and H — T has [ components. Below we shall
define the structure of each component. The edges joining two components
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are in T, thus H — T gives | components Cy,C},...,Ci-1. Let C be a
component of H — T. A vertex v of C is internal if v is not incident with
any edge of T'; otherwise, v will be external. Let C; and C; be two distinct
components of H ~ T, for 0 < i # j <! — 1. If there is an edge joining a
vertex v of C; and a vertex u of C; then this edge e must be in T'. Further
more C; and Cj are called adjacent components. The edge e is called
an external edge of C; and Cj.

Figure 4.2 Circulant component graph CCg[1(2), 3(1))

Note that T is an edge subset of E(H), such that H — T has ! compo-
nents. Let X = E(H) — T, and H' = H/X. Thus the vertices of H' are
components of H — T. Also note that the elements of T' are edges of H'.
Label the ! components of H — T by Cy, C4,...,Ci-1. Now we look at the
structure of these components. By Lemma 2.8, if a component C; has more
than one vertex then the number of vertices in C; is at least s. Recall that
we want to construct graphs with edge-connectivity equals to s. Instead
of constructing ! components Cy, Cy,...,Ci-1, we just construct one such
component (say C) and give several different cases. The components of
H — T can be any combination of these components provided the compo-
nents C; and C;+; both cannot be trivial components at the same time for
0 < i < |, where component C; = Cy. Let |V(C)| = n’. By Lemma 2.8,
if n’ > 1 then n' > s. Thus we break the construction of C into five cases
depending on the values of n’ and s. They are n’ =1, n’ = s, n’ > s for
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even s, n’' > s for odd s and even n’/, and n’ > s for odd s and odd n’. For
all the cases and sub cases label the n’ vertices v1,v2,...,Vs, Vst1y- -+ Un’
so that s edges of T are incident with vertices v;,vs, ..., vs, respectively,
when n' > s in C. Thus these s vertices are the external vertices of C. All
the other vertices are internal.

Case (1): If n’ = 1 then the component C is a single vertex. Thus s edges
of T are all incident with this vertex. This is a trivial component of H —T'.

Case (2): If n’ = s then let the component C be the complete graph K.
In this case, each vertex in C is incident with exactly one edge in T. Thus
all the s vertices are external with degy v; =sfor1 <i<s.

Case (3): If n’ > s and s is even. Let the component C be

s
Cn[1,2,..., 5] — {v1v2, 1304, ..., V5195 }.

There are s external vertices and n’ — s internal vertices. degy v; = s for
1 <i < n'. The graph C¢[1,2, 3] — {v1v2, v3v4, 506} is shown in the Figure
4.3.

U1

vy U2

U3
Vg

Vs 2

Figure 4.3 The graph C7[1, 2, 3] - {vlvg,v;;v,;, 'Us’U(;}
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Case (4): If n' > s, s is odd and n' is even. Let the component C be

s—1n'
Cn(1,2,..., -5 ?] — {vav3, v4¥s, ..., Vs—10,}.

There are s external vertices and n’ — s internal vertices, degyv; = s+ 1
and degy v; = s for all 2 < i < n'. The graph Cg[1,2,3] — {vovs, v4v5} is
shown in the Figure 4.4.

(%1 V2

Ve

Vs 7
Figure 4.4 The graph Cg[1,2, 3] — {vavs, v4vs}
Case (5): If n’ > s, and s and n’ are both odd. This we break into two sub
cases as n’ < 2s and n’ > 2s.

Subcase(5a): s < n’ < 2s for odd s and n'. Let the component C be

s—1
5 ]+ {Vs4+1Ur41,Vst2Vr42, ooy UntVUrgns—s}

C‘n'[lvz) EER)
- {v,.+1v,.+g, Ur43VUr44,- .- :'Ur+n'—a—1'vr+n'—s}»

where r = (32+1) (mod n'). There are s external vertices and n’— s internal
vertices and degy v; = s for 1 < i < n'. The graph Cr(1, 2] + {voves, va3v7} —
{vovs} is shown in Figure 4.5.

Subcase(5b): n’ > 2s for odd s and n’. Let the component C be

s—-1
Cn' [ls 21 Ty ] + {vr+s+lvs+la Ur454+2Vs4-2y .-« )vn’vr+8}7
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where r = "'; 5. There are s external vertices and n’ — s internal vertices.
degy v; = s for 1 <i < n’. The graph C13[1,2] + {vsvg, v7v10} — {vsv11} is
shown in Figure 4.6.

U1

U7 U2

v3
Ve

Vs V4

Figure 4.5 The graph C7[1,2] + {vavs, v3v7} — {vavs}
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Figure 4.6 The graph Ci,[1,2] + {vsve, v7v10, v8v11}

For each component C of H — T. The component C has either one or s
external vertices. When it has s external vertices, we assume that these ver-
tices are labelled as vy, vs, -+, vs, adjacent to external edges e;, ez, -, €5,
respectively. Let v denote a vertex not in C and let C Uv denote the graph
obtained from C by adding a new vertex v and edges ey, ez, --,e; such
that each e; joins v to v; in C.

Claim 4.2 For any component C in the above construction, A2(CUv) = s.

Proof of Claim 4.2 Let X be an edge-cut of CUv such that A(CUv) = | X|.
If the edge cut X separate the vertex v and the component C then | X| = s.
In following cases we assume that the edge cut X does not separate the
vertex v and component C.

Case(1): n’ = 1. Thus the graph C U v has only two vertices and s edges
between them. Thus the edge cut X separates the vertex v and the com-
ponent C. Therefore | X| = s and A\ (CUv) =s.

Case(2): n’ = s. Thus the graph A2(C U v) is the complete graph K,4,.

92



Therefore |X| = s and Ap(CUv) = s.

Case(3): n' > s. for even s. In this case, the component C = Cp/[1,2,..., %]—
{v1v2,v3vy,...,vs-1v5}. Note that A2(Cw[1,2,...,4]) = s. As C is ob-
tained by removing the edges {v1v2, v3v4, ..., vs-1v5}, and joining vy, ve,- - -, vs
to the new vertex v, we still have A2(C Uv) = s.

Case(4): n’ > s for odd s and even n'. In this case, the component
C =Cpll,2,..., ”—'22, '—‘21] - {vavs, vavs, ..., v5_1v5}. It is routine to check
that A2(Cnr[1,2,..., 252, %)) = 5, and s0 A (C U ) = s.

Subcase(5a): s < n’ < 2s for odd s and n’. In this case the component
C = Cn' [1, 2, ey 3—-2—1] + {vt+3+1v3+1, Vt4s+2Vs425 0y vnl'vtﬂ}. It is rou-
tine to check that A2(Cn/[1,2, ..., 251]) = s. We again have A (CUv) = s.

Subcase(5b): n’ > 2s for odd s and n'. In this case, the component C =
Cn' [11 2,4, %] + {'Ut+s+1'us+l:'Ut+s+2vs+2a s sv‘n’vt-l-s}a where t = %'
It is routine to check that A2(Cn/[1,2,...,%52]) = 5. Thus A2(CUV) = s.

This proves Claim 4.2, O

To complete the proof for Theorem 4.1(ii), it remains to prove that
X2(H) = s, y(H) =t and that

|E(H)| = $0a(H)IV(H)]. ®)

Let X; denote the set of all edges with exactly one end in a given com-
ponent C; for any 1 < i < I, then H — X; has two components. By the
construction, |X;| = s, and so Ao(H) < s. On the other hand, we argue by
contradiction and assume that there exists a mininal edge cut £’ C E(H)
such that H — E’ has two components and |E’| < s. Suppose first that
E'NT =0, and so we may assume that for some nontrivial component C;
of H-T, E'NE(C;) # 0. Since E’ is minimal, E' N E(C;) must be an
edge cut of C;, and so E’ contains an edge-cut of C; Uv. By Claim 4.2,
|E’| > s, contrary to the assumption that |E’| < s. Hence we must have
E' CT, and so E' is an edge-cut of H'. By (7), |E’| > s, contrary the the
assumption that |E’| < s again. Therefore, we must have Ao(H) = s.

By Theorem 2.9, by A2(H) = s and by (6), we have \(H) > [¥] =1t
Recall that |T'| = |E(H')| = t and that H —T has | components. Therefore,
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M(H) < |T| =t. It follows that N\(H) =t.

We argue by induction on f(H) = E:—_—] |[V(C1)| to prove (8), where
C1,C2,--+,C are the components of H — T. If f(H) = [, then H =
H’, and so (8) holds. Assume that f(H) > . Then at least one of the
components, say C, has at least s vertices. Using the same notation as
in the construction above, we let n' = |[V(C)|. Consider the graph H/C.
Then H/C can be constructed in the procedure above via the case n’ =1
instead of the n’ > s cases. Hence by induction with A\y(H) = s, and by
E(H) - E(C) = E(G/C),

A(H)V(H/C)| _ Ae(H)(VH) ~VO) +1) ©)
2 2

It is routine to check that in the construction procedure above, in each of

the cases when n’ > s, we always have

A(H)(IV(C) - 1)
5 :

Thus combining (9) and (10), we obtain (8). This complete the proof of
Theorem 4.1. O

|E(H)| - |E(C)| =

|E(C)| =

(10)

References

[1] F. T. Boesch and S. Chen, A generalization of line connectivity and
optimally invulnerable graphs, SIAM J. Appl. Math. 34 (1978) 657-
665.

[2] G. Chartrand, A graph-theoretic approach to a communications prob-
lem, SIAM J. Appl. Math. 14 (1966) 778-781.

[3] G. Chartrand and L. Lesniak, Graphs and Digraphs (3rd Edition),
Chapman & Hall (1996).

[4] D. L. Goldsmith, On the second order edge-connectivity of a graph,
Congr. Numer. 29 (1980) 479-484.

[5] D.L. Goldsmith, On the nth order edge-connectivity of a graph, Congr.
Numer. 32 (1981) 375-382.

(6] F. Harary, The maximum connectivity of a graph, Proc. Acad. Sci.
USA 48 (1962) 1142-1146.

94



(7] K. P. Hennayake, H.-J. Lai and L. Xu, The strength and the /-edge-
connectivity of a graph, Bulletin of the ICA, 26 (1999), 58-70.

[8] O. R. Oellermann, Explorations into graph connectivity, The Notices
of the South African Mathematical Society 20 (1988) 117-151.

[9] O. R. Oellermann, Generalized Connectivity in Graph, PhD disserta-
tion, Western Michigan University, Kalamazoo, MI (1986).

[10] O. R. Oellermann, On the l-connectivity of a graph, Graphs and Com-
binatorics, 3 (1987) 285-291.

(11] H. Whitney, Congruent graphs and the connectivity of graphs, Amer.
J. Math. 54 (1932) 150-168.

95



