A lower bound of the l-edge-connectivity and optimal graphs

Lili Zhang, Kamal Hennayake, Hong-Jian Lai, Yehong Shao§

Abstract

For an integer l > 1, the l-edge-connectivity of a graph G with $|V(G)| \ge l$ denoted by $\lambda_l(G)$, is the smallest number of edges whose removal results in a graph with l components. In this paper, we study lower bounds of $\lambda_l(G)$ and optimal graphs that reach the lower bounds. Former results by Boesch and Chen are extended.

We also present in this paper an optimal model of interconnection network G with a given $\lambda_l(G)$ such that $\lambda_2(G)$ is maximized while |E(G)| is minimized.

Key workds: edge-connectivity, generalized edge-connectivity, circulant graphs

1 Introduction

Graphs in this paper are finite and loopless. Undefined terms and notations can be found in [3]. For a graph G and for an edge subset X which have ends in V(G) and which are not in E(G), G+X denotes the graph with V(G+X)=V(G) and $E(G+X)=E(G)\bigcup X$.

For an integer $l \geq 2$, Boesch and Chen [1] defined the l-edge-connectivity $\lambda_l(G)$ of a connected graph G to be the minimum number of edges that are

^{*}Department of Computer Information and Engineering, Hohai University, Nanjing, China 400020

[†]Department of Mathematics, Cheapasake College, Wye Mills, MD 21679

[‡]Department of Mathematics, West Virginia University, Morgantown, WV 26506

[§]Arts and Science. Ohio University Southern, Ironton, OH 45638

required to be deleted from G to produce a graph with at least l components if $|V(G)| \geq l$, or to be |E(G)|, if |V(G)| < l. In particular, $\lambda_2(G)$ is the **edge-connectivity** of G. The parameter $\lambda_l(G)$ has been studied by many researchers. For overviews of the related literature, see [8], [9], and [10], among others.

For disjoint non empty subsets $A, B \subset V(G)$, the set [A, B] denotes all edges in G with one vertex in A, and the other in B. We assume that G_1 and G_2 are two graphs with disjoint vertex sets. We use the notation that the degree of vertex v_i is deg v_i . We also use the notations $\lceil x \rceil$ to denote the smallest integer greater than or equal to x, and $\lfloor x \rfloor$ for the largest integer less than or equal to x. Let G be a graph and let $X \subseteq E(G)$ be an edge subset. The contraction G/X is the graph obtained from G by identifying the two ends of each edge in X and by deleting the resulting loops. Thus G/X is loopless and may have multiple edges, even when G is simple. If H is a subgraph of G, then G/H denotes G/E(H). Note that each vertex v in G/X is the contraction image of a connected subgraph H_v of G. Thus H_v is called the **preimage** of v. A vertex v in the contraction G/X is **nontrivial** if $|V(H_v)| > 1$.

In Section 2, some former results on lower bounds of $\lambda_l(G)$ and a new best possible lower bound of $\lambda_l(G)$ in terms of $\lambda_2(G)$ are given. We also investigate in Section 2 when equality holds in our new lower bound. Section 3 is a brief introduction to circulant graphs and generalized circulant graphs, which will be used in Section 4 to determine the minimum size of optimal graphs.

2 Lower Bound of λ_l

We start with some former results concerning l-edge-connectivity.

Theorem 2.1 (Boesch and Chen [1]) Let G be a connected graph with n = |V(G)| vertices. For each i with $1 \le i < l - 1 < n$,

$$\lambda_l(G) \ge \frac{(l-1)(l-i+1)}{(l+1)(l-i-1)} \lambda_{l-i}(G).$$

Theorem 2.2 (Boesch and Chen [1]) Let $n \ge l > 1$ be two integers, and

let G be a graph with n vertices and minimum degree $\delta(G)$. If $\delta(G) \geq \lfloor \frac{n}{l} \rfloor$, then $\lambda_l(G) \geq \delta(G)$.

Since $\delta(G)$, the minimum degree of a graph G, satisfies $\delta(G) \geq \lambda_2(G)$ for any graph G, Theorem 2.2 has an immediate corollary.

Corollary 2.3 (Boesch and Chen [1]) Let $n \geq l > 1$ be two integers, and let G be a graph with n vertices and minimum degree $\delta(G)$. If $\lambda_2(G) \geq \lfloor \frac{n}{l} \rfloor$, then $\lambda_l(G) \geq \delta(G)$.

Theorem 2.4 (Harary [6]) Among all graphs G with |V(G)| = n, and |E(G)| = m the maximum value of $\lambda_2(G)$ is zero when m < n - 1 and is $\left\lceil \frac{2m}{n} \right\rceil$ when $m \ge n - 1$.

<u>Theorem 2.5</u> Let $n \ge l > 1$ be two integers, and let G be a connected graph with n vertices. Then

$$\lambda_l(G) \geq \frac{l\lambda_2(G)}{2}.$$

<u>Proof.</u> Let G be a connected graph and Y be a set of $\lambda_l(G)$ edges of G, such that G-Y has l components C_1, C_2, \ldots, C_l of G-Y. By the definition of edge-connectivity we have,

$$|[V(C_i), V(G - C_i)]| \ge \lambda_2(G)$$
 for each i with $1 \le i \le l$.

Take the sum from i = 1 to l to get,

$$\sum_{i=1}^{l} |[V(C_i), V(G - C_i)]| \ge l\lambda_2(G).$$

It follows that

$$\lambda_l(G) = \frac{\sum_{i=1}^l |[V(C_i), V(G - C_i)]|}{2} \ge \frac{l}{2} \lambda_2(G). \square$$

Note that if l=n then $\lambda_n=m$. Thus Theorem 2.5 implies Theorem 2.4. When i=l-2, Theorem 2.1 asserts that $\lambda_l(G) \geq \frac{3(l-1)}{l+1}\lambda_2(G)$ for any connected graphs with n vertices such that $n \geq l > 2$. Simple algebraic manipulation yields

$$\frac{l}{2} > \frac{3(l-1)}{l+1} \iff (l-2)(l-3) > 0.$$

Therefore when l=3 and i=l-2, both Theorems 2.1 and 2.5 give the same bound and when l>3 and i=l-2, Theorem 2.5 gives a better bound than Theorem 2.1.

Theorem 2.5 also extends Corollary 2.3 when $|V(G)| \ge 2\delta(G)$.

Corollary 2.6 Let G be a connected graph. If $\lambda_2(G) \geq \lceil \frac{2\delta}{l} \rceil$ then $\lambda_l(G) \geq \delta(G)$.

By Theorem 2.5, when $\lambda_l(G)$ is given, the maximum $\lambda_2(G)$ can reach is to have the equality

 $\lambda_l(G) = \frac{l\lambda_2(G)}{2}.\tag{1}$

To investigate graphs satisfying (1), we first note that $\lambda_l(G)$ is an integer. Thus if (1) holds for a graph, then $l\lambda_2(G)$ must be an even integer.

<u>Lemma 2.7.</u> Let G be a graph satisfying (1). Let Y be a set of $\lambda_l(G)$ edges of G such that G - Y has l components C_1, C_2, \ldots, C_l . Then

$$|[V(C_i), V(G - C_i)]| = \lambda_2(G)$$
 for all $1 \le i \le l$.

Proof: By the definition of $\lambda_2(G)$,

$$|[V(C_i), V(G - C_i)]| \ge \lambda_2(G) \text{ for all } 1 \le i \le l.$$
 (2)

By (1) and by the definition of Y,

$$\frac{1}{2}\sum_{i=1}^{l}|[V(C_i),V(G-C_i)]|=|Y|=\lambda_l(G)=\frac{l}{2}\lambda_2(G)$$

and so we have,

$$\sum_{i=1}^{l} |[V(C_i), V(G - C_i)]| = l\lambda_2(G).$$
 (3)

It follows by (2) and (3) that $|[V(C_i), V(G - C_i)]| = \lambda_2(G)$.

Lemma 2.8 Let G be a graph satisfying (1). Let Y be a set of $\lambda_l(G)$ edges of G such that G - Y has l components C_1, C_2, \ldots, C_l . If a component

 C_i has at least two vertices, then the number of vertices in C_i is at least $\lambda_2(G)$, for each i with $1 \le i \le l$.

Proof: Fix an i with $1 \le i \le l$ and let $n_i = |V(C_i)|$. By Lemma 2.7,

$$|[V(C_i), V(G - C_i)]| = \lambda_2(G).$$

Thus $n_i(n_i-1)+\lambda_2(G)\geq$ number of incidences with vertices in $V(C_i)\geq n_i\lambda_2(G)$, and so $(n_i-\lambda_2(G))(n_i-1)\geq 0$. Lemma 2.8 now follows by $n_i>1$.

<u>Theorem 2.9</u> Assume that $l \ge 3$ is an integer. Let G be a simple graph with $\lambda_2(G) = s$ and $\lambda_l(G) = t$. Then G satisfies (1) if and only if each of the following holds:

- (i) G can be contracted to an s-regular graph G' with |V(G')| = l and |E(G')| = t;
- (ii) the preimage of each nontrivial vertex in G' has at least s vertices; and (iii) there is at most one edge joining two trivial vertices in G'.

Proof: Suppose first (1) holds. Then G has $Y \subseteq E(G)$ such that G - Y has l components C_1, C_2, \ldots, C_l . Let $X = \bigcup_{i=1}^l E(C_i)$ and G' = G/X. Then the l components of G - Y are vertices of G' and the edges in Y are the edges of G'. By Lemma 2.7, $|[V(C_i), V(G - C_i)]| = \lambda_2(G) = s$ for all $1 \le i \le l$ and so G' is an s-regular graph. Note that |V(G')| = l and |E(G')| = s|V(G')|/2 = sl/2 = t. This proves (i). Theorem 2.9 (ii) and (iii) follows by Lemma 2.8 and the simpleness of G respectively.

Conversely, by (i) G' is an s-regular graph with |V(G')| = l and |E(G')| = t. It is well known that for an s-regular graph G', |E(G')| = s|V(G')|/2. Thus ls = 2t. \square

Corollary 2.10 Let G satisfy (1) and G' be the graph defined in Theorem 2.9. Let b denote the number of nontrivial vertices in G'. Then $|V(G)| \ge (l-b) + b\lambda_2$.

3 Circulant Component Graphs

Let |V(G)|=n be a positive integer. Assume that the vertices of a graph are labeled $0,1,2,\cdots,n-1$, and we refer to vertex i instead of saying the vertex labeled with i. The circulant graph $C_n[a_1,a_2,\cdots,a_k]$ or briefly $C_n[a_i]$, where $0 < a_1 < a_2 < \cdots < a_k < \frac{n+1}{2}$, has $i \pm a_1, i \pm a_2, \cdots, i \pm a_k \pmod{n}$ adjacent to each vertex i. The sequence $\langle a_i \rangle$ is called the jump sequence and the a_i 's are called the jumps. Notice that our definition precludes jumps a of size greater than $\frac{n}{2}$ as such jumps would produce the same result as a jump of size (n-a), as $n-a < \frac{n}{2}$. Also note that if $a_k \neq \frac{n}{2}$ then the circulant is always regular of degree 2k. When n is even we have allowed $a_k = \frac{n}{2}$ (called a diagonal jump), and when $a_k = \frac{n}{2}$ the circulant has degree 2k-1.

Now we extend the definition of circulant graphs to define circulant component graphs. Let G be a graph and T be a set of edges of G such that G-T has l components, $C_0, C_1, \ldots, C_{l-1}$. If a component has only one vertex then it is called a **trivial** component. Two components C_i and C_j are said to be adjacent in G if there is a vertex x in C_i and vertex y in C_j such that the edge $xy \in T$. The circulant component graph $CC_l[a_1(b_1), a_2(b_2), \ldots, a_k(b_k)]$ or briefly $CC_l[a_i(b_i)]$, where $0 < a_1 < a_2 < \cdots < a_k < \lceil \frac{l}{2} \rceil$, represents a family of graphs. A graph G is in $CC_l[a_1(b_1), a_2(b_2), \cdots, a_k(b_k)]$ if and only if G has an edge set G such that G - T has G -

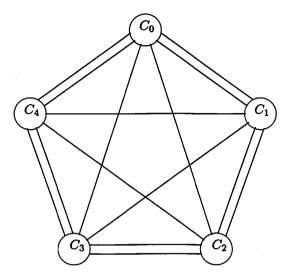


Figure 3.1 Circulant component graph $CC_5[1(2), 2(1)]$

Intuitively, a graph G in $CC_l[a_1(b_1), a_2(b_2), \ldots, a_k(b_k)]$ can be obtained from $C_l[a_1, a_2, \ldots, a_k]$ by replacing each edge in $C_l[a_1, a_2, \ldots, a_k]$ joining vertex i and vertex $i \pm a_1 \pmod{l}$ by b_i edges, and by expanding each vertex i in $C_l[a_1, a_2, \ldots, a_k]$ by a (possibly trivial) connected graph C_i . We shall refer these C_1, C_2, \cdots, C_l as the components of G. Note that the definition of circulant component graph does not say any thing about the structure of the components C_1, C_2, \cdots, C_l of G - T. In Section 4 we use circulant component graphs in the construction of minimal graphs. Then all we have to do is to give the structure of each component of G - T.

<u>Proposition 3.1</u> Let G be a circulant component graph, where T is an edge subset of G such that G - T has l components C_1, C_2, \dots, C_l . Then G can be contracted to an 2|T|/l-regular graph G' with |V(G')| = l and |E(G')| = |T|.

<u>Proof:</u> Let E(G) - T = X and G' = G/X. Then the l components of G - T are vertices of G' and the edges in T are the edges of G'. Thus |V(G')| = l and |E(G')| = |T|. \square

Let G be a circulant component graph and T be an edge subset of G such that G-T has l components. Let C be a component of G-T. A vertex v of C is internal if v is not incident with any edge of T; otherwise, v will be external. If $e \in T$ then the edge e joins two external vertices of

two different components of G-T. Furthermore e is called an **external** edge of the circulant component graph. Thus all the edges of T are external edges of the circulant component graph. Therefore the definition of the circulant component graph gives only the arrangement of the external edges.

4 Graphs reaching the lower bound with minimum number of edges

In this section, we present a best possible lower bound of the size of graphs satisfying (1).

Theorem 4.1 Let $n \ge l > 1$ be integers.

- (i) Let G be a simple graph satisfying (1) with |V(G)|=n vertices. Then $|E(G)| \ge \frac{1}{2}\lambda_2(G)|V(G)|$.
- (ii) There exists a graph H satisfying (1) with n = |V(H)| such that $|E(H)| = \frac{1}{2}\lambda_2(H)|V(H)|$.

Proof: (i). Let T be a set of $\lambda_l(G)$ edges of G such that G-T has l components C_1, C_2, \ldots, C_l . Consider a component C_i of G-T. Let $v \in V(C_i)$. Then

$$\deg_G v \ge \lambda_2(G). \tag{4}$$

Let $|V(C_i)| = n_i$. By Lemma 2.7, $|[V(C_i), V(G - C_i)]| = \lambda_2(G)$. By (4) and by Lemma 2.8, $\lambda_2 n_i \leq \sum_{v \in V(C_i)} \deg v = 2|E(C_i)| + \lambda_2$ and so $\lambda_2(n_i - 1) \leq 2|E(C_i)|$. It follows that

$$|E(C_i)| \ge \frac{\lambda_2(G)}{2}(n_i - 1), 1 \le i \le l.$$
 (5)

Note that $|E(C_i)|$ is an integer. If the equality of (5) holds for a graph G, then $\lambda_2(G)(n_i-1)$ must be even. Thus,

$$|E(G)| = \sum_{i=1}^{l} |E(C_i)| + \lambda_l(G) \ge \sum_{i=1}^{l} \frac{\lambda_2(G)(n_i - 1)}{2} + \frac{l}{2}\lambda_2(G)$$

$$= \frac{\lambda_2(G)}{2} \left(\sum_{i=1}^{l} n_i - \sum_{i=1}^{l} 1 \right) + \frac{l}{2}\lambda_2(G)$$

$$= \frac{\lambda_2(G)}{2}|V(G)| - \frac{\lambda_2(G)}{2}l + \frac{l}{2}\lambda_2(G) = \frac{\lambda_2(G)|V(G)|}{2}.$$

(ii). We shall construct a family of graphs satisfying (1) and $|E(H)| = \frac{1}{2}\lambda_2(H)|V(H)|$. We use terminology from Theorem 2.9 in the construction of graph H. Thus H can be contracted to a s-regular graph H' with |V(H')| = l and |E(H')| = t. We shall prove that such constructed H satisfies $\lambda_2(H) = s$ and $\lambda_l(H) = t$. It is convenient to give construction separately for even and odd values of s. It is well known that

$$\frac{sl}{2} = \frac{s|V(H')|}{2} = |E(H')| = t. \tag{6}$$

For even s let H' be the graph $C_l[1(s/2)]$, and so H is a $CC_l[1(s/2)]$. Figure 4.1 gives the graph $CC_5[1(3)] = CC_5[1(6/2)]$, that is s = 6 and l = 5. When s is odd l must be even. In this case we let H' be the graph $C_l[1(\frac{s-1}{2}), \frac{1}{2}(1)]$ and so H is in $CC_l[1(\frac{s-1}{2}), \frac{1}{2}(1)]$. Figure 4.2 gives the graph $CC_6[1(2), 3(1)] = CC_6[1(\frac{5-1}{2}), \frac{6}{2}(1)]$, that is s = 5 and l = 6. In both Figure 4.1 and Figure 4.2 the structure of the components were not given. Note that in both cases, we have

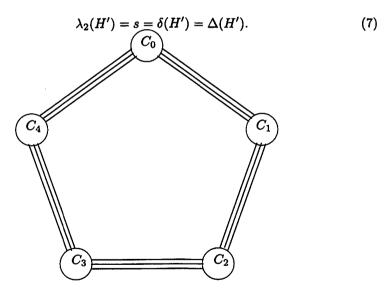


Figure 4.1 Circulant component graph $CC_5[1(3)]$

Note also that E(H') = T and H - T has l components. Below we shall define the structure of each component. The edges joining two components

are in T, thus H-T gives l components $C_0, C_1, \ldots, C_{l-1}$. Let C be a component of H-T. A vertex v of C is **internal** if v is not incident with any edge of T; otherwise, v will be **external**. Let C_i and C_j be two distinct components of H-T, for $0 \le i \ne j \le l-1$. If there is an edge joining a vertex v of C_i and a vertex u of C_j then this edge e must be in T. Further more C_i and C_j are called **adjacent components**. The edge e is called an **external edge** of C_i and C_j .

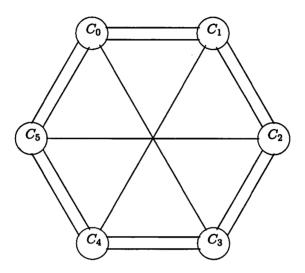


Figure 4.2 Circulant component graph $CC_6[1(2), 3(1)]$

Note that T is an edge subset of E(H), such that H-T has l components. Let X=E(H)-T, and H'=H/X. Thus the vertices of H' are components of H-T. Also note that the elements of T are edges of H'. Label the l components of H-T by $C_0, C_1, \ldots, C_{l-1}$. Now we look at the structure of these components. By Lemma 2.8, if a component C_i has more than one vertex then the number of vertices in C_i is at least s. Recall that we want to construct graphs with edge-connectivity equals to s. Instead of constructing l components $C_0, C_1, \ldots, C_{l-1}$, we just construct one such component (say C) and give several different cases. The components of H-T can be any combination of these components provided the components C_i and C_{i+1} both cannot be trivial components at the same time for $0 \le i \le l$, where component $C_l = C_0$. Let |V(C)| = n'. By Lemma 2.8, if n' > 1 then $n' \ge s$. Thus we break the construction of C into five cases depending on the values of n' and s. They are n' = 1, n' = s, n' > s for

even s, n' > s for odd s and even n', and n' > s for odd s and odd n'. For all the cases and sub cases label the n' vertices $v_1, v_2, \ldots, v_s, v_{s+1}, \ldots, v_{n'}$ so that s edges of T are incident with vertices v_1, v_2, \ldots, v_s , respectively, when $n' \geq s$ in C. Thus these s vertices are the external vertices of C. All the other vertices are internal.

Case (1): If n' = 1 then the component C is a single vertex. Thus s edges of T are all incident with this vertex. This is a trivial component of H - T.

Case (2): If n' = s then let the component C be the complete graph K_s . In this case, each vertex in C is incident with exactly one edge in T. Thus all the s vertices are external with $\deg_H v_i = s$ for $1 \le i \le s$.

Case (3): If n' > s and s is even. Let the component C be

$$C_{n'}[1,2,\ldots,\frac{s}{2}] - \{v_1v_2,v_3v_4,\ldots,v_{s-1}v_s\}.$$

There are s external vertices and n'-s internal vertices. $\deg_H v_i = s$ for $1 \le i \le n'$. The graph $C_7[1,2,3] - \{v_1v_2, v_3v_4, v_5v_6\}$ is shown in the Figure 4.3.

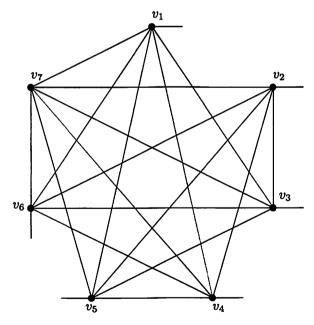


Figure 4.3 The graph $C_7[1,2,3] - \{v_1v_2, v_3v_4, v_5v_6\}$

Case (4): If n' > s, s is odd and n' is even. Let the component C be

$$C_{n'}[1,2,\ldots,\frac{s-1}{2},\frac{n'}{2}]-\{v_2v_3,v_4v_5,\ldots,v_{s-1}v_s\}.$$

There are s external vertices and n'-s internal vertices, $\deg_H v_1 = s+1$ and $\deg_H v_i = s$ for all $2 \le i \le n'$. The graph $C_6[1,2,3] - \{v_2v_3, v_4v_5\}$ is shown in the Figure 4.4.

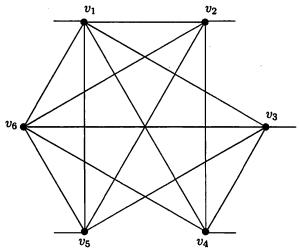


Figure 4.4 The graph $C_6[1,2,3] - \{v_2v_3, v_4v_5\}$

Case (5): If n' > s, and s and n' are both odd. This we break into two sub cases as n' < 2s and n' > 2s.

Subcase(5a): s < n' < 2s for odd s and n'. Let the component C be

$$C_{n'}[1,2,\ldots,\frac{s-1}{2}] + \{v_{s+1}v_{r+1},v_{s+2}v_{r+2},\ldots,v_{n'}v_{r+n'-s}\} - \{v_{r+1}v_{r+2},v_{r+3}v_{r+4},\ldots,v_{r+n'-s-1}v_{r+n'-s}\},$$

where $r = (\frac{3s+1}{2}) \pmod{n'}$. There are s external vertices and n'-s internal vertices and $\deg_H v_i = s$ for $1 \le i \le n'$. The graph $C_7[1,2] + \{v_2v_6, v_3v_7\} - \{v_2v_3\}$ is shown in Figure 4.5.

Subcase(5b): n' > 2s for odd s and n'. Let the component C be

$$C_{n'}[1,2,\ldots,\frac{s-1}{2}] + \{v_{r+s+1}v_{s+1},v_{r+s+2}v_{s+2},\ldots,v_{n'}v_{r+s}\},$$

where $r = \frac{n'-s}{2}$. There are s external vertices and n'-s internal vertices. $\deg_H v_i = s$ for $1 \le i \le n'$. The graph $C_{11}[1,2] + \{v_6v_9, v_7v_{10}\} - \{v_8v_{11}\}$ is shown in Figure 4.6.

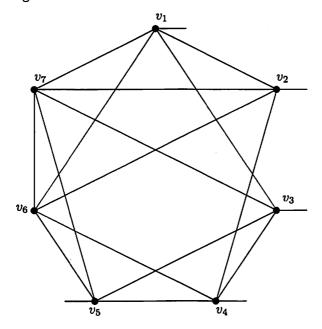


Figure 4.5 The graph $C_7[1,2] + \{v_2v_6, v_3v_7\} - \{v_2v_3\}$

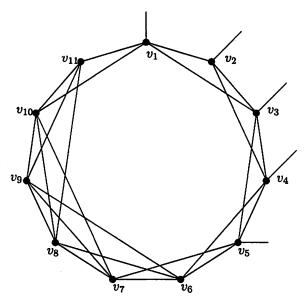


Figure 4.6 The graph $C_{11}[1,2] + \{v_6v_9, v_7v_{10}, v_8v_{11}\}$

For each component C of H-T. The component C has either one or s external vertices. When it has s external vertices, we assume that these vertices are labelled as v_1, v_2, \dots, v_s , adjacent to external edges e_1, e_2, \dots, e_s , respectively. Let v denote a vertex not in C and let $C \cup v$ denote the graph obtained from C by adding a new vertex v and edges e_1, e_2, \dots, e_s such that each e_i joins v to v_i in C.

Claim 4.2 For any component C in the above construction, $\lambda_2(C \cup v) = s$.

<u>Proof of Claim 4.2</u> Let X be an edge-cut of $C \cup v$ such that $\lambda_2(C \cup v) = |X|$. If the edge cut X separate the vertex v and the component C then |X| = s. In following cases we assume that the edge cut X does not separate the vertex v and component C.

Case(1): n' = 1. Thus the graph $C \cup v$ has only two vertices and s edges between them. Thus the edge cut X separates the vertex v and the component C. Therefore |X| = s and $\lambda_2(C \cup v) = s$.

Case(2): n' = s. Thus the graph $\lambda_2(C \cup v)$ is the complete graph K_{s+1} .

Therefore |X| = s and $\lambda_2(C \cup v) = s$.

 $\frac{\operatorname{Case}(3): n' > s. \text{ for even } s. \text{ In this case, the component } C = C_{n'}[1, 2, \dots, \frac{s}{2}] - \frac{\{v_1v_2, v_3v_4, \dots, v_{s-1}v_s\}.}{\{v_1v_2, v_3v_4, \dots, v_{s-1}v_s\}.} \text{ Note that } \lambda_2(C_{n'}[1, 2, \dots, \frac{s}{2}]) = s. \text{ As } C \text{ is obtained by removing the edges } \{v_1v_2, v_3v_4, \dots, v_{s-1}v_s\}, \text{ and joining } v_1, v_2, \dots, v_s \text{ to the new vertex } v, \text{ we still have } \lambda_2(C \cup v) = s.$

Case(4): n' > s for odd s and even n'. In this case, the component $C = C_{n'}[1, 2, \ldots, \frac{s-1}{2}, \frac{n'}{2}] - \{v_2v_3, v_4v_5, \ldots, v_{s-1}v_s\}$. It is routine to check that $\lambda_2(C_{n'}[1, 2, \ldots, \frac{s-1}{2}, \frac{n'}{2}]) = s$, and so $\lambda_2(C \cup v) = s$.

Subcase(5a): s < n' < 2s for odd s and n'. In this case the component $\overline{C = C_{n'}[1, 2, \dots, \frac{s-1}{2}]} + \{v_{t+s+1}v_{s+1}, v_{t+s+2}v_{s+2}, \dots, v_{n'}v_{t+s}\}$. It is routine to check that $\lambda_2(C_{n'}[1, 2, \dots, \frac{s-1}{2}]) = s$. We again have $\lambda_2(C \cup v) = s$.

Subcase(5b): n'>2s for odd s and n'. In this case, the component $C=\frac{C_{n'}[1,2,\ldots,\frac{s-1}{2}]}{C_{n'}[1,2,\ldots,\frac{s-1}{2}]}+\{v_{t+s+1}v_{s+1},v_{t+s+2}v_{s+2},\ldots,v_{n'}v_{t+s}\},$ where $t=\frac{n'-s}{2}$. It is routine to check that $\lambda_2(C_{n'}[1,2,\ldots,\frac{s-1}{2}])=s$. Thus $\lambda_2(C\cup v)=s$. This proves Claim 4.2. \square

To complete the proof for Theorem 4.1(ii), it remains to prove that $\lambda_2(H) = s$, $\lambda_l(H) = t$ and that

$$|E(H)| = \frac{1}{2}\lambda_2(H)|V(H)|.$$
 (8)

Let X_i denote the set of all edges with exactly one end in a given component C_i for any $1 \leq i \leq l$, then $H - X_i$ has two components. By the construction, $|X_i| = s$, and so $\lambda_2(H) \leq s$. On the other hand, we argue by contradiction and assume that there exists a minimal edge cut $E' \subseteq E(H)$ such that H - E' has two components and |E'| < s. Suppose first that $E' \cap T = \emptyset$, and so we may assume that for some nontrivial component C_i of H - T, $E' \cap E(C_i) \neq \emptyset$. Since E' is minimal, $E' \cap E(C_i)$ must be an edge cut of C_i , and so E' contains an edge-cut of $C_i \cup v$. By Claim 4.2, $|E'| \geq s$, contrary to the assumption that |E'| < s. Hence we must have $E' \subseteq T$, and so E' is an edge-cut of $E' \cap E(C_i) \cap E' \cap E'$ and so $E' \cap E' \cap E' \cap E'$. By (7), $|E'| \geq s$, contrary the the assumption that |E'| < s again. Therefore, we must have $\lambda_2(H) = s$.

By Theorem 2.9, by $\lambda_2(H) = s$ and by (6), we have $\lambda_l(H) \ge \lceil \frac{ls}{2} \rceil = t$. Recall that |T| = |E(H')| = t and that H - T has l components. Therefore,

 $\lambda_l(H) \leq |T| = t$. It follows that $\lambda_l(H) = t$.

We argue by induction on $f(H) = \sum_{i=1}^{l} |V(C_1)|$ to prove (8), where C_1, C_2, \dots, C_l are the components of H - T. If f(H) = l, then H = H', and so (8) holds. Assume that f(H) > l. Then at least one of the components, say C, has at least s vertices. Using the same notation as in the construction above, we let n' = |V(C)|. Consider the graph H/C. Then H/C can be constructed in the procedure above via the case n' = 1 instead of the $n' \geq s$ cases. Hence by induction with $\lambda_2(H) = s$, and by E(H) - E(C) = E(G/C),

$$|E(H)| - |E(C)| = \frac{\lambda_2(H)|V(H/C)|}{2} = \frac{\lambda_2(H)(|V(H)| - |V(C)| + 1)}{2}.$$
 (9)

It is routine to check that in the construction procedure above, in each of the cases when $n' \geq s$, we always have

$$|E(C)| = \frac{\lambda_2(H)(|V(C)| - 1)}{2}. (10)$$

Thus combining (9) and (10), we obtain (8). This complete the proof of Theorem 4.1. \Box

References

- F. T. Boesch and S. Chen, A generalization of line connectivity and optimally invulnerable graphs, SIAM J. Appl. Math. 34 (1978) 657-665.
- [2] G. Chartrand, A graph-theoretic approach to a communications problem, SIAM J. Appl. Math. 14 (1966) 778-781.
- [3] G. Chartrand and L. Lesniak, Graphs and Digraphs (3rd Edition), Chapman & Hall (1996).
- [4] D. L. Goldsmith, On the second order edge-connectivity of a graph, Congr. Numer. 29 (1980) 479-484.
- [5] D. L. Goldsmith, On the nth order edge-connectivity of a graph, Congr. Numer. 32 (1981) 375-382.
- [6] F. Harary, The maximum connectivity of a graph, Proc. Acad. Sci. USA 48 (1962) 1142-1146.

- [7] K. P. Hennayake, H.-J. Lai and L. Xu, The strength and the *l*-edge-connectivity of a graph, Bulletin of the ICA, 26 (1999), 58-70.
- [8] O. R. Oellermann, Explorations into graph connectivity, The Notices of the South African Mathematical Society 20 (1988) 117-151.
- [9] O. R. Oellermann, Generalized Connectivity in Graph, PhD dissertation, Western Michigan University, Kalamazoo, MI (1986).
- [10] O. R. Oellermann, On the *l*-connectivity of a graph, Graphs and Combinatorics, 3 (1987) 285-291.
- [11] H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932) 150-168.