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ABSTRACT. For any h € Z, a graph G = (V,E) is said to be h-magic if
there exists a labeling ! : E(G) — Z, — {0} such that the induced vertex set
labeling !+ : V(G) — Z;, defined by
Fo)= Y, luw)
uwvEE(G)

is a constant map. For a given graph G, the set of all h € Z; for which
G is h-magic is called the integer-magic spectrum of G and is denoted by
IM(G). In this paper, we will determine the integer-magic spectra of trees of
diameter five.
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1. INTRODUCTION

In this paper all graphs are connected, finite, simple, and undirected. For an
abelian group A, written additively, any mapping [ : E(G) — A — {0} is called
a labeling. Given a labeling on the edge set of G one can introduce a vertex set
labeling {*: V(G) - A by

o)=Y lw).

uv€ E(G)

A graph G is said to be A-magic if there is a labeling [ : E(G) — A — {0} such
that for each vertex v, the sum of the labels of the edges incident with v are all
equal to the same constant; that is, [*(v) = ¢ for some fixed ¢ € A. In general,
a graph G may admit more than one labeling to become A-magic; for example,
if |A] > 2 and [ : E(G) — A — {0} is a magic labeling of G with sum ¢, then
A : E(G) — A — {0}, the inverse labeling of I. defined by Muv) = —I{uv) will
provide another magic labeling of G with sum —c. A graph G = (V, E) is called
fully magic if it is A-magic for every abelian group A. For example, every regular
graph is fully magic. A graph G = (V, E) is called non-magic if for every abelian
group A, the graph is not A-magic. The most obvious class of non-magic graphs
is P, (n > 3), the path of order n. As a result, any graph with a pendant path
of length n > 3 would be non-magic. Here is another example of a non-magic
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graph: Consider the graph H depicted in Figure 1. Given any abelian group A,
a potential magic labeling of H is illustrated in that figure. The combination of
conditions {*(u) = I*(v) = I*(w) = z imply that y = z = 0, which is not an
acceptable magic labeling. Thus H is not A-magic.

u Yy \‘]:v 2 w
N

FIGURE 1. An example of a non-magic graph.

Certain classes of non-magic graphs are presented in [1]. The original concept of
A-magic graph is due to J. Sedlacek [12, 13], who defined it to be a graph with a
real-valued edge labeling such that
(1) distinct edges have distinct nonnegative labels; and
(2) the sum of the labels of the edges incident to a particular vertex is the
same for all vertices.

Jenzy and Trenkler [3] proved that a graph G is magic if and only if every edge of G
is contained in a (1-2)-factor. Z-magic graphs were considered by Stanley [14, 15),
who pointed out that the theory of magic labeling can be put into the more general
context of linear homogeneous diophantine equations. Recently, there has been
considerable research articles in graph labeling, interested readers are directed
to (2, 16]. For convenience, the notation 1-magic will be used to indicate Z-magic
and Z,-magic graphs will be referred to as h-magic graphs. Clearly, if a graph is
h-magic, it is not necessarily k-magic (h # k).

Definition 1.1. For a given graph G the set of all positive integers h for which
G is h-magic is called the integer-magic spectrum of G and is denoted by IM (G).

Since any regular graph is fully magic, then it is h-magic for all positive integers
h > 2; therefore, IM(G) = IN. On the other hand, the graph H, Figure 1, is
non-magic, hence JM (H) = 0. In determining the integer-magic spectra of graphs
the following observations will be useful:

Observation 1.2. If ¢ graph G has an IN -magic labeling | : E(G) — IN, then G
is k-magic as long as k does not divide l(e) for every e € E(G).

Observation 1.3. If a graph G has a Z-magic labeling | : E(G) — Z, then G is
k-magic as long as k does not divide l(e) for every e € E(G).

Proof. In order to construct & k-magic labeling, we start with the Z-magic labeling
of G, and replace every edge label I(e) with l(e) (mod k). Since k does not divide
any l(e), none of these new labels are 0. (]

Observation 1.4. If G is Z-magic, then G is k-magic for sufficiently large k.

Proof. If G has a Z-magic labeling ¢, then G is k-magic as long as k > £(e) for
every edge e. So G is k-magic for every k larger than maxz{¢(e)} O
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The integer-magic spectra of certain classes of graphs have been studied in [5,
6, 7, 8, 9, 10, 11]. In particular, in [6] the integer-magic spectra of the trees of
diameter at most four have been characterized.

2. TREES OF DIAMETER AT MOST FOUR

Trees of diameter two are the complete bipartite graphs K(1,n} also called stars
and is denoted by ST(n). Note that K(1,1) = P; has diameter 1, and K(1,2) = P;

is non-magic.

FIGURE 2. A typical tree of diameter 2.

Theorem 2.1. [6] Let n > 3, and py'p3?-- - pp* be the prime factorization of
n—1. Then

k
IM(ST(n)) = | m:IV.
=1
Trees of diameter 3 are double-stars. These graphs have two central vertices u and
v plus leaves. We will use DS(m, n) to denote the double-star whose two central
vertices have degrees m and n, respectively. Note that if m = 2 or n = 2, then
DS(m,n) is non-magic. Therefore we will assume that m > n > 2.

u 'U\O
FIGURE 3. A typical tree of diameter 3.

Theorem 2.2. (6] Let p{p32---pp* and P2 pl .. pP* be the prime factoriza-
tions of m — n and n — 2, respectively. Then IM(DS(m,n)) = UX_; A;, where

4= { PN o> 6 20;
0 if ﬂi 2o 2 0.
Trees of diameter four, denoted by Ty(a;.az.--- .a,), consist of n stars ST(a;),
ST(az),--+ ,ST(an) exactly one of their end vertices identified. The common ver-
tex is the center of the tree and will be denoted by c. Equivalently, Ty(e1,82.--- ;an)
is a tree with center-vertex ¢, in which n edges cux (1 < k < n) are emanated
from ¢, and deg(u;) = a; for each i = 1,2,--- . n, see Figure 4. In order to have a
tree of diameter four, one needs n > 2 and a; > 2 for at least two values of 4.

The following theorem (6], has been an attempt to identify the integer-magic
spectra of trees of diameter four:
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FIGURE 4. A typical tree of diameter 4.

Theorem 2.3. Consider the tree of diameter four G = Ty(aj,az, - ,an) (n >
3), and let +p$'p3?---pp* be the prime factorization of o = 1 — 2n + Yo ai
Then the integer-magic spectrum of G is

0 if a|(a; — 2) for some i > k&
IM(G)={ N-D fo=0
U, pilN = D otherwise,

where D = {d : d is a divisor of a; —2 for somei (1<i< n)}.

When we apply the above theorem to G = T}(5,7,8), it will produce IM(G) =
3N USIN. However, it is easy to see that this graph is not 6 or 10-magic. In fact
IM{(G) = 15IN. The correct version of the theorem is as follows:

k]

Theorem 2.4. Given a tree of diameter four G = Ts(a1,a2,...,ay), let 0 =

n
1 —2n+2a; and let C be the set of all divisors ofa; —2Vi=1,--- ,n. Then

i=1

] ifeceC:
) IN-C ifo=0;
IM(G) = i
(@) U dIN otherwise,
deD

where D is the set of all positive divisors d of o with the property that dg C.

Caterpillar is a tree having the property that the removal of its end-vertices results
in a path (the spine). We use CR(a,,az.---,ay) to denote the caterpillar with a
P,-spine, where the i** vertex of P, has degree a;.

uy U U3 Un
e e 0
T /!\x / !\z x T

FIGURE 5. A Caterpillar of diameter n + 1 (P,-spine).
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The following theorem [10] provides the integer-magic spectra of caterpillars:

— n a—
Theorem 2.5. Given a caterpillar G = CR(a1,0a2,...,an), let 0 = (—1-)2——1- -
Z(—l)fa; and ¢; = w —gi+ai-1—-+(=1)a; (1<i<n-1). Also,

i=1
let C be the set of all divisors of ¢; Vi=1.--- ,n — 1. Then

0 ifo €C;
N-C ifo=0;
IM(G) = ~
(©) |J dN  otherwise,
deD

where D is the set of all positive divisors d of o with the property that dg C.

3. TrRees OF DIAMETER FIVE

In every tree T of diameter five, there are exactly two adjacent vertices with
minimum eccentricity 3. The subgraph induced by these two vertices, also known
as center of the T, is isomorphic with P;. One can utilize this fact to give another
characterization for T : A tree of diameter five can be viewed as P, with a number
of stars one of their leaves identified with exactly one of the vertices of P;. We will
use Ts(@1,82, -+ +@m—1; by b2, ++ ,bn1) to denote a tree of diameter five whose
central vertices u, v have degrees m and n respectively. Furthermore, there are m—
1 stars ST(a;).ST(az). -+ , ST(am-1) with centers uj.uz.--- , um—1 ON€ of their
leaves identified with u, and there are n — 1 stars ST(b;), ST(b2) -+ , ST(bn-1)
with centers vy, v2,--- ,Un-1 One of their leaves identified with v.

]

FIGURE 6. A typical tree of diameter 5.

Note that if m = 1 or n = 1, then the resulting tree will have diameter four.

Similarly, if b; = 1 for all j = 1,--- . n — 1, then the resulting tree will have

diameter four. Therefore. in what follows. we will assume that m,n > 1 and

ai.b; > 1 for at Jeast one value of i and j.

Theorem 3.1. Given a tree G = Ts(a1.....@m-1:b1.- - .bn_1) of diameter five,
n-1 m-1

leto =2m—-2n+ Z b; — Z a; and let C be the set of all divisors of the numbers

i=] =1
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ai-2(i=1,---,m—-1),b;=2(j=1,--- ,n—1), and 3— 2m + 7 a;. Then

0 ifoeC;
N-C ifo=0;
|J @V otherwise,
deD

IM(G) =

where D is the set of all positive divisors d of o with the property that d€ C.

Proof. Let | : E(G) — Zx be a magic labeling of G and let l(uw;) = y;, l(uv) =t,
and i(vv;) = z;, as illustrated in Figure 6. Note that in any magic labeling
of G all the terminal edges have the same label z, which is then equal to the
vertex sum. The graph G is h-magic if and only if we can find nonzero elements
t, 2, ¥i, 2; € Zj such that {*(u;) = I*(v;) = I*(u) = I+ (v) = z. This will provide
a homogeneous system of m + n equations with m + n unknowns (a; —2)z +y; =
m-~1
0 (mod h) (bi —2)z+2 = 0 (mod h), 3-2m + Y _a;)z ~t = 0 (mod h),

i=1
-1

(3-2n+ Zb.-)z —t =0 (mod k), which will result in

i=1

(3.1) or =0 (mod h);
(3.2) (ai—2)z+y =0 (mod h);
(3.3) (bi—2)z+2z =0 (modh);
m-—1
(3.4) (3 -2m+ Z a,-)z: —t =0 (modh),
i=]
n-1 m-1

where ¢ = 2m — 2n+2b - Za.

We observe that if o € C that ;s,lcr be a divisor of (a; — 2), (b; —2),0or3~-2m+
™! ai, then y; = 0, 25 = 0, or t = 0 and the graph would be nonmagic. In

particular, if a; = 2 for some i, or b; = 2 for some j, or Z,,:,) a; = 2m - 3, then

the graph is nonmagic. Assume that a;,b; # 2 and 22’;}’ a; #2m - 3.

If o = 0, then equation (3.1) is automatically satisfied. Choose z = 1 and note

that equations (3.2), (3.3), and (3.4) have nonzero solutions if and only if h g C.

Therefore, to avoid the zero solutions we must exclude all the elements of C. In

this case, the integer-magic spectrum of G would be IN — C.

Finally, suppose ¢ # 0 and o € C. We claim that IM(G) = U dIN, where D is

deD
the set of all positive divisors d of o with the property that dg C.

Suppose h € IM(G). Then equation (3.1) has a nonzero solution for z if and only
if ged(o, h) = d > 1, and h/d divides z. Also, d € C. Because, if d € C, for example
d|(a;—-2)somei =1,--- ,m—1, then d(h/d)|(ai —2)z or hly; and 3; = 0 (mod h).
Therefore, h = dq, where d € D.

On the other hand, let h = dg withd € D and g € IN. Note that d € D implies that
d > 1. We choose z = h/d#0 (mod h). Since d¢ C, then d { (a; — 2), Therefore,
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d(h/d) {(a;—2)z or h{y; and y;#0 (mod h). Similarly, equations (3.3), and (3.4)
have nonzero solutions and h € IM(G). (]

Corollary 3.2. Using the notations of theorem 3.1, G is nonmagic if and only if
oceC.

Examples 3.3.

(a) The graph in Figure 1 is the caterpillar CR(9,10,9). Here, o = 7 and
a; — 2 = 7. Therefore, IM(CR(9,10,9)) = 0.

(b) For T4(5.7,8) we have 0 = 15 and C = {1,3,5,6}. The positive divisors
of o are 1,3,5,15 and only 15 € C. Therefore, IM(T4(5,7,8)) = 156IN.

(c) IM(T4(1,1,3,6)) = 0. Here, 0 = 4, as — 2 =4 and o|(as — 2).

(d) The graph in Figure 6 is G = T5(4,4,6;4,4,6). Here, 0 = 0 and C =
{1,2,4,11}. Therefore, IM(G) = N — {1,2,4,11}.

(e) For G = Ts(4,5,6;5,6,7) we have 0 = 3and C = {1,2,3,4,5,6,12}. Since
o € C, then IM(G) = 0.
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