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Abstract

Let M = {wq, vz ... vy} be an ordered sct of vertices in a graph G. Then
(d(u,m), d(u,v2) ... d(u,v,)) is called the M-coordinates of a vertex u of
G. The set M is called a metric basis if the vertices of G have distinct M-
coordinates. A minimum metric basis is a set M with minimum cardinality.
The cardinality of a minimum metric basis of G is called minimum metric
dimension. This concept has wide applications in motion planning and in
the field of robotics. In this paper we provide bounds for minimum metric
dimension of certain class of enhanced hypercube networks
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1 Introduction

Major issues involved in the design of interconnection networks are quick
communication among vertices, high robustness and rich structure in the
sense of embeddable properties, fault tolerance and VLSI [17]. Hypercubes
are widely studied as they meet several conflicting demands that arise in
the design of interconnection networks. The hypercube has many excellent
features, thus becomes the first choice for the topological structure of parallel
processing and computing systems. The machines based on the hypercube
such as the Cosmic Cube from Caltech, the iPSC/2 from Intel and Connection
Machines have been implemented commercially [2]. Parallel algorithms based
on the hypercube have been developed. The hypercube structure offers a rich
interconnection with a large bandwidth and a short (logarithmic) diameter.
Most of the hypercube variations focus on reducing diameter or message
traffic.

Many variations of hypercube have been suggested to improve its per-
formance. These variations support efficient embeddings, reduced diameter
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Figure 1: An Enhanced hypercube @4, 2

and improve fault tolerance in comparison to the hypercube. The common
features in the variations of hypercube are 2" vertices; vertices are labeled
with binary strings of length n; they are simple, connected and regular. The
extra connections are made in a way that maximizes the improvement of the
performance measure of interest under various traffic distributions [2].

2 An Overview of the Paper

Let M = {v1, vz ... vp} be an ordered set of vertices in a graph G. Then
(d(u, 1), d(u,v2) ... d(u,v,)) is called the M-coordinates of a vertex u of
G. The set M is called a metric basis if the vertices of G have distinct M-
coordinates. A minimum metric basis is a set M with minimum cardinality
[6]. If M is a metric basis then it is clear that for cach pair of vertices u
and v of V r W, there is a vertex w € W such that d(u,w) # d(v,w).
The cardinality of a minimum metric basis of G is called minimum metric
dimension and is denoted by 8(G); the members of a metric basis are called
landmarks [8]. The minimum metric dimension (MMD) problem is to find a
minimum metric basis.

This problem has application in the field of robotics. A robot is a me-
chanical device which is made to move in space with obstructions around. It
has neither the concept of direction nor that of visibility. But it is assumed
that it can sense the distances to a set of landmarks. Evidently, if the robot
knows its distances to a sufficiently large set of landmarks its position in
space is uniquely determined.

The concept of metric basis and minimum metric basis has appeared in
the literature under a different name as early as 1975. Slater in [15] and later
in [16] had called metric basis and minimum metric basis as locating sets and
reference sets respectively. Slater called the cardinality of a reference set as
the location number of G. He described the usefulness of these ideas when
working with sonar and loran stations. Chartrand et al. [4] have called a
metric basis and a minimum metric basis as a resolving set and minimum
resolving set. We adopt the terminology of Harary and Melter.



If G has p vertices then it is clear that 1 < 8(G) < p—1. Harary et al. [6]
have shown that for the complete graph K, the cycle Cp, and the complete
bipartite graph Ky, ,, the minimum metric dimensions are S(K,) = p — 1,
B(Cp) = 2 and B(K,,, ») = m + n — 2. This problem has been studied for
grids (9], trees, multi-dimensional grids (8], Petersen graphs [1], De Bruijn
graphs [13], Kautz networks [14], Torus networks [10], Benes and Butterfly
networks [11] and Honeycomb networks [12].

Garey and Johnson [5] proved that the minimum metric dimension prob-
lem is NP-complete for general graphs by a reduction from 3-dimensional
matching. Recently Manuel et al. [11] have proved that the minimum metric
dimension problem is NP-complete for bipartite graphs by a reduction from
3-SAT, thus narrowing down the gap between the polynomial classes and
NP-complete classes of the minimum metric dimension problem.

In this paper, we discuss the minimum metric dimension problem for
n-dimensional enhanced hypercubes Q5 2.

3 Topological Properties of Enhanced Hyper-
cube Networks

Several operations exist to combine two copies Gq, G2 of a graph G. One
such operation yields the permutation graph P(G, @), where « is a permu-
tation of V(G). It is obtained from Gy and G, by joining vertex v of G4
with the vertex a(v) of G,. Many important classes of permutation graphs
can be constructed by judiciously choosing G and . A prime example is
the n-dimensional hypercube @, = P(Qn - 1, a), where « is the identity
permutation of V(Q,, _ 1).

The main consideration here for defining hypercube is that the degree of a
node in G rises as a slow-growing function of |V (G)|. Inversely, we want that
|V(G)| be a fast growing function of the degree of a node in G. Constructing
different hypercube-like topologies, as well as other inspirations, holds out
the promise of finding a simply-implementable network with low diameter
and high connectivity.

The chief property of the hypercube network is the efficient interconnec-
tion of nodes. The n-cube is particularly compact. The worst case distance
between any two nodes is only the dimension of the structure. This logical
structure is extremely useful because of the wide range of algorithms that fit
it particularly well.

Let @, denote the graph of the n-dimensional hypercube, n > 1. The ver-
tex set V(Qr) = {(zoz1 ... T, — 1) : z; = 0or 1}. Two vertices (zoz1 ... Tn — 1)
and (yoy1 ... Yn — 1) are adjacent if and only if they differ exactly in one po-
sition.

The definition of @Q,, recursively in terms of the cartesian product is as
follows:



Q1=K2,Qn =Qn - 1%XQ1 = K2 xKax ... xK> of n identical complete
graph K.

A hypercube of order n is n-regular, bipartite, with 2" vertices, n2" — !
edges and diameter n. The graph is hamiltonian if n > 2 and eulerian if n is
even.

The enhanced hypercube Q. x, 0 < k < n — 1, is a graph with ver-
tex set V(Qn, 1) = V(Qr) and edge set E(Qn, k) = E(Qn) U {(zoz122 ...
T — 2Tk — 1Tk oo T — 1, TOXIL2 ooo Tk — 2Tk = 1Th » Tpp — 1)} The edges of
Qn in @y, x are hypercube edges and the remaining edges of Q,, « are called
complementary edges. See Figure 1. The set is empty when & = 0. Hence
Qnr, o reduces to the n-dimensional hypercube.

The enhanced hypercubes @, &, 0 < k < n —1, proposed by Tzeng and
Wei [17] are (n + 1)-regular. They have 2™ vertices and (n + 1)2" ~ 1 edges.

4 Minimum Metric Dimension of Enhanced Hy-
percube Networks (),

In this section, we provide an upper bound for the minimum metric dimension
of the enhanced hypercubes @, 2. We begin with a few observations and
definitions. There are four copies of Q, - 2,2 in Qn, 2. We denote these
(n — 2)-dimensional enhanced hypercubes as A, A], A7 and A,. Clearly
AU A} and AU A? are isomorphic to @, — 1, 2. Figure 2 shows the four
copies of @3, 2 in Qs, 2.

al

Figure 2: Four copies of Q3,2 in @s, 2

Let 2 € A. A vertex y belonging to A} or A3 is called an image of z if



d(z,y) = 1. For example, the images of the vertex a in A are o' in A and
a? in A%. See Figure 2. Observe that vertices in A, at distance 1 from a, are
not considered as images of a.

If P = zozq ... T, is a path in A then the path P' = 2}z] ... z} where
z] is the image of z; in A] is called the image of P in A]; and P is called
the preimage of P'. See Figure 3.

Figure 3: Images of paths

Lemma 1 Let z € A] and z' € A be the preimage of z. Let w be any vertex
of A. Then d(z,w) = 1 + d(z', w).

Proof. Let d(z',w) = s. Let P be a shortest path from z to w, not passing
through z'. Then P = PV o (y,y") o P? where P! is the shortest path from
x to some y € Al(or A;) and P? is a shortest path from y' to w, where
y' € A(or A2). The possible cases are depicted in Figures 4 and 5. Let Q'
be the preimage of P! in AU AZ. Then the length of the path Q' is equal to
the length of the path P'.

Figure 4: Casey € Aland y' € 4

We claim that (V(P2)NV{(Q") \ {y"} = #. Suppose not; let z € V(P?)N
V@) \ {#'}. Since z € V(Q') and z # 3, d(z,2) < d(z,y"). Similarly,



since z € V(P?) and z # y', d(w,z) < d(w,y'). Hence the image of the
(z', z)-section of Q" lying in A}, followed by the edge (2", 2) and the (z, w)-
section of P? is a shorter (x,w)-path, a contradiction.

Figure 5: Case y € A, and y' € A3

Now, if the length of the path Q' o P? is less than s, then d(z',w) < s
which is not possible. Hence the length of Q" o P? is at least s and conse-
quently the distance between x and w is at least s + 1. Since there is an
(z,w)-path of length s + 1, d(z,w) = s+ 1. &

Lemma 2 Let z be a vertex of A. Let z', 22 be the images of = in A}, A%
respectively. Then z', z? are equidistant from every vertex of A.

Proof. By definition, d(z,z'") = 1 = d(z,2?). Then

dy,z") = d(y,z) + d(z,z")
= d(y,=) + d(z,z?)
= d(y,z?). &

‘We now provide an upper bound for the minimum metric dimension of

enhanced hypercubes @, 2. In what follows P, will denote a path on n
vertices. &

Theorem 3 There exist 2nn — 5 points in @, _ 1, 2 inducing a path P, _ s
whose alternate vertices beginning with the first form a metric basis for @y, 2,
n > 5.

Proof. We prove by induction on n.

Base Case: Consider the vertices wy, wp, w3, wa, ws in Qs, 2. See Figure
6. These vertices induce a path Ps. By calculating the distance of all the
vertices of s,  from wy, w3 and ws, it is verified that the set M = {w,, w3,
ws} forms a metric basis for Qs, 2.

Assume that the result is true for all enhanced hypercubes Qy, 2, k < n.
Then there are 2k — 5 vertices in Q — 1, 2 inducing a path P _ 5 whose
alternate vertices form a metric basis for Q, 2.

10
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Figure 6: Qs, 2 with M = {w, ws, ws}

Consider @ + 1, 2. As mentioned earlier there are four copies of Q% — 1, 2
denoted as A, A, A%, A, with AU A} and AU A% isomorphic to Qi 2. By
induction hypothesis, there exists a path P — 5 = wywy ... Wak — 6W2k — 5
in A whose alternate vertices forms a metric basis for AU A} and AU A2.
Let wyi — 4 € A? be the image of wp — 5 € A.

Consider the path Py _ 5 o (war — 5, W2 — 4) © (war — 4, w2k — 3) where
Wpk — 3 IS any vertex in A% adjacent to wak — 4. The graph Qg, 2 shown in
Figure 7 exhibits Py, _ 5 with & = 6. Let us denote this path as Py _ 3.
We claim that the set M of all the alternate vertices of P — 3 beginning
with the first vertex forms a metric basis for Qy . 1, 2. Equivalently, given
any two vertices z, y in Qx + 1, 2 we need to find a vertex w € M such that
d(z,w) # d(y,w). Since 2k — 3 is odd, we observe that both ends of Py — 3
arc in M.

Since alternate vertices in P — 5, beginning with the first vertex in
Py, _ 5, already forms a metric basis for AU A} as well as AU A3, it is enough
to consider the two cases namely (z,y) € A] x A% and (z,y) € A2 x Aa.

Case 1: Suppose x € Al, y € A%2. Let z' € A and y' € A be the
preimages of z and y respectively. Then d(z',z) = 1 = d(y",y).

Subcase {x' # y'}: Since z', 3’ € A, there exists w € Pp; — 5 such
that d(z',w) # d(y',w). Then by Lemma 1, 1 + d(z',w) # 1 + d(y*,w) or
d(z, w) # d(y, w).

Subcase {x' = y'}: By Lemma 2, z, y are equidistant from every
vertex of A. Since the path Py _ s lies in A, z and y are equidistant
from every vertex of P _ 5. Now consider the path Py 3 = P50
(war — 5, w2k _ 4) o (war — 4, w2k — 3). We show that z and y are at unequal
distances from wy — 3. Let d(z, w2 — 3) = s and let T denote the corre-
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Figure 7: Qg, 2 with M = {wn, w3, ws, wy} (only a few hypercube edges in
Qe, 2 are shown)

sponding (z, way, — 3)-path. Assume that T = Po(a,b)oQo(c,c') o R where
P is a shortest (z,a)-path in A], a € A], b € A; is the image of a, Q is
a shortest (b,c)-path in Aj, ¢ € Az, ¢' € A is the image of c and R is a
shortest (c', wyy _ 3)-path.

Let P! be the image of P in A, Q" be the image of Q in A3. Then
(z,2") o P o (a',b") o Q" o R is also a shortest (z,wz — 3)-path and hence is
of length s. Now P'o (a',b") 0 Q" o R is a shortest (z', wz; _ 3)-path and is
of length s — 1. Let P? be the image of P lying in A2. Then P20 Q"o R is
a shortest (y,wz, — 3)-path whose length s — 2. Hence d(y, war — 3) = s — 2.
Consequently d(z, wzi — 3) # d(y, war, — 3). See Figure 8.

Case 2: The case z, y € A; is easy, because the preimages of z and y
namely z' and y* respectively will satisfy one of the following conditions:

(i) 2,y € A].
(ii) =,y € A3.
(iii) 2" € A}, ' € A? or vice versa.
The proof then follows by Case 1 and the discussion preceeding it. &
The number of alternate vertices of P, — 5 beginning with the first is
n — 2. Hence

Theorem 4 B(Q,, 2) <n-—2,forn>5 n

Remark 1 8(Q,, 2) = 3, when n = 3,4.

12



Figure 8: Case z' = '

4.1 Folded Hypercube Networks

The Folded hypercube @, 1 proposed by El-Amawy and Latifi [3] is (n + 1)-
regular, has 2™ vertices, (n + 1)2"~" edges; Q,, 1 has diameter [n/2] and
connectivity n + 1. The graph shown in Figure 9 is a 3-dimensional folded
hypercube Q3, 1, where the complementary edges are (000, 111), (001, 110),
(010, 101) and (011, 110). Folded hypercubes are nothing but enhanced
hypercubes Qy, 1.

101

Figure 9: A 3-dimensional folded hypercube Q3 1

Conjecture 5 B8(Q,, 1) <n+3forn>2 &

13



5 Conclusion

We have obtained an upper bound for minimum metric dimension of cnhanced
hypercubes @, 2. The problem for folded hypercube @, 2 and enhanced
hypercubes @y, i, 3 £ k <n — 1 is under investigation.
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