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Abstract

The purpose of this paper is to construct the membership func-
tions of performance measures in bulk arrival queuing system with
arrival rate and service rate are fuzzy numbers. Thus this paper
develop the parametric programming approach to derive the mem-
bership functions of the stecady state performance measures in bulk
arrival queuing system with varying batch size. On the basis of a cut
representation and extension principle, a parametric programming
is formulated to describe the family of crisp bulk arrival queues.
The performance measures are expressed by membership functions
rather by crisp values, they completely conserve the fuzziness of in-
put information when some data of bulk arrival queuing systems are
ambiguous.
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1 Introduction

Bulk arrival queuing models have been widely applied to many practical sit-
uations such as production manufacturing system, communication systems
and computer networks. For example, when the operation in a produc-
tion, manufacturing system will not begin until a specified number of new
materials are accumulated during an ideal period. We often analyse this
system by a bulk arrival queuing model [4] that provides a powerful tool
for evaluating the system performance.
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In actual practice, the arrival rate, service rate are frequently described
as “fast”, “slow” or “moderately slow” and so on, which are linguistic fuzzy
terms and can be best described by using fuzzy sets.

The problem of fuzzy queues has been analysed by Prade [9] and Li
and Lee [6, 7] through the use of extension principle. Buckley [1] considers
a elementary queuing system with multiple parallel server with finite or
infinite system capacity and calling source, whose arrivals and departure are
restricted by arbitrary possibility distribution. Negi and Lee [8] proposed
two types of approaches namely a-cut and analytical representation of fuzzy
numbers.

In this paper, we adopt the c-cut approach to decompose a fuzzy queue
to a family of crisp queue. As the « value varies, the parametric program-
ming technique [3] is applied to describe the family of crisp queues. The
solution of the parametric programs is to derive the membership function
of the usual crisp bulk arrival queue can be extended to fuzzy bulk arrival
queue, bulk arrival queuing model would have wider application.

2 Fuzzy Numbers

Trapezoidal fuzzy number is used to represent the more fuzziness trape-
zoidal numbers [6] are an ideal compromise between complexity and over
simplification.

2.1 Trapezoidal Fuzzy Numbers

A trapezoidal fuzzy number A = (a3, a2, a3, a4) is defined by the member-
ship function.

(z —a1)/(aa —a1), ifay <z <a

o)L ifas <z < aj
Haw = (z —aq)/(az —aq), ifaz<z<ay
0, Otherwise

This is represented diagrammatically as:

()

ay Qg a3 a4 T
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2.2 Notations Used

L;: Expected numbers of customers in the system.
L,: Expected number of customers in the queue.

W,:  Expected waiting time in system.
W,: Expected waiting time in queue.
X:  Fuzzy Arrival rate.
i:  Fuzzy service rate.
E(K): Expected batch size of arrival.

Bi,z: Membership function of Lq(2).
Bi(y): Membership function of Iz(z).
Mg(z): Membership function of Ws(z2).
B () Membership function of W(z).

3 Fuzzy Bulk Arrival Queues with Varying
Batch Size

Consider a queuing system in which customers arrive at a single server
facility in batches as a Poisson process with group arrival rate A, where
A is a fuzzy number and all service times are independent and identically
distributed according to exponential distribution with fuzzy service rate
ji. The actual number of customers in any arriving module is stochasti-
cally equivalent to a generic random variable k, which may take on any
positive integer with probability f(k). Customers are served according to
a first-come-first served discipline and both the size of calling population
and the system capacity is infinite. This model with hereafter denoted by
FMIK] /FM/1.

3.1 Problem Formulation

Consider a bulk arrival queuing system with one server. The inter arrival
time and service time are approximately known and represented by fuzzy
set,

:\ = {x,ﬂj\(x)/l' € X} /1 = {ys/-‘ﬁ(y)/y € Y}

where X and Y are crisp sets of the inter arrival times and service times
and 5 (z) and p5(y) are the respective membership functions.
The a-cut of A and f are

Aa) = {z € X; p5(2) 2 o} pla) = {y € Y; pa(e) 2 o}
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Both A(a) and p(c) are crisp sets. Hence a fuzzy queue can be reduced to
a family of crisp with different « levels cut

{Ma): 0 <1} and {p{e):0< <1}

These two sets represent sets of movable boundaries and they form nested
for expressing the relationship between the crisp sets and fuzzy sets. Let the
confidence intervals of the fuzzy sets A and  are (Iy(4), u,\(a)) and (,(q),
U,(a)) Yespectively. When both inter arrival time and service time are fuzzy
numbers based on Zadeh'’s extension principle [11] the membership function
of the performance measure p(z,y) is defined as,

Sup
/1~(Z) =1 i 3 i zZ=plz
pOuE) = yg ;({ min (ux(x),up(y))/ p( ,y)}

The corresponding paramectric programming techniques for finding the lower

bound and upper bound of the a-cut of ?)E L)L)

lp(ay = minp(z,y) such that Iy, < z < up(a), Lie) ¥ < tpq) and
Up(a) = Maxp(z,y) such that Iya) < T < Uy and Loy <Y < Uy(a)-

If both lpqy and up(a) are invertible with respect to «, then the left shape
function L(z) = lp( y and right shape function R(z) = u_ ( y can be ob-

tained, from which the membership function ;(1:\(z}l) is constructed.
L(z), z1 <2< 2
“~(z) = 20< 2< 23
p(A, 1) P

R(2), z3<z< 2

where 2) < 20 < 23 < 24 and L(z) = R(z) =0

3.2 (FMX /FM/1):(co/FCFS) Queues

From the knowledge of traditional queuing theory [2, 5, 10] under the steady

zE(K)

state condition p = < 1 where E(K) denote the expectation of K,

the expected number of customers in the queue of a crisp queuing system
with bulk arrival is

_ 2lyE(K?) + 22(E(K))® - yE(K)]
“ 2yly — zE(K))
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and the expected number of customers in the system is

1 = ZEEK) + B(K?)]
2[y - zE(K)]

The expected waiting time in the queue is

. = VEW?) + 22(B(K))® - yE(K)
! 2yly - wE(K)) '

The waiting time of the system is

_ 2{B(K) + B(K?)]
We= - 2B

4 Numerical Example

Consider a local postal route in a central mail handling system. Postal
workers collect mail from mailboxes with fixed pick-up times and delivers
the mail to the local post office. The workers at the local post office collect
mail up to a certain point and then send batches to the central mailing
handling office. The number of parcels send each time follows a geometric
distribution with parameter p = 0.5. That is the probability that A parcels
are sent is P(A = K) = 05K, K = 1, 2, .... The mails are arriving
to the postal office with Poisson process and the service time follows an
exponential distribution. Both the group arrival rate and service rate are
trapezoidal numbers represented by A = [3,4,5,6] and i = [19, 20, 21, 22].

The postal system officer wants to evaluate the performance measures
such as the expected number of mails in the queue. We have E(K) = 2,
Var(K) = 2 and Var(K) = E(K?) ~ [E(K))?; E(K?) = VarK + [E(K))? =
6. a-cut of and are [3 + @, 6 — o] and [19 + &, 22 — a] respectively.

_ zE(K) L 2WBE?) + 2 BE))? - yE()]
Ty T 2yly — zB(K))

when z reaches its lower bound and y reaches its upper bound, L,(a)
attains its minimum.

;o 20°+062a+168
La ™ 302 — 82a + 352

The inverse function of [, exists.

_ 20%+62a+ 168
" 302 - 82a + 352
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(412 +31) £ 25v22 + 6z + 1

3z—2
v = max [4:::2 + 2zy
L, = y?. — 22y

On the contrary, to maximize L,(«) it is desired that z increases to its
upper bound and y decreases to its lower bound

202 — T4e + 372

U = 3% 1 6do + 133

uy, is also invertible.

g(a)
_ 20% — T4a + 372

£ 302 T 6da + 133
o (322437 + V62527 4 37502 + 625 _

1
3z-2
The membership function of f,q(z) is
(412431)—25(2%+62+1)/2 21 232
T v Sz 453
Bi = 1, 'g—:'% <zg g
—(322+437)+25(z2+62+1)1/2 3 372
3z-2 s 55251453
1 — B + B(?)
20y — 22}
Similarly,
16:-12 3 16
32140 152513
Bigy =41 %QSZS2
24-4z 24
She 25z %
_ E(K)+ E(K?)
T 2y - 2qx)
. 4 4
lws (@) = min [y - 2:1:} ~ 16 - 3a
4
uws(n) = max Ll/ _ 217]
162=4 1 4
;: > 4 Sz< 13
l"’VVs(z)'= L, _14_3325 %
4--7z 2 4
3 5S2S3
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. — YBUK?) + 2a(B(K)? - yB(K)
=

2yly — zE(K))
2y +4x

lw. = min [-——]

Wq y2 - 2zy
(41z+1)— (62522 +250z+1)1/2 7 58
3 v @ SZSam
i, () = { 1, 2 , SIS
—(32241)+(6252°+2502+1)! 3 62
3z v 10525183

5 Conclusion

This paper applies the concept of a-cuts and Zadeh extension principle to a
batch arrival queuing model with single server to construct the membership
function of the expected waiting time in the queue, expected number of
customers in the system and expccted length of time in the queue and
systems using parametric programming. From Table 1, maximum length
of the system is 3.4286. From Table 2, the maximum length of the queue
is 2.7970. From Table 3, waiting time of the system ranges from 0.2500 to
0.5714. From Table 4, the waiting time of the queue ranges from 0.1591 to
0.4662. Following the proposed a-cut of the membership function are found
and their interval limits inverted to attain explicit closed form expression
for the system characteristic. Since the performance measures are expressed
by the membership function rather than by a crisp value, it maintains the
fuzziness of input information and the results can be used to represent the
fuzzy system more accurately.
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A Appendix

‘Table 1:

O | o) | Uswy | by Uya) | () | %o
0.0 | 3.0000 | 6.0000 | 19.0000 | 22.0000 | 0.6875 | 3.4286
0.1 | 3.1000 | 5.9000 | 19.1000 | 21.9000 | 0.7261 | 3.2329
0.2 | 3.2000 | 5.8000 | 19.2000 | 21.8000 | 0.7662 | 3.0526
0.3 | 3.3000 | 5.7000 | 19.3000 | 21.7000 | 0.8079 | 2.8861
0.4 | 3.4000 | 5.6000 | 19.4000 | 21.6000 | 0.8514 | 2.7317
0.5 | 3.5000 | 5.5000 | 19.5000 | 21.5000 | 0.8966 | 2.5882
0.6 | 3.6000 | 5.4000 | 19.6000 | 21.4000 | 0.9437 | 2.4515
0.7 | 3.7000 | 5.3000 | 19.7000 | 21.3000 | 0.9928 | 2.3207
0.8 | 3.8000 | 5.2000 | 19.8000 | 21.2000 | 1.0441 | 2.2128
0.9 | 3.9000 | 5.1000 | 19.9000 | 21.1000 | 1.0977 | 2.1031
1.0 | 4.0000 | 5.06000 | 20.0000 | 21.0000 | 1.1538 | 2.0000
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Table 2:

la(e

Uz (a)

by(a)

Uy(a)

by

UL,(a)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

3.0000
3.1000
3.2000
3.3000
3.4000
3.5000
3.6000
3.7000
3.8000
3.9000
4.0000

6.0000
5.9000
5.8000
5.7000
5.6000
5.5000
5.4000
5.3000
5.2000
5.1000
5.0000

19.0000
19.1000
19.2000
19.3000
19.4000
19.5000
19.6000
19.7000
19.8000
19.9000
20.0000

22.0000
21.9000
21.8000
21.7000
21.6000
21.5000
21.4000
21.3000
21.2000
21.1000
21.0000

0.4773
0.5067
0.5376
0.5700
0.6041
0.6399
0.6776
0.7173
0.7592
0.8033
0.8498

2.7970
2.6151
2.4485
2.2954
2.1544
2.0241
1.9035
1.7916
1.6875
1.5905
1.5000

Table 3:

lx(a)

Uz (a)

ly(a)

Uy(a)

lw, ()

UW, (a)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

3.0000
3.1000
3.2000
3.3000
3.4000
3.5000
3.6000
3.7000
3.8000
3.9000
4.0000

6.0000
5.9000
5.8000
5.7000
5.6000
5.5000
5.4000
5.3000
5.2000
5.1000
5.0000

19.0000
19.1000
19.2000
19.3000
19.4000
19.5000
19.6000
19.7000
19.8000
19.9000
20.0000

22.0000
21.9000
21.8000
21.7000
21.6000
21.5000
21.4000
21.3000
21.2000
21.1000
21.0000

0.2500
0.2548
0.2597
0.2649
0.2703
0.2759
0.2817
0.2878
0.2941
0.3008
0.3077

0.5714
0.5479
0.5263
0.5063
0.4878
0.4706
0.4545
0.4396
0.4255
0.4124
0.4000

Table 4:

la(a)

Up(a)

ly(a)

Uy(a)

lW(cx)

’uw(a)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

3.0000
3.1000
3.2000
3.3000
3.4000
3.5000
3.6000
3.7000
3.8000
3.9000
4.0000

6.0000
5.9000
5.8000
5.7000
5.6000
5.5000
5.4000
5.3000
5.2000
5.1600
5.0000

19.0000
19.1000
19.2000
19.3000
19.4600
19.5000
19.6000
19.7000
19.8000
19.9000
20.0000

22.0000
21.9000
21.8000
21.7000
21.6000
21.5000
21.4000
21.3000
21.2000
21.1000
21.0000

0.1591
0.1635
0.1680
0.1727
0.1777
0.1828
0.1882
0.1939
0.1998
0.2060
0.2125

0.4662
0.4432
0.4221
0.4027
0.3847
0.3680
0.3525
0.3380
0.3245
0.3119
0.3000
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0.2 Membership function -

of L(z)
o L1 L 1 1 1
1 1.5 2 25 3
L(z)
1.2 | | |
1 -

0.8
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04

Membership function

0.2 of W,(z)
0 ] L |
0.3 0.4 0.5
Wo(z)

"

1.2

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

Membership function

of Lq(z)
1 {

1 1.5
Lq(z)

2

2.5

of W(z)
|

Membership function

0.2

0.3
W(z)

04

Membership function of characteristics of bulk arrival queue system
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