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Abstract

A well-designed interconnection network makes efficient use of scarce commu-
nication resources and is used in systems ranging from large supercomputers to
small embedded systems on a chip. This paper deals with certain measures of vul-
nerability in interconnection networks. Let G be a non-complete connected graph
and for S C V (G) let w (G — S) and m (G — S) denote the number of compo-
nents and the order of the largest component in G — S respectively. The vertex-
integrity of G is defined as I(G) = min{|S|+m(G—-9) : S C V(G)}. Aset S'is
called an I-set of G if I(G) = |S|+m(G —S).The rupture degree of G is defined
by 7(G) = max{w (G - 8) —|S| —-m(G-S5): SC V(G),w(G—-S) >2}.A
set is called an R-set of G if 7(G) = w (G — 5) —|S| — m(G — S).In this paper,
we compute the rupture degree of complete binary trees, and a class of meshes.
We also study the relationship between an I-set and an R-set and find an upper
bound for the rupture degree of Hamiltonian graphs.

Keywords: vertex — toughness, rupture degree, binary trees, minimum ver-
tex cover, network vulnerability.

1 Introduction

Interconnection network plays a central role in determining the overall per-
formance of a multicomputer system. They are used in systems ranging
from large supercomputers to small embedded systems-on-a-chip (SoC) The
knowledge and the ability to maintain a certain level of sustainable com-
putational power is very important in the design of such networks. Thus
the study of system reliability in general and network reliability in partic-
ular is critical to achieving performance goals. Among the relevant issue of
importance we are particularly interested in one of vulnerabilities.

In an analysis of the vulnerability of a communication network to dis-
ruption, two qualities that come to mind are the number of elements that
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are not functioning and the size of the largest remaining sub-network within
which mutual communication can still occur. In particular, in an adversar-
ial relationship, it would be desirable for an opponent’s network to be such
that the two qualities can be made to be simultaneously small.

Thus, communication networks must be constructed to be as stable
as possible, not only with respect to the initial disruption, but also with
respect to the possible reconstruction of the network. Many graph theo-
retical parameters have been used in the past to describe the stability of
communication networks. Most notably, the vertex-connectivity and the
edge-connectivity have been frequently used. The difficulty with these pa-
rameters is that they do not take into account what remains after the graph
is disconnected.

Consequently, a number of other parameters have been introduced in an
attempt to overcome this difficulty, including toughness and edge-toughness
(6], integrity and edge-integrity (2], tenacity and edge-tenacity [9]. Unlike
the connectivity measures, each of these parameters shows not only the
difficulty to break down the network but also the damage that has been
caused.

Let G be a finite simple graph with vertex set V(G) and edge set E(G).
For S C V(G), let w (G — S) and m (G — S) respectively, denote the number
of components and the order of a largest component in G — S. A set
S C V(G) is a cut set of G, if either G — S is disconnected or G — S has
only one vertex. The Vertex-Connectivity x(G) of a non-complete graph
G is defined as min {|S] : S C V(G) is a cutset of G}.The vertex toughness
7(G) of a non-complete graph G is defined as

Ya S %
min w_('EII—_S) : 8 C V(G) is a cutset of G
Toughness of a complete graph is defined to be oo.

For a subset S of V(G), let I(G,S) = |S| + m(G — S). Then the
vertex-integrity I(G) of G is defined as I(G) = min{I(G, S)} where the
minimum is taken over all subsets S of V(G) A set S C V(G) is called an
I—s¢t if I(G) = I{G, S). The Vertex-Tenacity T(G) of G [9] is defined as
min %—_-TS) where the minimum is taken over all cutsets S of G.

For any cutset S of G, let 7,(G) = {w (G- 8) - |S|-m(G—-9):S5C
V(G),w (G — 8) > 2}. Then the rupture degree r(G) of a non-complete
connected graph G is defined by r7(G) = max {r;(G) }where the maximum
is taken over all the cutsets S of G. In particular, the rupture degree of a
complete graph XK, is defined to be 1 —-n.

182



2 An Overview of the Paper

In the integrity model, the basic assumption is that some intelligent enemy
is trying to disrupt the network by destroying its elements. The cost on his
part is measured by the number of elements he would destroy, and his suc-
cess in incapacitating the network is measured by the order (i.e. number of
nodes) of the largest connected component in the remaining network. The
enemy of course wants both to be small. Therefore, the minimum attain-
able sum of these two quantities is considered as a measure of vulnerability
of the network. In [2] Barefoot et al proved that thegntegrity of - the com-
pl(gte graph K, is p; the star K , is 2; the cycle Cp is 2,/p —1; the path Pp
is 24/p+1 —2 and the complete bipartite graph K, , is [1 + min{m,n}].
Clark et al [10] proved that the determination of the integrity of a graph
is NP-complete.

The concept of rupture degree was first introduced in [12], and the rup-
ture degrees of several classes of graphs were determined including certain
join graphs. The rupture degree can be regarded as the additive dual of
vertex-tenacity. It is proved that the rupture degree is a better parameter
of vulnerability than the vertex - tenacity [12]. Computing the rupture
degree of a graph is NP-complete in general [11]. Hence, it becomes an in-
teresting question to calculate the rupture degrees for some special classes
of interesting or practically useful graphs.

In this paper, we compute the rupture degree of binary trees and a
class of meshes. We also obtain an upper bound for the rupture degree of
Hamiltonian graphs. o

3 Rupture degree of some graphs

In the following theorem, we obtain an upper bound for the rupture degree
of Hamiltonian graphs.

Theorem 1 If G is Hamiltonian then 7(G) < -1

Proof. If G is a Hamiltonian graph then, w (G — S) < |S]| for any cutset S
of G[3]. Also m(G—8) > 1for any S. Hence, w (G — S)—|S|-m(G-S5) <
—1for any cutset Sof G. m

The following theorem explores the conditions when an integrity set of
G becomes a rupture set.

Theorem 2 Let S C V(G) be the minimum vertex cover of a simple con-
nected graph G of n vertices such that |S| =7. If Sisan I - set, then it
is also an R-set and 7(G) = n—2r —1.

Proof. Since S is a minimum vertex cover of G, m(G-5) = 1, w (G - S) =
n—r. Hence, w (G — S)—|S|-m(G—-S) = n—2r—1. Now, let S be any other
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cutset of G. Then, w(G— 8) <n—r. Also, |§|+m(G— S‘)>|S|+m(G S).
Hence, w(G — 8) — S| - m(G-8) <w(G - S) - S| —m(G—-5). m

The following two theorems gives the conditions which facilitates the
computation of the rupture degree of a supergraph when the rupture degree
of a subgraph is known. Using these two theorems, we compute the rupture
degree of a class of mesh and binary trees in the following two sub-sections.

Theorem 3 Let G = (V,E) be a graph and S be an R-set of G. Let
S* = {v1,v2,v3,...vn} be a set of independent vertices and G = [V U S*]. If
N(8*) C S, then S is an R-set of G and &) = r4(G) + n.

Proof. Let § be any other cutset of G. We have the following three cases.

Case 1. $* * S and N(S*)c §

S is also a cutset of G and since N(§*) s, w(G S) = w(G - S) +n
and m(G - §) > m(G S).Hence, rS(G) =w(G-8) -S| -m(G-8) <
w(G—8) +n— |5 -m(G - 8) = r3(G) + n < 7,(G) + n = r,(G).

Case 2. $* * § and N(S*) * S.

$ is also a cutset of G and since N(S*) * §, w(G—-38) < w(G—8) +n,
and m(G — ) > m(G — §).Hence, rg(é) =w(@G-8) - |58 -m(G-9) <
w(G-8)+n- |.§'| -m(G-5) = 75(G) +n < 7y(G) +n = rs(G).

Case 3. S*C § ) o o

Then §** = §—S* is acutset for G.r5(G) = w(G—-S)—|S|-m(G-9) =
w(G —8**) — (I8**| + n) —m(G — §**) = 151 (G) —n < 75(G). m

Theorem 4 Let G = (V, E) be a graph with S as the R-set of G/v where
v € V. Suppose N(v) C G~ S, then §* = SU{v} is an R-set of G and
r(G) =r(G-v) - 1.
Proof. Let G = G — v and S be any other cutset of G. We claim that
T4+(G) > 75(G). We consider the following two cases.

Case 1. ve S

let $=8— {v}.Then S is a cutset for G..

rS(G) = w(G-8)-|5|-m(G-38) < w(G—S)+n—(|S|+1)-m(G=S) =
’I‘S(G) -1< 'rq(G) -1 = r.(G).

Case 2. v¢ S

S is a cutset for G. Since S is the only rupture set of G, rs(G) <
rs(G) = 75.(G) + 1.Hence, r.(G) > r3(G). m

3.1 Mesh

Let P, be a path on n vertices. Then an m x n mesh is defined to be
P,, x P, denoted by M,,,xn-

Theorem 5 The rupture degree of M,,x, is either 0 or —1
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a b c

Figure 1: a. Myxa b. Myxs c. M3zx3

Proof. We consider two cases.

Case 1. At least one of m,n is even. Without loss of gencrality, let
m be even. Consider a Hamiltonian cycle in M,,x,beginning and ending
with vertex u in the first row, first column position of M,, . Let S be the
set of alternate vertices on this Hamiltonian cycle beginning from a vertex
adjacent to u (see Figure 1). This is possible since the Hamiltonian cycle
is even. This set S has n/2 vertices and (M, xn, S) = —1. By theorem 1.
(M, %) = =1, when m is even.

Case 2. Now, consider M,,,x,, where both n, m are odd (see Figurel).
By removing one corner-most vertex v (blocked by a square) the graph
becomes Hamiltonian. As in Case 1, the set S of vertices shaded in black
is an R-set of (My,xn — v) and r(M,,xn — v) = —1. We observe that
N(v) C S and hence by using theorem 3 with the case n = 1,7 (Mpxn) =
" Mpsn —0)+1=0. =

So far, the rupture degree has been defined only for connected graphs.
Now we extend the concept of a rupture set to disconnected graphs. If G
is a disconnected graph with Hy Hp H3. H, as its components then, we
define the rupture set of G as the union of the rupture sets of Hy Hy Hj
H,,. We now define the rupture degree of a disconnected graph.

Definition 1 Let G be a disconnected graph with Hy Hs H; . H, as its
components. If S7,5;,53... Sp are the rupture sets of Hy Hp H3... H, re-
spectively, then the rupture degree of G is defined as 7(G) = {w(H1 - $1) +
w(Hz — S2) + w(Hz — 83) + ..w(Hy — 8n) — (|S1] + |S2| + |S3| + .| Sa]) —
max{m(H — $1),m(Hz — S2), m(H3 — S3),...m(H, — Sn) }}

3.2 Complete Binary Tree

A complete binary tree of height A has 2**' — 1 vertices and 2"+ — 2
edges.Let the root be at level 0 and S; be the set of vertices of a complete
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binary tree at any one level say, t. Then S, is an independent set and |St|=
2t.

Theorem 6 Let G be a complete binary tree of height i, Then

(
2h¢1 4 R .
(G) = 2’”31 ) if hisodd
=== if hiseven

Proof. One can easily verify that the rupture degree of the complete binary
tree of height 1 is 0 and the rupture set is the root vertex at level zero.
Similarly the rupture degree of the complete binary tree of height 2 is 2 and
the rupture set is the set of vertices at level one. Now consider the binary
tree of height 3 say B3. The removal of its root vertex say, {v}disconnects
the graph into two binary trees say, B, and By whose rupture sets are the
level one vertices. The root vertex of Bj is adjacent to the roots of B, and
By and hence by using theorem 4, the rupture set of Bj is the set of level
2 vertices U{v} and r(Bj3) = 4.

By a similar argument and using theorem 3 with the case n = 1, we
find that the rupture degree of By to be 10. Thus by using theorem 3 and 4
alternatively, we find that the rupture set of a binary tree of height h to be
Sh-1USp-3USr_5U....53U8 if hiseven and Sp_q UShp-3USK_sU....52USp
ifhisodd. m

4 Conclusion

The rupture degree of a graph , to some extent, represents a trade-off be-
tween the amount of work done to damage the network and how badly the
network is damaged. Hence, the rupture degree can be used to measure
the vulnerability of networks. So clearly, it is of prime importance to deter-
mine this parameter for a graph. In this paper, we have obtained the upper
bound for the rupture degree of Hamiltonian graphs to be -1 and the rup-
ture degree of a class of mesh and binary trees. To make further progress
in this direction, one could try to characterize the hamiltonian graphs with
rupture degree -1. Also, determining the rupture degree of graphs like the
butterfly, pyramid, prism, hybrid networks is under consideration. o
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