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This paper is mainly devoted to generate (special)
(super) edge-magic labelings of graphs using matrices. Matrices are
used in order to find lower bounds for the number of non-isomorphic
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(special)(super) edge-magic labelings of certain types of graphs. Also
new applications of graph labelings are discussed.

1 Introduction

Graphs considered in this paper are not necessarily simple, that is to say,
we may allow loops, however, in this paper we will not consider graphs with
multiple edges. Also for most of the graph theory terminology and notation
utilized here, the authors refer the reader to Chartrand and Lesniak [9].
However, in order to make the paper reasonable self contained, we mention
that for a graph G we denote the vertex set and the edge set of G by V(G)
and E(QG) respectively. If |V(G)| = p and |E(G)| = q we say that G is a
(p, q)—graph. By the notation G = (V, E) we mean a graph G with vertex
set V and with edge set E. Also for a digraph D, we denote by V(D) and
E(D) the sets of vertices and arcs of D respectively. By D = (V, E) we
mean a digraph D with vertex set V' and arc set F.

The seminal paper in edge-magic labelings was published in 1970 by Kotzig
and Rosa [19] who called these labelings magic valuations. These were later
rediscovered by Ringel and Lladé [24] who coined one of the now popular
terms: edge-magic (EM) labeligns. More recently, they have been refereed
to, as EM total labelings by Wallis (26]. For a (p,q)—graph G = (V, E),
a bijective function f: VUE —— {1,2,...,p -+ ¢} is an EM labeling of
G if f(u) + f(uv) + f(v) is a constant val; (called the valence of f) for
any edge uv € E. A graph that admits such a labeling is an EM graph.
Also, we take the opportunity at this point to introduce the concept of EM
digraph, which will be of help in order to achieve the goals pertained in
this paper. An EM digraph is a digraph for which its underlying graph
is EM. In [10], Enomoto, Lladé and Ringel defined an EM labeling f of a
graph G to be super edge-magic (SEM) if it has the extra property that
fV(@) = {1,2,...,p}. Thus, a SEM graph is a graph that admits a
SEM labeling. Lately, SEM labelings and SEM graphs have been called
by Wallis {26] strongly EM total labelings and strongly EM total graphs,
respectively. In a similar way as we did in the case of EM labelings and EM
graphs, we define in this paper the concept of SEM digraph to be a digraph
for which its underlying graph is SEM. The next characterization found in
[11] has proven to be very useful and therefore we state it as Lemma 1.1.

Lemma 1.1 A (p,q)—graph G is SEM if and only if there exists a bijective
function f : V(G) — {1,2,...,p} such that the set S = {f(u) + f(v) :
wv € E(G)} consists of q consecutive integers. In such a case, f extends
to a SEM labeling of G with valence valy = p + q + s, where s = min(S)
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and S = {valy - (p+1)}1_,.

Therefore, it is clear that due to Lemma 1.1, it is suffices to exhibit the
vertex labeling in order to identify a SEM graph.

Next, let us define what in this paper we mean by the adjacency matrix of
a digraph D, namely A(D), with V(D) = {a; < a2 <--- < ap} C N. The
rows and columns of the matrix are labeled as shown in Figure 1.

ap

az

a1

ay as ay

Figure 1: ‘Adjacency matrix

By the position (i, j) we mean the position with row labeled with @; and
column labeled with a;. The entry (¢,7) in A(D) is 1 if and only if the arc
(ai,aj) € E(D), and 0 otherwise. The main diagonals in our matrix are
the diagonals from top left to bottom right, as shown in Figure 2.

We note that if the longest no main diagonal in A(D) contains no 1’s, then
the digraph D contains no loops.

The following lemma is an immediate consequence of Lemma 1.1.

Lemma 1.2 A digraph D is SEM if and only if the adjacency matriz (d;;)
of D obtained by relabeling the vertices of D after the corresponding lubels
of a SEM labeling, has the following two properties:

Lodj=duy=1 = [(i,j)=(,7) ori+j#i+5)

2. The main diagonals i+3j = k of the adjacency matriz with some entry
different from 0 are consecutive.
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Figure 2: Main diagonals

The following definition will also prove to be useful for this paper.

Let G be a SEM (p, q)—graph, an let f be a SEM labeling of G. We define
the complementary labeling of f to be the function g(z) = p +1 — f(z) if
z € V(G). It is clear that g is also a SEM labeling.

In 2001, Muntaner [21] introduced a further restriction of SEM labelings,
that he called special super edge-magic labelings
(SSEM), which only makes scnse for bipartite graphs. A SSEM labeling of
a bipartite (p, g)-graph with bipartite sets V; and V, is a SEM labeling f
with the extra property that f(V}) = {1,2,...,|V4|}.

Notice that, as it happens in the case of SEM labelings, it is possible to
redefine SSEM labelings of bipartite graphs in such a way that only the
vertices of the graph are involved, and we do it next (See [21],[22] and

[286]).

Lemma 1.3 A bipartite (p,q)—graph G = (V,E) with bipartite sets V)
and Vo is SSEM if and only if there exists a bijective function f : V —
{1,2,...,p} such that the set f(V1) = {1,2,...,|Vi|} and the set {f(u) +
f(v) @ wv € E} consists of q consecutive integers.

SSEM labelings are of interest since there exists a close relationship among
them and a particular type of graceful labelings called c-labelings. These
two last concepts were first defined by Rosa in 1966 [24], in order to provide
a different approach to the problem of decomposing complete graphs into
isomorphic copies of a given tree. Since then, many papers dealing with
such labelings have appeared in the literature. We mention that Rosa
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called the graceful labelings f—valuations. The term ”graceful” was first
introduced by Golomb in [17] and broadly popularized by a paper of Martin
Gardner in 1972 [16).

Next we provide the necessary definitions and we establish the relationship
existing among a-labelings and SSEM labelings.

A function f is a graceful labeling of a graph G = (V, E) if f is a injection
from V to {0,1,...,|E|} such that when each edge uv is assigned the label
|f(u) — f(v)| then the resulting edge labels are distinct. If f has the extra
property that there exists an integer k£ such that for each edge uv either
flu) <k < f(v) or f(v) <k < f(u), then f is called either an a-valuation
or an a-labelings of G.

The way to convert SSEM labelings of trees into a-labelings and viceversa
is not hard and it is described either in [21] or [22]. However in order to
make the paper easy to read we will describe the procedure in the proof of
Lemma 1.4 .

Lemma 1.4 A tree T is SSEM if and only if T admits an a—labeling.

Proof.

Let V4 and V2 be the bipartite sets of T with |V}| = p; and V2| = ps.
Assume that the function f is an a—valuation of T such that f(u) < f(v)
Vu € Vi, v € V2. Then the new function g defined by the rule

_ [ pi—flu) ifueV
9(“)‘{fl(u)+1 ifu e v,

can be extended to a SSEM labeling of T".

Now, assume that g is a SSEM labeling of T. Then the new function f
defined by the rule

glu)—1 ifuelV,

is an a—labeling of T'. O

f(u)={ pl_g(u) ifueV;

It is important to notice that two different SSEM labelings are transformed
into two different a-valuation and viceversa, when using the transforma-
tions described previously.

Another labeling that will be considered in this paper, and that is similar
in nature to SEM labelings, was introduced by Acharya and Hegde in [2]
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under the name of (k,d)-arithmetic labelings. A graph G = (V,E) is
(k, d)-arithmetic if there is a bijective function f : V — D where D C N,
such that the set S = {f(u) + f(v) : wv € E(G)} forms an arithmetic
progression of | E| terms with first term k and difference d. Then, f is called
a (k,d)-arithmetic labeling. In this paper we define a (k,d)-arithmetic
digraph to be a digraph for which its underlying graph is (k, d)-arithmetic.

From Lemma 1.1 it is trivial to observe that every SEM graph is also (s, 1)-
arithmetic, where s is defined as in Lemma 1.1.

Operations among graphs and digraphs will also be considered in this paper.
We begin by defining the corona product, that was first introduced by
Harary and Frucht [14] in 1970.

Assume that G and H are two graphs. The corone product of G and H,
denoted by G @ H, is the graph with

V(GO H)=V(G)UV(G x H)

E(Go H)=E(G)u{(i,u)(i,v): i€ V(G),uve E(H)}U
u{i(i,u): i€ V(G),

u e V(H)}

In other words, the corona product of two graphs, G and H, where G has
order p, is obtained by taking one copy of G, p copies of H and joining each
vertex of a copy of H with a vertex of G. This is done for all the vertices
of G.

Next, we define what we mean by the Kronecker product of matrices. As-
sume that B is any matrix and A = (a;;) is an m xn matrix. The Kronecker
product of A and B, denoted by A® B, is the new matrix defined as follow:

anB amB e amB

ang aggB ves agnB
AR B = . .

amB anoB ... amnB

In [4], Barrientos defined the concept of path-like tree as follows: we em-
bed the path P, as a subgraph of the 2-dimensional grid. Given such an
cmbedding, we consider the ordered set of sub-paths L,,..., L, which are
maximal straight segments in the embedding, and such that the end of L;
is the beginning of L;y;. Suppose that L; = P, for some i and that some
vertex v of L;_; is at distance 1 in the grid to a vertex v of L;y;. An
elementary transformation of the path consists in replacing the edge L; by
a new edge uv. We say that a tree T of order n is a path-like tree, when it
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can be obtained from some embedding of P, in the grid by a sequence of
elementary transformations.

It has been shown that path-like trees admit several types of labelings. For
instance —labelings [4], and edge-antimagic total labelings [3]. In this
paper, we will also study the SEM properties of trees which are obtained
from path like-trees, using the corona product.

To conclude this introduction, we will state the following result that can
be found in [11]

Lemma 1.5 Let f be a SEM labeling of a (p,q)-graph G = (V,E). The
valence, valy, of f is given by the formula:

— Zwev(f(z)deg(x)) + ZyeE f(y) )
q

valy

In particular if p = q, that is to say if G is a 2-regular graph, by Lemma
1.5 we obtain:

Corollary 1.1 Let G = (V, E) be a 2-reqular graph of order p, then:

1. If G is SEM then p is odd.
2. If f is a SEM labeling of G then:

) val;:tr’i”,;"—3

o min{f(u) + f(v) : we B} = &2
o maz{f(u) + f(v) : we E} =L

The reader interested in an account on graph labelings results, is addressed
to [15] for a very detailed exposition of such results.

2 A new relation among labelings

SEM labelings are interesting, not only because of the beauty of the la-
belings themselves, but also because of the large number of relations that
have been found among SEM labelings and other types of labelings. Some
of such labelings have been deeply studied. This is the case, for instance,
of graceful and harmonious labelings. In fact, SEM labelings are one of the
most powerful links about labelings known by the authors. For a detailed
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account on these links the interested reader can consult [11]. In this sec-
tion we establish a new relation among SEM labelings and (k, d)-arithmetic
labelings, that we state next.

Proposition 2.1 Let G be a (p,q)-SEM graph. Then for every d € N,
there exists k € N such that G is (k, d)-arithmetic.

Proof.

Assume that the vertices of G arc named after the labels of some SEM
labelings of G. For a fix d we consider the labeling g of G with g(i) =
1+(i-1)d, i€ {1,...,p}. As {i+j : ij € E(G)} are consecutive numbers,
the numbers {g({) +g(j) : ij € B(G)} = {2+ (i+j - 2)d : ij € E(G)}
form an arithmetic progression with difference d. O

It is worthwhile mentioning that the converse of the above proposition is
not necessarily true. In fact many examples of graphs which are (k, d)-
arithmetic and are not SEM, are easy to find.

Figure 3 shows a SEM labeling of Cs, as well as (6,2), (8,3) and (10,4)-
arithmetic labelings of Cs.

1 1
| | | Q |
5 : 2 9 3
1 1
| Q N Q 13
13 1 17 5
Figure 3: (k,d)-arithmetic graphs
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3 A new digraph operation

In this section we define a new operation of digraphs that is in fact, in some
sense, a generalization of the well studied Kronecker product of matrices.
Also we will establish the relation of this product with (S)(S)EM graphs.
We will use such relation in order to find lower bounds for the number of
non-isomorphic labelings of certain families of graphs.

From now on, we will denote the underlying graph of a digraph D by
the notation und(D). Let D be a digraph and let I' = {F1,F3,...,F,}
be a family of digraphs such that V(¥;) = V for every ¢ € {1,...,n}.
Consider a function A : E(D) — T, then the product D ®, T’ is a digraph
with vertex set V(D) x V and ((a,b),(c,d)) € E(D ®,T) < (a,¢) €
E(D) A (b,d) € E(h(a,c)). The adjacency matrix of D®, T, A(D®,T) is
obtained by multiplying every 0 entry of A(D) by the |V| x |V| nul square
matrix and every 1 entry of A(D) by A(h(a,c)). Notice that when h is
constant, the matrix product that we have just defined coincides with the
classical Kronecker product of matrices.

From now on, let S, denote the set of all SEM 1-regular labeled digraphs
of odd order p where each vertex takes the name of the label that has
assigned.

Theorem 3.1 Let D be an EM digraph with valence valy and let h :
E(D) — S,, then the graph und(D ®n Sp) is EM.

Proof.

We rename the vertices of D and each element of S, after labels of their
corresponding EM and SEM labelings respectively. We define the following
labeling for the digraph D ®;, Sy:

1. If (3,7) € V(D ®n Sp) we label the vertex with label f(4,5) = p(s -
1)+ 7.

2. If (i,7) (¥',5') € Epwy.s, we label the arc with the label val; — [p(i +
i — 2) + j + j'] where

3p+1
val; = plvaly -—3]+-——§——+L

We want to show that the following items with respect to labels of D®j, Sp.-

A All vertex label are distinct.
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B All arc labels are distinct.
C No arc label and vertex label coincide.

D The maximum label used is p(|V (D)| + |E(D)|-

Next we prove:

Proof A If p(i — 1)+ j=p(¢’ — 1)+ 3 then 0 < p|i = ¢')| = |’ - 7| < p.
Therefore, j = j' and i = '.

Proof B If an arc ((4, ), (¢,7')) is labeled with the same labeled as the
arc ((’» D, (k',1')) then 0 < pl(i +#' — (k + &) = |(1+V) = (+3")| <
- % =p-1 (by corollary 1.1). Therefore we obtain that

(J,l) = (4,1) and (i, k) = (¢, K').

Proof C If the label of the arc {(%, ), (¢/, 7')) coincides with the label of the
vertex (k, ), then p(k—1)+l = Val ;—[p(i+i'—2)+j+j'] and therefore
we have that p(k+i+i —3)+l+j+5' = Val; = plvalys — 3]+ 2 G
Thatistosay,0§p|(valf—k—i—z')|—|l+]+] 2 1|<p
and valy = k+14 41/, contradiction since D is EM and (i,¢') € E(D).

Proof D Assume that M is the maximum label on the vertices of D. We
consider two cases:

o If M < |E(D)|+|V(D)!, then the maximum label of D appears
on an arc (¢,¢') for which 7 + 4’ is the maximum sum taken over
all arcs of D. Thus valy — (i +4') = [E(D)| +|V(D)|. Therefore
the maximum label of D @, S, is val; — [p(i + &' - 2) + 2] =
plV(D) — (i + 7)) = pllE(D)| + [V(D)I].

e Assume that M = |E(D)| + |V(D)|. Then the maximum label
on an arc of D ®;, Sy, is of the form p[V(D) — (i +#')]. That is
to say, the product of p a label or an arc of F, and therefore less
than p(|E(D){ + [V(D)]]. o

Similar results can be obtained for SEM and SSEM graphs as corollaries
of the previous result.
Corollary 3.1 Let D be o SEM digraph and let h : E(D) — S,. Then
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Proof.

From the proof of Theorem 3.1, it is clear that if the graph D is SEM
then the smallest labels will appear on the vertices of D ®p, Sy, under the
labeling f. ]

Corollary 3.2 Let D be a SSEM digraph and let h : E(D) — Sp. Then
D ®4 S, is SSEM.

Proof.

It is clear that the product D ®; S, preserves bipartiteness, provided that
D is itself bipartite. Also the labeling £, as defined in the proof of Theorem
3.1, preserves the special property if D admits a SSEM labeling. 0

Hence we have introduced a method that allows us to construct EM, SEM
and SSEM graphs. ‘The coming sections are mainly, although not exclu-
sively, devoted to apply this method to different families of graph. By doing
this, we will find lower bounds for the number of non-isomorphic labelings
of certain families of graphs.

4 The union of bipartite graphs

In [12] Figueroa et al. proved that if a (S)EM graph is either bipartite or
tripartite, then any odd disjoint union of copies of the graph is also a (S}EM
graph. In fact, the proof provided in [12] also applies for SSEM graphs.
However, in the paper it is not studied how many (S)(S)EM labelings of
such unions exist. In this section we will provide lower bounds for the
number of non-isomorphic (S)(S)EM labelings of such unions. We begin
by studying the case of trees.

Let )~ be the set of all 1-regular digraphs of order n. Consider a digraph
D e Y, and let ¢ € V(D), we denote by = +g(p) 1 the only vertex with
(z,y) € E(D).

Lemma 4.1 Let T be a rooted tree with root a € V(T). For each function
h: E(T) — Y, there ezist n labelings of T, namely lab(h);, i € {1,...,n}
such that:

1. lab(h)i(z) # lab(h);(x) if i # 5.
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2. If =zy € E(T) and d(a,x) < d(a,y) then
(lab(h)i(z), lab(h)i(y)) € h(zy) Vi.

3. For all z € V(T), Uilab(h);(z) = {1,...,n}.

4. If h # h then there exists i with lab(h); # lab(h); V3.

Proof.
Fix a function h : E(T) — ) ,,. For each i € {1,...,n} the labeling
lab(h); of T’ defined recursively as follow:

1. lab(h);(a) = 1.

2. Assume that we have labeled the vertices of T up to level k — 1, and
that z belongs to level k with amb yz € E(T), then lab(h);(2) =
la‘b(h)z(y) +Eh(y:) 1'

At this point we observe that each labeling lab(h); is characterized by
the label of vertex a. By construction, these labelings meet the two first
properties requested in the conclusions of the lemma.

Observe that we can take the vertex z as a root (this proves (3)). If
h # h then let (r,s) € E(h(z,y)) and (r,s) ¢ E(h(z,y)). Let i with
lab(h)i(z) = r. Then s = lab(h)i(y) # lab(h)i(y). Tf i # j then i =
lab(h);(a) # lab(h);(a) = 7. m]

Lemma 4.2 Lemma 4.1 is also true for acyclic graphs.

Proof.
Let {a1,...,a;} be the roots of I rooted trees. We consider the labelings
lab(h);, that have the following properties:

lab(h);(a;) =i V5 € {1,...,1} and the second item of the previous proof.0

Let I be any acyclic graph. We denote by F any digraph such that
und(F) = F.

Theor_?m 4.1 Let T be a tree Consider any function
h:E(T) —3,. Then, und(T ®,3_,) =nT

200



Proof.

Fix a function h : E(T) — Y, Also, for the sake of brevity, we will
use the notation T}, in order to denote the digraph T ®, Y Now let
us assume that (z,j) 5 is a vertex of nT if and only if € V(T) and
j € {1,...,n}. Also the edges of nT are of the form (@3 ) s W ) )
where (z,y) € E(T). Next denote by (z, 3)g,, where z € E(T) and
j € {1,...,n}, the vertices of the digraph T;, The arcs of ﬁ, are of the form
((z, lab(h);(x)) 1 (v, lab(h);(y)) 7, with (z,y) € E(T). Notice that the cor-
respondence (z,lab(h) ()7 «— (<, ), f isin fact an isomorphism among
the digraphs nT and Tj,. The correspondence is a bijection by previous
lemma and because of the fact that ((z,lab(h)i(z))z , (v, lab(h);(¥))7;,) €

E(T}) © (z,9) € B(T) and i = j <= ((2,1), (1)) € E(n(T)). =

We say that the set Uzev(r) (2, lab(h):(z)) is the i component of T®p Yo

In fact Theorem 4.1 can be generalized in the following way:

Theorem 4.2 Let F be an acyclic graph. Consider any function h :
E(F) —3_,. Then und(F ® Y_,) = nF.

Theorems 3.1 and 4.1 allow us to generate (S)(S)EM labelings of an odd
number of copies of a given (S)(S)EM tree T'. Given h: E(T) — 5, with
h(E(T)) C Sy, the label of the vertex (z, lab(h);(x)) is lab(h)(z, lab(h);(z))
n(x — 1) + lab(h);(z) (by Theorem 3.1). Assume that the root of the tree
that we take in Lemma 4.1 is labeled by 1. Then the labelings lab(h); satisfy
lab(h);(1) = j Vi and the label lab(h) satisfies
Vh lab(h)(1, lab(h;(1)) = 7.

Let G be a (S)(S)EM graph. We say that two labelings f; and f, are
isomorphic if there exists a G-automorphism, ¢, such that Vz,y € V(G)

¢(z) = y if and only if f1(z) = fa(y).

Lemma 4.3 Let T be any labeled iree, and let h, h: E(T) — S,. Using
the previous notation, lab(h) and lab(h) are isomorphic labelings of nT if
and only if lab(h) = lab(h).

Proof.
We see our tree as a rooted tree, and we let the root to be the vertex la-
beled by 1. We want to show that the automorphism g defined by the rule

g9((z, lab(h);(2))) = (y,lab(h)i(y)) if and only if lab(h)((z,lab(h);(z))) =
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lab(h)((y, lab(h)i(y))) is the identity function. The two labelings coin-
cide on the roots of the trees. We also assume that the labels coin-
cide on the vertices which are at distance at most £ — 1 from the root
of its component of the forest. Let (z,lab(h);(z)) be a vertex at dis-
tance k from the root of its component, and let (y,lab(h);(y)) be a ver-
tex with lab(h)(z,lab(h);(z)) = lab(h)(y,lab(h),(y). Since g is an au-
tomorphism, it follows that (z,lab(h);(z)), (y,lab(h)i(y)) belong to the
same component (j = l) and they are at the same distance from the
root. On the other hand since lab(h)(z, lab(h);(z)) € (n{z — 1),nz] and

lab(h)(y, lab(h);(y)) € (n(y — 1),ny] we have that z = y. a

Corollary 4.1 Lemma 4.3 is true if we replace the tree T by a forest with

components T,...,Ty, roots ai....,a; and we consider the labelings of
Lemma 4.2.

At this point we let §(n) = |S,|. For example, for n = 7 we have that
#(7) = 28. Table 1 shows all possible SEM labeled 2-regular digraphs of
order 7, where cach component has been oriented cyclically. There are 28
such digraphs;

CsuCiuCy 1-4-7-2-6U3U5 two orientations.

CsU(C, 1-6-3-2-4-7Ub5 two orientations.
CsUCy 1-4-6-5-2-7U3 two orientations.
CzuC3UC; 1-5-6U2-3-7U4 four orientations.
Cq 1-5-2-6-3-7-4 two orientations.
Cr 1 ~-6—-5-3-7-2-4 two orientations.
Cy —-7—3-6-5-2-4 two orientations.
C, -4-3-7-2-6-5 two orientations.
Cy ~7—-2-3-4-6-5 two orientations.
C- —-6—-4-7-2-3-5 two orientations.
Cq -6-2-3-7-41-5 two orientations.
Cq 1 -5-2-3-6-3-7 two orientations.
Cr 1-6—-5—-4-2-3-7T7 two orientations.

Table 1: Orientation for 1-regular digraphs

Then we obtain the following corollary:

Corollary 4.2 Let F be a (S)(S)EM acyclic graph of order m with p com-
ponents, and let n be an odd positive integer. Then the graph nF admits
at least [{(n)]"™~?) non-isomorphic (S)(S)EM labelings.
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Proof.
By Corollax)i 4.1 there exist at least as many (S)(S)EM labelings as func-
tions h : E(F) — S,. That is to say [i(n)](~P) functions. o

At this point we consider the case of an odd disjoint union of the complete
graph on two vertices.

Lemma 4.4 Two different (S)(S)EM labelings of mKs, result into two
non-isomorphic (S)(S)EM labelings of mKy ®p Sy, for any h.

Proof.

Let {e,E} and {e,E'} (1 < ¢,E,E' < 2n) two different labelings of the
one component Ky of mK3. When applying the product mK; ®p, Sy, the
first labeling generates n different copies of {e, E} with labels in the sets
{nle=1)+j : je{l,...,n}}and (R(E-1)+j : je€ {1,...,n}}
respectively. Also, the second labeling generates n different copies of {e, E'}
with labels in the sets {n(e—1)+7 : j€{1,...,n}} and {n(E' -1)+j :
j€{1,...,n}}. Therefore the labelings are non-isomorphic. ]

Let n be an odd positive integer and denote by N(n) the number of non-
isomorphic (S){S)EM labelings of the graph nK,. We observe that by
Corollary 4.2 N(n) > [f(n)]. Then we obtain the following result.

Theorem 4.3 Let m,n be two odd positive integers. Then the graph (nm)I,
admits at least maz {N (n)[i(m)]", N(m)[§(n)]™} non-isomorphic (S)(S)EM
labelings.

Proof.

For every (S)(S)EM labeling of mK> we know, by Corollary 4.2, that the
graph n(mK,) admits at least [{(n})]" non-isomorphic labelings. By Lemma
4.4 we also know that there are at least N(m)[i(n)]™ non-isomorphic la-
belings of n(mK3). Finally, we notice that if we interchange the role of n
and m we obtain the desired result. o

Corollary 4.3 Let | be an odd positive integer, and let the set B(l) =
{tm,n) € NxN : mn = 1}. Then the graph IK; admits at least
MAL (m mye () { N (R)[H(m)]"} non-isomorphic (S)(S)EM labelings
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We enumerate in Table 2 all 16 SSEM labelings of 9K, obtained by com-
bining all SSEM labelings of 3K, with all elements of S;.

Next, we turn our attention to the union of bipartite graphs in general.

Theorem 4.4 Let G = (V = V,UV,, E) be a bipartite graph with bipartite
sets Vi1 and Vo and let G be a digraph such that:

1. Und(@)=G.
2. If (u,v) € E(G) thenu e Vi, v € Va.

Also, for everyn € N, let h: E(G) — Y., be a function that assignes the
same element of 3. to each element of E(G). Then und(G ® Y. =nG.

Proof.

Denote by (z,j) with z € V(G) and j € {1,...,n} the vertices of nG
and (x,j)(y, j) € E(nG) if and only if zy € E(G) and consider the graph
und(G ®p, >-n)- The isomorphism i : V(nG) — V(G &, Y,) is defined
by the rule:

o (= d), ifzeW
l(z,J) - { (1;,] +E(h(:v:,y)) 1), iffL' € ‘/2.

Corollary 4.4 Let G be a bipartite (S)(S)EM graph and let n be an odd
positive integer. Then every labeling of G generates at least #§(n) non-
isomorphic (S)(S)EM labelings of nG.

Proof.

The result is an immediate consequence of Theorem 4.4, Theorem 3.1, and
Corollaries 3.1 and 3.2. We observe that changing h : E(G) — S, all the
labelings that we obtain are non-isomorphic since all the copies of V; have
the same labels for every h. m}

Notice that in all the proofs considered in this section all the components
of the 2-regular graphs have been oriented in a cyclic way. Also we always
take the same orientation of all the bipartite graphs under consideration.
Changing these orientations substantially changes the resulting graph, in
general. However we feel that this study should be considered in a future
work.
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14 15 14 14 14 15 15 15
15 13 15 16 15 13 13 13
13 14 13 13 13 14 14 14
17 17 18 17 18 17 18 18
18 18 16 18 16 18 16 16
16 16 17 16 17 16 17 17
11 11 11y 12 12 12 11 12
12 12 12 10 10 10 12 10
10 10 10 11 11 11 10 11
17 17 17 18 17 18 18 18
18 18 18 16 18 16 16 16
16 16 16 17 16 17 17 17
11 12 11 11 12 12 11 12
12 10 12 12 10 10 12 10
10 11 10 10 11 11 10 11
14 14 15 14 15 14 15 15
15 15 13 156 13 15 13 13
13 13 14 13 14 13 14 14

WO TG RARWN OO & W=

Table 2: SSEM labelings of 3K,

5 Generating labelings for graphs of the form
GO K,

The goals in this scction are to find a lower bound for the number of non-
isomorphic SEM labelings of graphs obtained using the corona product.

Lemma 5.1 Let m be an odd positive integer. Then the graph mIC, ,
admits at least [§(m)]" non isomorphic SSEM labelings. Furthermore, if f
is one of these labelings, then f assignes an integer in the set {1,2,...,m}
to the central vertez in each component, and min{f(u) + f(v) : wv €
E(mKi,)} = 3'"2—""’

Proof.
The Lemma follows as a particular case of Corollary 4.2. The labeling of
Theorem 3.1 assigns {1,2,...,m} to the central vertex and the valence

given in Lemma 1.5 allows us to calculate the minimum edge induced sum.
O

205



Let G be a graph of odd order m, and let §{(G) denote the number of
non-isomorphic SEM labelings of G with the property that

maz{f(u) + f(v) : w € E(G)} = 3m2+ L 1)

If G is a graph of even order m, then we denote by h(G) the number of
non-isomorphic SEM labelings of G with the property that

maz{ f(u) + f(v) : uv € E(G)} = -‘? )

Next we will state and prove a main result of this section.

Theorem 5.1 Let G be a graph that satisfies equation (1). The graph
H = GoK, admits at least 2-§(G) - [{(m)]* non-isomorphic SEM labelings.

Proof.

Let f be a SEM labeling of G such that maz{f(u)+ f(v) : uww € E(G)} =
3—".‘2ﬂ. Next, consider the graph mK, , with an SSEM labeling that to each
central vertex of each component assignes a number in the set {1,2,...,m}.
By Lemma 5.1 we know that there are at least [f(m)]™ non-isomorphic such
labelings. At this point, relabel the vertices of G and of mK,, in such
a way that each vertex is named after the label of a SEM labeling and
a SSEM labeling of G and mKj ,, respectively. Next, construct the graph
H = G® K, by identifying vertex i of V(G) with the vertex i of V(mKj,,).
Let g be the resulting labeling. Since {g(u) +g(v) : ww e E(GOK,)} isa
set of consecutive numbers, it follows that ¢ is a SEM labeling. Also, since
mK, , admits at least [§(m)]" non-isomorphic such SSEM labelings and
there are §(G) SEM labelings of G that we can use, it follows that there
are at least 3(G) - [#(m)]" SEM labelings of H = G ® K,,. Finally, notice
that these labelings assign to the vertices with degree strictly greater than
1, the numbers from 1 up to m. Therefore, the complementary labelings
arc all different, to these labelings just constructed, since they assign the
largest labels to the vertices with degree strictly grater than 1. Also all
complementary labelings are mutually different. Therefore, we conclude
that H = G ® K,, admits at least 2 - §(G) - [i(m)]" non-isomorphic SEM
labelings. m]

Next, we will show how the results developed in this section can be applied
to diferent families of graphs. First of all, we consider the set T® K,,, where
T is any path-like tree of odd order. In [4], Barrientos proved that path-
like trees admit a-labelings. In fact, the labelings exhibit by Barrientos for
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path-like trees of odd order m, can be transformed into a SEM labelings f
satisfying equation (1). Hence, using the previous theorem, we obtain the
following result.

Proposition 5.1 Let T be any path-like tree of odd order m. Then for
every a-labeling, T' © K, admits at least 2 - [{(m)]™ non-isomorphic SEM
labelings.

In [1], Abraham and Kotzig, found a method to construct a-labelings of
paths. In fact, for paths of orders 5, 11, 13, 15 they found 1, 12, 35 and
84 a-labelings respectively. All these a-labelings can be transformed into
SEM labelings of paths satisfying equation (1). Hence once again using
Theorem 5.1 we obtain:

Proposition 5.2 Let n be odd. There exist at least 2-4(Fy) - [f(m)]" non-
isomorphic SEM labelings of P, ® K,,. In particular, there exist at least

1. 2-[4(5))™ SEM labelings of Ps » K,,.

2. 24 [{(11)]™ SEM labelings of P11 © K.
3. 70 - [3(13)]™ SEM labelings of P13 ® K.
4. 168 - [§(15)]™ SEM labelings of Pis © K.

Lemma 5.2 (/13/,{18]) Let f be a SEM labeling of G with

{ M = maz{f(u) + f(v) : w ¢ E(G)}.
m = min{f(u) + f(v) : w € E(G)}.

Let u,v € V(G) : w ¢ E(G) and for which f(u)+ f(v) € {M+1,m -1},
then the new graph Gt defined as follows

V(G*) = V(G)
{ E(G*) = E(G) U {uv)

is a SEM graph.

Thanks to Lemma 5.2 we can convert all the SEM labelings of the paths
of odd order, obtained by Abraham and Kotzig in [1] into SEM labelings
of odd cycles. Once again, for each labeling f of C,, (m odd) we have that
equation (1) is satisfied. Therefore, Proposition 5.2 is also true replacing
the paths by cycles.
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Theorem 5.2 Let G be any graph that satisfies equation (2). Assume that
H 1is the graph obtained from G by attaching the same number n of pendant
edges to each verter of G except for the vertex labeled m. Then H admits
at least 2 - §(G) - [i(m)]™ non-isomorphic SEM labelings.

Proof.
Let G be any gr aph that satisfics the conditions of the hypothesis of the
theorem and let G be any digraph such that und(G) = G. Also let
Sim-1 = {D1,D2,...,D,}. At this point, rename the vertices of G and
of D1,D,,...D, after the labels of their corresponding SEM labelings. Let
A(G) = (gi;) and A(Dy) = (d%); k € {1,2,...,5} be the adjacency matri-
ces of G and Dy, respectively. Next, for every k € {1,2,...,s} define the

new (mm — 1) x m-matrix Ej = (e ’”J) as follows:

k_{ b ifj<m
J

%=V 0 ifj=m
Let -1 = {E1,F2,...,E;}, and let €;,¢a,...,¢s be n not necessar-

ily distinct elements of 8,,_;. At this point, we define the new matrix
M(ey,€2,...,€5) as the following Kronecker product:

€s
n

— e .

AJ(G],Q,...,CS):(1,0,...,0)@ €2

(3]

A(G)

From the matrix M(ey,e€2,...,¢,) define the squarc matrix
M*(e1,€2,...,€5) consisting of the first mn + m — n rows and columns
of M{cy,€2,....,€). It is clear that M*(e1,€2,...,¢€;) is the adjacency ma-

trix of some digraph with underlying graph H. Thus we only need to show
that H is a SEM graph. We will show that all such main diagonals with
exactly one entry being 1 are consecutive. Let M*(ey,¢2,...,¢5) = (my;).
We have that min{i+j : mj; =1, m+1<i<m+(m-1)} =3 +1
and for every k € {1,2,...,n — 1}, we have that min{i +j : mtJ =
1, m+k(m— 1)+1 <i<m+(k+1)(m-1)} =3 + 1+ k(m —1). Now
maz{i+j : my=1i< m} 3 and for every k P {0,1,2,...,n—1} we
have that ma:c{t+J =1, m+k(m-1)+1<i< m+(k+1)(m 1)} =
M (- 1)(k+1). All mam diagonals of M*(cy,€2,...,¢€,) either have all
their entries 0, or all the entries are 0 except for exactly one entry which is
1. This proves that the graph H is a (S)EM graph. ]
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Some families of graphs that satisfy the hypothesis of the Theorem 5.2 are,
for instance, paths and paths like-trees, all of them of even order.

6 Results on 2-regular graphs

In this section we will find lower bounds for the number of non-isomorphic
(S)EM labelings of certain types of two regular graphs. We start by intro-
ducing the following result:

Theorem 6.1 Assume that C,, is a strong orientation on the cycle Cp,.
Let h be a function that assignes to each of the arcs of the digraph C,,
the same strong orientation of the cycle C,. Then und(Crn ®n Sp) =
GCD(m,n)Clcmlm,nI

Proof.
Through this proof the notation +; will be used_:m order to denote the sum
taken modulo i. Assume that the vertices of C,, have been labeled with
the elements of the group Z,, following an increasing orientation. Also
assume that the cycle h(E(Cy,)) is the digraph C,, labeled with te vertices
of {1,...,n} following an increasing order. Let h~ be the restriction of h
to £(B,) = E(Cn) \ {(m —1,0)}, then the graph und(P,, ®;- Sn) = nPn
by Theorem 4.1. We label vertex j (§ € Z,,) of the i** copy (i € Z,,) of B,
by (j,% +» 7). We observe that ((z,y), (z',¥')) € E(C-",,, ®n Sy) if and only
if
 =z+,1
{ Y =y+nl

Notice that in order to convert the digraph P, ®pn- 9y into the digraph
C ®1 S, we need to introduce arcs of the form ((m—1,i+,, m—1),(0,i+,
m)). Fix a component 4, then we introduce arcs going to the vertices of
the set {(0,7 4+, m), (0,7 +n 2m),...,(0,i 4+, (k — 1)m)} with ¢ 4, km =
i(mod n), thus k = lc—ml,’—l"—"l Hence there are & copies of P, that form a
cycle of order km = lem|m, n], which implies that the number of copies of
the resulting digraph is 2% = GCD(m,n). Therefore und(C_"m ®p Sn) =

km

GCD("L n)Clcm.[m,'n] .

Corollary 6.1 The graph GCD(m,n)Clemjm,n) admits at least two times
as many (S)EM labelings as the graph C,.
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Proof.

The results is an immediate consequence of Theorem 6.1, Theorem 3.1 and
Corollary 3.1. ]

The following number theoretical result provides a way of generating (S)EM
labelings for the graph GCD(m, n)Ciemim n)-

Lemma 6.1 Let a« = v8 be a natural number with 3 = H;?:l ﬁ;j where

,B;j are prime numbers. Then the number of different couples of natural
numbers with greatest common divisor v and leat common multiple o is
given by 2%~1,

Proof.

It is clear that «, v is one of these couples. The other couples are obtained
dividing o by ﬂ;f‘ s ,B;-f‘ and multiplying v by the same expression,
where {j1,...,5t} € {i,...,k}. There arc as many of these expressions as
subsets of the set {1,...,k}. That is to say, there are 2* such expressions.
However by this procedure each couple appears twice, therefore we have
2%=1 such couples. Q

Lemma 6.1 allows us to generate (S)EM labelings in 251 different ways.
However, we still do not know in general how to prove that all such labelings
constructed in this way are in fact non-isomorphic, although we strongly
suspect that they are. In fact, the only result that we have in this direction
is stated and proved next.

Proposition 6.1 Assume that G € S,, and H € S, where GCD(m, n)h=
1 end m,n > 1. Also consider the functions h : E(G) — S, and h :
E(H) — S,,. Then G &y, Sm # H ®;, Sy.

Proof.

We proceed by contradiction. Assume to the contrary that there exist func-
tions h : E(G) — Sy, and h : E(H) — S,, and graphs G € S,, with
adjacency matriz (gi;) and H € Sy, such that G @), S = H ®;, S, and
that 1 < n < m. We reduce the adjacency matriz of G ®p S, to a vector
B = (b;) where B(i) = b; if and only if the position (i,b;) in the adjacency
matric G ), S, 18 1. We observe that 1 < b; < mn and that if i # j then
by #bj. Let j=km+1(0<k<(n-1),1 <l<m)withbd; =mn. We
have:

o If0 <k < (n-1) then we have that [b41ym+1 —dk41ym| <N —1<
m — 1 and therefore {b; : (k+1)m < i < (k+ 2)m} = (m(n -
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2),m(n —1)] and gr+2 n—1 = 1. Since gr41,n = 1, it follows that this
contradicts the fact that G is SEM.

o Ifk =n—-1 then g, » = 1, and in G there is an arc with induced
sum 2n > 3”42"'1 when n > 1, that contradicts Corollary 1.1.

Finally, in [21] Muntaner proved that every SEM labeling of a 2-regular
graph can be transformed into a SSEM labeling of a 1-regular graph. Fur-
thermore, two SEM labelings of two 2-regular graphs are transformed into
two non-isomorphic SSEM labelings of 1-regular graphs. Therefore, the re-
sults of this section can also be used in order to construct SSEM labelings
of 1-regular graphs.

7 Graphs with chords

Through this section, the symbol G will be used to denote the set of all
(p, q)-graphs which are either 1-regular, 2-regular or 3-regular. If H is a
graph, we denote by §(H) the set of all non-isomorphic SEM labelings of
H. Also let G be any (p, q)-graph with g # (5). We denote by G the set
{(p,q + 1)-graphs H : G is a subgraph of H}

Next we introduce the following new labeling, that will prove to be very
useful to develop the results of this section.

Let G be any (p,q)-graph. Then, we say that a bijective function f :
V(G) — {1,2,...,p} is a jump of G, if the set {f(u)+f(v) : uv e E(G)}
is of the form

(B.0+1,...,B+LB+1+2,04+1+3,....0+q)}
where 3 is a fixed element of N and [ is a. fixed element of the set {0,...,q—

2).

Lemma 7.1 Let G € G. Then G cannot admit both, a SEM labeling and
a jump.

Proof.
Assume to the contrary, that G admits both, a SEM labeling M and a
jump J. Consider the sets Sy = {M(u) + M(v) : w € V(G)} =
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{a,a+1,...,a0+q—1 forsome o € N} and S; = {J(u) + J(v)
w € V(G)} = {B,8+1,....8+L8+1+2,8+1+3,...,8+¢
BeNandle{l,...,q-2}}.

Since G is an r-regular 1gra.ph, it follows that }- s = =3 .5 y. Now,
Daesy T = 90+ 2004 Yyes, ¥ = g8+ Yt i — (I + 1) and hence,
g(1+ 8 —a) =1+ 1. Therefore g|( + 1) which is impossible since (I +1) €
{1,...,¢-1}. =]

Lemma 7.2 Let a (p,q)—graph G € G and H € G€ be graphs that admit
SEM labelings. If f is a SEM labeling of H, then f lv(c) can be extended
to an ezactly one SEM labeling of G.

Proof.

Let H be any SEM graph in the set G, and let f be a SEM labeling
of H. Hence the set S = {f(z) + f(y) : zy € E(H)} is aset of ¢+ 1
consecutive numbers. If uv € E(H) \ E(G) and S\ {f(u) + f(v)} is not
a set of g consecutive integers, then the function f lv(c) is 2 jump of G in
contradiction with Lemma 7.1. a

Theorem 7.1

| k-#(Capsr) if k is even
Z H(H) = { (k- 1)%3%5’2,&._,_,) if k is odd.

Proof.

We know by Lemma 7.2 that if f is a SEM labeling of H € C$, +1 then
FIV(Caryr) is also a SEM labeling of Cypq1. Next, let M be a SEM labeling
of Cor41 and consider the set § = {M(u) + M(v) : wv € E(Caks1)}. Let
§ = min(S), v = max(S). Also, by Lemma 1.5 we obtain that the valence
of M, valyy, is 5k + 4. Now, valpyy = 6+ (p+q) and v = 6 + (¢ — 1) thus,
we have that § =k +2 and v = 3k + 2.

Next, notice that any two vertices u,v of V(Caky1) with M(u) + M(v) €
{k+1,3k+3} cannot be adjacents. Also if k is odd there are exactly &k — 1
such pairs and if k is even there are exactly k such pairs.

Therefore, since any SEM labeling of any graph in C§, 41 is obtained from
a SEM labeling of Cai41, we obtain the desired result. O
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Theorem 7.2

: _ | (Bk+2)-#((2k +1)K2)  if k is even.

4Py U (2k - 1)K7) = { (3k+1)-i((2k + 1)Ky)  if k is odd.

Proof.

It is well known that the graph (2k+1)K; is SEM. Furthermore, by Lemma
1.5 it is easy to obtain that the valence of any SEM labeling of (2k + 1)K,
is val = 9k + 6.

Next, let M be any SEM labeling of (2k +1) K>, and let S be the set defined
by § = {M(u) + M(v) : wv € E((2k +1)K3)}. Let § = minS and v =
maxS, then val = §+(p+q), 6 =3k+3 and y = §+(g—1) = 5k+3. Hence
all pairs of vertices in V((2k + 1)K,) with M(u) + M (v) € {3k + 2,5k + 4}
are not adjacent in (2k+1)K,. If k is even, there are exactly 3k + 2 of such
pairs, and if & is odd there are exactly 3k + 1 of such pairs. Next, notice
that ((2k + 1)K3)C = {P U (2k — 1)K,} and that every SEM labeling of
(2k + 1)K induces exactly one SEM labeling of P, U (2k - 1)K, if we join
exactly one pair of vertices u, v such that M(u)+ M(v) € {3k +2, 5k+4}.
Now, if we put all the above together with Lemma 7.2 the Theorem follows.
m]

8 A new related problem

Graph labelings appeared as an alternative way of attacking the well known
Kotzig-Ringel conjecture [23] which states that the complete graph Kapnii
can be decomposed into (2n + 1) isomorphic trees of size n. Since then
many applications of graph labelings have appeared. For instance we can
find graph labelings showing up in radars, x-ray crystallography, coding
theory, etc. For a detailed exposition of graph labeling applications, the
interested reader can consult [5], [6], [7] and [25]. Also in algorithmics, we
can find graph labelings showing up, since in [20] it has been proved that
the problem of deciding whether or not a given graph admits a harmonious
labeling is NP-complete. A similar result for equitable labelings has been
established in (8].

In this section we introduce a new problem, that has been motivated by
trying to find lower bounds for the number of non-isomorphic SEM labelings
of the graph (2k + 1)K. In fact, the problem, as stated in this section, is
even more general, and the bounds found in this paper for the number of
non-isomorphic SEM labelings of the graph (2k + 1)K, solves just a very
small portion of the problem.

Open problem: Assume that we have a set of n weights such that each
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weight is a natural number. Also there are k persons that are interested to
transport the set of weights to another location so that each person takes
k; weights at a time and only one trip is made by each person. How many
ways are there to distribute the weights among the persons so that each
person carries the same total weight?

In this paper we have found lower bounds for the case in which n = 3I; { is
an odd, non prime, natural number and there are [ participants, such that
each participant takes exactly three weights at a time.
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