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ABSTRACT. In this present investigation, the authors obtain Fekete-
Szegd's inequality for certain normalized analytic functions f(z) de-
fined on the open unit disk. As a special case of this result, Fekete-
Szegd's inequality for a class of functions defined through fractional
derivatives is obtained. The Motivation of this paper is to give a
generalization of the Fekete-Szegd inequalitics obtained by Srivas-
tava and Mishra and Ma and Minda.
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1. INTRODUCTION

Let A denote the class of all enalytic functions f(z) of the form
o
F@)=2+Y az* (zeb:={zeC:|z|<1}) (1.1)
k=2

and S be the subclass of A consisting of univalent functions. Let ¢(z) be an
analytic function with positive real part on A with ¢(0) = 1, ¢'(0) > 0 which
maps the unit disk A onto a region starlike with respect to 1 which is symmetric
with respect to the real axis. Let S*(¢) be the class of functions in f € S for

4
which ij['_(,(zi)) < ¢(z), (z € A) and C(¢) be the class of functions in f € §

173
for which 1 + zjf, ((zz)) < ¢(2), (z € A), where < denotes the subordination
between analytic functions. These classes were introduced and studied by Ma
and Minda [7]. They have obtained the Fekete-Szegt inequality for the functions
in the class C(¢). Since f € C(¢) if and only if z2f'(z) € S§°(¢), we get the
Fekete-Szegd inequality for functions in the class S*(¢). Fekete-Szegd problem
for different subclasses has been obtained earlier by Ravichandran et al. [9] and
also by Shanmugam and Sivasubramanian [12]. For a brief history of Fekete-
Szegd problem for the class of starlike, convex and close-to-convex functions, see
the recent paper by Srivastava et al. [13] (see also the references cited by them).
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For f(2) = 2 + Z anz" and g(z) = z + Z gnz" € A, the Hadamard prod-

n=2 n=2

oc
uct(or convolution product) is given by (f * g)(z) := z + Z angnz". For various
n=2

choices of g(z) we get different operators and are listed below.

= (al)n-l(QZ)n—l,---, (a,,),,_l n
(1) For g(z) = z + "Zz BoaBm s B (s 2 e get the

Dziok-Srivastava operator H, .(n)f(z) introduced by Dziok and Srivas-
tava [4].

[o+]
(2) For g(z) = ¢(a,c¢,2) = Z Ezi" 2", we get the Carlson-Shaffer operator
n=0 n

L(a, c) f(2) introduced by Carlson-Shaffer [1].
(3) For g(z) = (1—_2-)—,\71-, we get the Ruscheweyh operator D* f(z) intro-

duced by Ruschweyh [10].
(4) For g(z) = z + an " (m>0), we get the Siligean operator
D™ f(2) mtroduced by Sa]agea.n [11).

n+ A n . T
= > .
(5) Forg(z) = z+n§2 ( T /\) 2" (A >0; k €2), we get the multiplier

transformation I(A, k) introduced by Cho and Srivastava [3].

oo k
n+ A n . -

(6) Forg(z) = z+'§2n ( T /\) z" (A 20; k€ Z),the multiplier trans-

formation I'(A, k) introduced by Cho and Kim [2].

Motivated essentially by the above works, we obtain the Fekete-Szegd incquality

(f *9)(2)

for the estimate s——=———=, where ¢ and h are fixed functions such that g, >
(Fh)() g g

oc
0, ha > 0, with g, — h, > 0 where h(2) = 2 + Z hn2" € A. For special choices
of g and h we get all the estimates which we have mentioned earlier. Also, for
various choices of g(z) and h(z) we get various subclasses of A.

(1) For g(z) =

—* _ andh(z) = 2, L9G) _ 2/(2)

( )2 - (1 "Z)’ ({f* h)gi)): f(2) }-u( )
_ z *g)Iz) _ 2] _\%
(2) For g(2) = (1 ),w and h(z) = (=22 (fxh)(z) ~ T fr(z)

In the present paper, we obtain the Fekete-Szegt inequality for functions in a
more general class M, »(¢) of functions which we define below. The Motivation of
this paper is to give a generalization of the Fekete-Szeg inequalities of Srivastava
and Mishra [13].

Definition 1. Let ¢(z) be a univalent starlike funclion with respect to 1 which

maps the open unit disk A onto a region in the right half plane and is symmetric
with respect to the real azis, ¢(0) = 1 and ¢'(0) > 0. A function f € A is in the

218



cluss Mg n(9) if
(f *9)(2)
(f * h)(2)
We remark here that the assumptions g» > 0 and h, > 0 are taken to make

sure that the absolute value in our main results is non-negative.
To prove our main result, we need the following:

Lemma 1. (7] Ifpi(2) = 14+ c1z+c2z +- -+ is an analytic function with positive
real part in A, then

< ®(z) (gn >0, hn >0, gn —ha >0).

2 -dv+2 fvs0
ez —vep] € ¢ 2 #f0SvEl
dv -2 fo>1

When v < 0 or v > 1, the equality holds if and only if p1(2) is (1 +2)/(1 — z) or
one of its rotations. If 0 < v < 1, then the equality holds if and only if p1(z) is
(14 22)/(1 - 2) or one of its rotations. If v = 0, the equality holds if and only if

1 1 1+2 1 1 1-z
= =4 = - <A <
p1(2) (2+2)‘>1~z+(2 2A)1 , (EPEY))

or one of its rotations. Ifv = 1, the equality holds if and only if p1 is the reciprocal

of one of the functions such that the equality holds in the case of v = 0.

0 Also the above upper bound is sharp, and it can be improved as follows when
<v<1:

lez — vei| +vlea* £2 (0 <v£1/2)
and
leza —vE |+ (A -v)a)* $2 (1/2<v ).

2. FEKETE-SZEGO PROBLEM
Our main result is the following:

Theorem 1. Let ¢(z) = 1 + Biz + B22> + B3z® + ---. If f(2) given by (1.1)
belongs to Mg n(d), then

B 7 2 g2h2 — b} 2
- B <
g3 _,3}‘3 gz —ha2 ' " (g2 —ha)(gs—ha) ©  H=T
—nall £ — <pu<
‘a3 I"a2l = 2(933_ h3) . 2 o1 = | =02
2 1 2 g2ht2 — N3 2
- + Bi - 2
G-t (Gm—ha)? ' (z-ha)lgs—hs) ' M=
_ (g2 = h2)’(B2 — B1) + ha(g2 — h2) BY
where o := ) (9 — ha) B2 2
and o3 = (g2 — ho)" (B2 + B1) + ,;2(92 ~ h2) By . The result is sharp.
(g5 — h3)Bl
Proof. For f(2) € Mg (), let
P(2)1=g:—i§(é))=l+b1z+bgzz+---. (2.1)

From (2.1), we obtain
@292 — aghe = by and  (ga — hs)as = bz + a3 (gah2 — h3).
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Since ¢(z) is univalent and p < ¢, the function

pi(z) = l:&E%;;=I+C1z+c222+...

is analytic and has positive real part in A. Also we have
m(z) - 1)
= — 2.2
p(z) ¢(P1(Z)+1 @2
and from this equation (2.2), we obtain

_1 , _1 1o 1. 2
b = 2]3161, and b2 = 2B](C2 261)—{ 43201.
Therefore we have

2
as “a2—2(gs ) {ce —vci} (2.3)

1 B, 1 2
where v := 3 [l -5 + (T AE (22 — g2h2 + p(gs — hs)] B | . Our result now
follows by an application of Lemma 1. To show that the bounds are sharp, we
define the functions K** (n =2,3,...) by

(K% x9)(2) _ ,/0»
T h) ~ ot

and the function F* and G* (0 S A< 1) by

FXxg)(z) _ , (2(z+)) Ay () Ay
ms—¢(l+)‘z)a F0)=0=(F")(0) -1

K" (0) = 0= [K*"}'(0) — 1

and

(G*=9)(2) _ z(z + ) A0) =0 = (G (0) —
Gol_y (-222), eo=0-@0-1
Clearly the functions K*", F*,G* € M,,1.(¢). Also we write K¢ := K2,

If i1 < 01 or u > o2, then the cquality holds if and only if f is K¢ or one of its
rotations. When o1 < p < o2, the equality holds if and only if f is I(®? or one
of its rotations. If & = o then the equality holds if and only if f is F* or one of
its rotations. If u = o2 then the equality holds if and only if f is G* or one of its
rotations. This can be verified by the following. Let

z 2 n ('fl+1) 2n—1
Kon(2) = ————— =2+ 2"+ z
an(2) (1= zn1)ass n-1) (n—1)2
and let g(z) =z + baz? 4 b3z® + -+ bpz" + --- . Hence,

2bﬂ n (n+1)b2"‘1 2n-1
m-0° " -1z ”

Also for, h(z) = z+ c22® + c32° + -+ caz” + -+, we have

+ .

Kon(2) x 9(2) = 2 +

+ ...

cﬂ n (TL + 1)C2"“‘1 2211—-1

Kon(2) xh(z) = 2+ e l)2 + m-1)

e

A simple computation yields

Kyn(2) x 9(2)

2(bn + Cn)zn—]
Kyn(z) * h(z)

1+ n-1)

R )

220



z
l_z(z+/\)
14 Az

a similar result, as for the choice of A =1, F1 = K4,(2) = Ky and A =0, Fo =
Ky, (2).

Similarly, we can prove for Gy by taking Gx =

Instead of taking K4, (z), il we take F = STy Ve can obtain

z

NN
|- z2(z - M)
1-Az

For g(z) = (1; and h(z) = , Theorem 1 reduces to the following

—2)2’
result for the class S*(¢).

Corollary 1. If f given by (1.1) belongs lo S*(¢), then

_z
(1-2)

B s 1 .
2 _uBi+ =B i psa
9 2
—ua?l £
las — pa3| £ { Bi if o1Spso
_.._23+pr—533 if p2o2

where,

o = (B2 — B1) + Bf 5. = (B2 + B1) + B}
v 2B? o2 287
The result is sharp.

+ 22 2 -
C . =272 = ;
orollary 2. If g(z) T2 and h(z) Tk the Theorem 1, coincides
with the following result obtained for the class C(¢) by Ma and Minda (7).

3. APPLICATIONS TO FUNCTIONS DEFINED BY FRACTIONAL DERIVATIVES

Definition 2 (see [8]). Let f(z) be analytic in a simply connected region of the
i-plane conlaining the origin. The fractional derivative of f of order X is defined
Y

__ 1 da [ _fQ
D?f(Z).— F(l-A)E o (Z—C))‘dc (Oé’\<1)

where the multiplicity of (z — ¢)* is removed by requiring that log(z - () is real
forz—¢>0.

Using the above Definition 2 and its known extensions involving fractional
derivatives and fractional integrals, Owa and Srivastava [8] introduced the oper-
ator 0 : A — A defined by (0 f)(z) = T(2 = N2*D} f(2), (A # 2,3,4,...).
If

L Tn+1DI2=XA) . T+ D2 -A)
o) =+ Sl b =2+ 3 HERES

n=2

Theorem 1 reduces Lo the following theorcm in terms of the fractional derivative.
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Theorem 2. Let the function ¢(z) be given by ¢(z) = 1+ B1z+B22* 4+ Bzz3+- - -
and let A < 2. If f(2) given by (1.1) belongs to My n(¢), then

2-X)(3-x .
L%v i po
laa—ua§|§ W% if o1Suso.
2-A)(3EB-A .
- )é3 )7 if p>o;
where
_ B 32X oo 1.,
T = 2 2(3 _)\)I‘Bl + 2Bl
oy =2B=X (B2-B)+Bf _2B-) (Ba+By)+Bi
1 . 3(2_ )\). 2B? ) 2 . 3(2—A) 2312

The result is sharp.

Remark 1. When B) = 8/n* and Bz = 16/(3%?), the above Theorem 2 reduces
to a recent result of Srivastava and Mishra[13, Theorem 8, p. 64] for a class of
Junctions for which Q* f(2) is a parabolic starlike Junction[5).

16

Remark 2. For the choices A\=1, B, = i and By = —,
me 372

result obtained by Ma and Minda [6).

Theorem 2 with the
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