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Abstract

Let G = (V, E) be a connected simple graph. Let
u,v € V(G). The detour distance, D(u,v), between
u and v is the distance of a longest path from u to
v. E.Sampathkumar defined the detour graph of G ,
denoted by D(G) as follows: D(G) is an edge labelled
complete graph on n vertices where n = |V(G)|, the edge
label for uv , u,v € V(K,) being D(u,v). Any edge la-
belled complete graph need not be the detour graph of
a graph. In this paper, we characterize detour graphs of
a tree. We also characterise graphs for which the detour
distance sequences are given.

Definition:- 1 Let G = (V, E) be a simple graph. The detour
graph of G denoted by D(G), is an edge labelled complete graph
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K ) on the same vertex set V(G) such that for any two ver-
tices a,b in G with D(a,b) = k, the edge label of ab is k in
Ky

Result:- 1 If a detour graph of G has all the labels 1, then

= K,.
Proof :-

Assume |V(G)| > 3. If d(G) = 1, then all the labels are
(n—1) and (n — 1) 22. If d(G) = k >2, there exists a label
r 22, a contradiction. Therefore G = Kj.

Result:- 2 If a detour graph has all the edge labels 2, then the
graph is K.

Proof :-

Assume |V(G)| > 4. Since there is no label 1, §(G) > 2.
Therefore, G has a cycle. If d(G) >3, then there is an edge
with label greater than or equal to 3 in the detour graph, a
contradiction.

If d(G) = 1, then we get a complete graph and all the la-
B(eg arezgrea,ter than or equal to 3, a contradiction. Therefore,

f G has a cycle C4 or Cs as a subgraph, there exists an
edge which has label greater than or equal to 3, a contradic-
tion. Therefore, the cycles in G are all triangles. Let G have
two triangles Ty and 75. If T and T, have common edge, we
have a Cj, a contradiction. If T and 75 have a common ver-
tex, then there exists an edge with label greater than or equal
to 4, a contradiction. Therefore, G cannot have two triangles.
Therefore, G has a unique triangle. Since |V(G)| > 4, there
exists an edge label greater than or equal to 3, a contradiction.
Therefore, 5 = Kj.

Result:- 3 If a graph is any one of the followz'n}?, then the de-
tour distance between any two points in the graph is (n — 1).
(i.) Gy 3— Gq where Gi and Gy are Hamiltonian graphs

an
V(G| + IV(Ge)| = n.
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(#.) Gi1+ K, where the number of components of G is less than
or equal to r. (that is, w(G) <) and |V(Gy)|=n—r.

(iii.) K.
Result:- 4

(i.) If G = Csy, then D(Csy,) = nKs.

(ii.) If G = Capy1, then D(Cont1) = Cong-
Result:- 5 If G = P,, then D(P,) = P, for all n.
Result:- 6 If G = K, then D(K1,) = K,;;.

Result:- 7 The mazimum number of distinct integers that one
can get in a detour distance sequence isn — 1.

Proof :-

Let G = P,. Then the detour distance sequence is
1= 9(n=2) ... (n— 1)) and this has maximum number of
distinct integers. (Note that the number of distinct integers

in the detour distance sequence of any graph on n vertices is
atmost n — 1).

Theorem:- 1 A graph G on n vertices is a tree if and only if
the detour graph D(G) contains (n — 1) I's.

Proof :-

Let the detour graph of G have (n — 1) I’s. Let V(G) =
{v1,u2,u3,- -+ ,un}. If G contains a cycle C with vertices
Uryy Urgy Urg, ** * , Ur,, then all the edges of this cycle will have

labels greater than 1. Then the (n — k) points, other than
those in the cycle C will contribute a maximum of (n — k — 1)
1’s to the edges of the complete graph K, on the n-vertices
{w1,ug,us, -+ ,up}. Therefore, the number of 1’s in D(G) is
atmost (n — k — 1) 1’s, a contradiction. Therefore, G has no
cycles. Since there are (n — 1) 1’s in D(G), there are exactly

gn — 1l)edges in G. Therefore G is a connected graph. There-
ore G is a connected acyclic graph. That is, G is a tree. The
converse is obvious.
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Theorem:- 2 A graph G is a path if and only if the detour
distance sequence is 1*~1,2(r=2) ... (n — 1))

Proof :-

Suppose the detour distance sequence of a graph G is 1(*~1,
2=2) ... (n—1)M. Then G is a tree. Since the label (n — 1)
appears exactly once, there exists exactly one longest path(say)
between u and v of length (n—1). Let {u = vy, ug, u3, - ,u, =
v}, be the longest path. If u or v has degree greater than 1,
then there will be a longest path of length greater than (n — 1).
But there exists no labe% in the detour distance sequence greater
than (n — 1). Therefore, u and v are pendent vertices. Further,

all the n-points are in this longest path. Therefore, G is a path.
The converse is obvious. [

Remark:- 1 In the above proof, we use only two facts. In the

detour distance sequence, ﬁ) there are exactly (n — 1) 1’s and

(ii) one (n —1). These two facts are enough to determine that

the graph is a path. That is, if the detour distance sequence of

G contains 11 and (n — 1)), then 2 ezactly appear (n — 2)

tgimes, 3 appears ezxactly (n — 3) times,- - - (n—2) appears ezactly
times.

Theorem:- 3 A graph G is a star if and only if the detour
distance sequence of G is 1"}, 2(nea=(n=1))

Proof :-

Since the detour distance sequence of G contains 1*~1) G is
a tree.

Claim :- There exists a point of degree (n — 1).

Let u be a point of G of degree greater than 1. Let v,w €
N(u). If [V(G)| = 3, then G is a star with center u. Suppose
z € V(G) — {u,v,w}. Suppose z is not adjacent to u. Then the
detour distance between z and v is greater than or equal to 3, a
contradiction (since the detour distance sequence contains no 3).
Therefore, u is adjacent to every vertex of G. Since G is a tree,
all the vertices other than u are pendent vertices. Therefore, G
is a star. The converse is obvious.
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Theorem:- 4 A graph G is a cycle of length 2n if and only if the
detour distance sequence of G is n™, (n+1)®" ... (2n—1)C",

Proof :-

Suppose G is acyclic. The absence of co in the detour dis-
tance sequence ensures that G is a tree. 1 must occur (n — 1)
times in the detour distance sequence. But 1 is not present in
the detour distance sequence. Therefore, G contains a cycle.

G has no pendent vertex since 1 is absent in the detour dis-
tance sequence of G. Therefore, §(G) > 2.

Since (2n—1)®™ occurs in the detour distance sequence of G,

there are exactly 2n longest paths of length (2n — 1). Let u and
v be two points, the length of the longest path between them
being (2n—1). From the sequence it is clear that G has order 2n.

Let V(G) = {ui, u2, us, -+ ,ugn}. Let, without loss of generality,
the longest path between u; and us, be uy, us, u3, - - - , us,. Since
there are 2n longest paths of length (2n — 1), there exist u; and

u; (1 £i < j < 2n) such that the longest path between u; and
u; is (2n—1). This shows that u; and u; are adjacent and u; and

Ugn, are adjacent. Hence G is a cycle of length 2n. The converse
is obvious.

Remark:- 2 A graph G is a cycle of length (2n+1) if and only
if the detour distance sequence of G is (n+1)2n+) (n4-2)(2n+1),
(n + 3)(2n+1)’ . (Zn)(2"+l).
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