DETOUR GRAPHS

E. Sampathkumar,

Professor Emeritus, University of Mysore,

V.Swaminathan,

Ramanujan Research Center in Mathematics, Saraswathi Narayanan College, Madurai.

P. Visvanathan,

Dept Of Mathematics,

Mannar Thirumalai Naicker College.,

G. Prabakaran,

Senior Research Fellow(CSIR), Ramanujan Research Center in Mathematics,

 $Saraswathi\ Narayanan\ College, Madurai.$

Abstract

Let G = (V, E) be a connected simple graph. Let $u, v \in V(G)$. The detour distance, D(u, v), between u and v is the distance of a longest path from u to v. E.Sampathkumar defined the detour graph of G, denoted by D(G) as follows: D(G) is an edge labelled complete graph on n vertices where n = |V(G)|, the edge label for uv, $u, v \in V(K_n)$ being D(u, v). Any edge labelled complete graph need not be the detour graph of a graph. In this paper, we characterize detour graphs of a tree. We also characterise graphs for which the detour distance sequences are given.

Definition:- 1 Let G = (V, E) be a simple graph. The detour graph of G denoted by D(G), is an edge labelled complete graph

 $K_{|V(G)|}$ on the same vertex set V(G) such that for any two vertices a, b in G with D(a, b) = k, the edge label of ab is k in $K_{|V(G)|}$.

Result:- 1 If a detour graph of G has all the labels 1, then $G = K_2$.

Proof:

Assume $|V(G)| \ge 3$. If d(G) = 1, then all the labels are (n-1) and $(n-1) \ge 2$. If $d(G) = k \ge 2$, there exists a label $r \ge 2$, a contradiction. Therefore $G = K_2$.

Result:- 2 If a detour graph has all the edge labels 2, then the graph is K_3 .

Proof :-

Assume $|V(G)| \ge 4$. Since there is no label 1, $\delta(G) \ge 2$. Therefore, G has a cycle. If $d(G) \ge 3$, then there is an edge with label greater than or equal to 3 in the detour graph, a contradiction.

If d(G) = 1, then we get a complete graph and all the labels are greater than or equal to 3, a contradiction. Therefore, d(G) = 2.

If G has a cycle C_4 or C_5 as a subgraph, there exists an edge which has label greater than or equal to 3, a contradiction. Therefore, the cycles in G are all triangles. Let G have two triangles T_1 and T_2 . If T_1 and T_2 have common edge, we have a C_4 , a contradiction. If T_1 and T_2 have a common vertex, then there exists an edge with label greater than or equal to 4, a contradiction. Therefore, G cannot have two triangles. Therefore, G has a unique triangle. Since $|V(G)| \geq 4$, there exists an edge label greater than or equal to 3, a contradiction. Therefore, $G = K_3$.

Result:- 3 If a graph is any one of the following, then the detour distance between any two points in the graph is (n-1).

(i.) $G_1 + G_2$ where G_1 and G_2 are Hamiltonian graphs and $|V(G_1)| + |V(G_2)| = n$.

(ii.) G_1+K_r where the number of components of G_1 is less than or equal to r. (that is, $\omega(G) \leq r$) and $|V(G_1)| = n - r$.

(iii.) K_n .

Result:- 4

(i.) If $G = C_{2n}$, then $D(C_{2n}) = nK_2$.

(ii.) If
$$G = C_{2n+1}$$
, then $D(C_{2n+1}) = C_{2n+1}$.

Result:- 5 If $G = P_n$, then $D(P_n) = P_n$ for all n.

Result:- 6 If $G = K_{1,r}$, then $D(K_{1,r}) = K_{r+1}$.

Result:- 7 The maximum number of distinct integers that one can get in a detour distance sequence is n-1.

Proof :-

Let $G = P_n$. Then the detour distance sequence is $1^{(n-1)}, 2^{(n-2)}, \cdots, (n-1)^{(1)}$ and this has maximum number of distinct integers. (Note that the number of distinct integers in the detour distance sequence of any graph on n vertices is at most n-1).

Theorem:- 1 A graph G on n vertices is a tree if and only if the detour graph D(G) contains (n-1) 1's.

Proof:-

Let the detour graph of G have (n-1) 1's. Let $V(G) = \{u_1, u_2, u_3, \cdots, u_n\}$. If G contains a cycle C with vertices $u_{r_1}, u_{r_2}, u_{r_3}, \cdots, u_{r_k}$, then all the edges of this cycle will have labels greater than 1. Then the (n-k) points, other than those in the cycle C will contribute a maximum of (n-k-1) 1's to the edges of the complete graph K_n on the n-vertices $\{u_1, u_2, u_3, \cdots, u_n\}$. Therefore, the number of 1's in D(G) is atmost (n-k-1) 1's, a contradiction. Therefore, G has no cycles. Since there are (n-1) 1's in D(G), there are exactly (n-1)edges in G. Therefore G is a connected graph. Therefore G is a connected acyclic graph. That is, G is a tree. The converse is obvious.

Theorem:- 2 A graph G is a path if and only if the detour distance sequence is $1^{(n-1)}, 2^{(n-2)}, \dots, (n-1)^{(1)}$

Proof:-

Suppose the detour distance sequence of a graph G is $1^{(n-1)}$, $2^{(n-2)}, \dots, (n-1)^{(1)}$. Then G is a tree. Since the label (n-1) appears exactly once, there exists exactly one longest path(say) between u and v of length (n-1). Let $\{u=u_1, u_2, u_3, \dots, u_n=v\}$, be the longest path. If u or v has degree greater than 1, then there will be a longest path of length greater than (n-1). But there exists no label in the detour distance sequence greater than (n-1). Therefore, u and v are pendent vertices. Further, all the n-points are in this longest path. Therefore, G is a path. The converse is obvious.

Remark:- 1 In the above proof, we use only two facts. In the detour distance sequence, (i) there are exactly (n-1) 1's and (ii) one (n-1). These two facts are enough to determine that the graph is a path. That is, if the detour distance sequence of G contains $1^{(n-1)}$ and $(n-1)^{(1)}$, then 2 exactly appear (n-2) times, 3 appears exactly (n-3) times, $\cdots (n-2)$ appears exactly 2 times.

Theorem:- 3 A graph G is a star if and only if the detour distance sequence of G is 1^{n-1} , $2^{(n_{c_2}-(n-1))}$

Proof:-

Since the detour distance sequence of G contains $1^{(n-1)}$, G is a tree.

Claim: There exists a point of degree (n-1).

Let u be a point of G of degree greater than 1. Let $v, w \in N(u)$. If |V(G)| = 3, then G is a star with center u. Suppose $x \in V(G) - \{u, v, w\}$. Suppose x is not adjacent to x. Then the detour distance between x and x is greater than or equal to x, a contradiction (since the detour distance sequence contains no x). Therefore, x is adjacent to every vertex of x. Since x is a tree, all the vertices other than x are pendent vertices. Therefore, x is a star. The converse is obvious.

Theorem:- 4 A graph G is a cycle of length 2n if and only if the detour distance sequence of G is $n^{(n)}$, $(n+1)^{(2n)}$, \cdots , $(2n-1)^{(2n)}$.

Proof :-

Suppose G is acyclic. The absence of ∞ in the detour distance sequence ensures that G is a tree. 1 must occur (n-1) times in the detour distance sequence. But 1 is not present in the detour distance sequence. Therefore, G contains a cycle.

G has no pendent vertex since 1 is absent in the detour distance sequence of G. Therefore, $\delta(G) \geq 2$.

Since $(2n-1)^{(2n)}$ occurs in the detour distance sequence of G, there are exactly 2n longest paths of length (2n-1). Let u and v be two points, the length of the longest path between them being (2n-1). From the sequence it is clear that G has order 2n. Let $V(G) = \{u_1, u_2, u_3, \cdots, u_{2n}\}$. Let, without loss of generality, the longest path between u_1 and u_{2n} be $u_1, u_2, u_3, \cdots, u_{2n}$. Since there are 2n longest paths of length (2n-1), there exist u_i and u_j ($1 \le i < j \le 2n$) such that the longest path between u_i and u_j is (2n-1). This shows that u_i and u_j are adjacent and u_1 and u_{2n} are adjacent. Hence G is a cycle of length 2n. The converse is obvious.

Remark:- 2 A graph G is a cycle of length (2n+1) if and only if the detour distance sequence of G is $(n+1)^{(2n+1)}$, $(n+2)^{(2n+1)}$, $(n+3)^{(2n+1)}$, \cdots , $(2n)^{(2n+1)}$.

References:-

- 1. G. Chartrand, H.Escuadro and P.Zhang, Detour Distance in Graphs, JCMCC, 53,2005,75-94.
- 2. G. Chartrand and P.Zhang, Distance in Graphs Taking the Long View, AKCE J. Graphs and Combin.,1, No.1,2004, 1-13.
- 3. F.Harary, Graph Theory, 1972, Addison Wesley, New york.