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Abstract

We present a class of Coded Petri net languages and study some
algebraic properties. The purpose of introduction of this language is
to bring out its usefulness in learning theory. We introduce an algo-
rithm for learning a finite coded Petri net language and its running
time is bounded by a polynomial function of given inputs.
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1 Introduction

E. M. Gold [4] has established that languages containing all finite sets and
one infinite set is not identifiable in the limit from positive data, which
leads to the fact that regular languages is not identifiable in the limit from
positive data. This negative result has initiated a search for subclasses of
regular languages, having the desirable inference property.

Angluin [1) has shown that k-reversible languages, which form a subclass
of regular languages, are identifiablc in the limit from positive data. Other
subclasses include Szilard languages of regular grammar (6}, strictly regular
languages [11] and code regular languages (3].

Analogous to code regular language, we define coded Petri net language
and analyse its properties. An algorithm similar to the one in (5, 12] is used
to learn finite coded Petri net language (from a given positive sample) whose
initial and final markings are the same. The algorithm develops a marked
graph whose transitions are code words and whose language contains the
given positive sample.
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2 Basic concepts and definitions

We now recall the notion of Petri net languages as given by J. L. Peterson
[10]. The definition of Petri net is in style to the definition in automata
theory. It defines a machine, the Petri net (machine) automaton. This
point of view leads to some interesting results in formal language theory
and automata theory.

Definition 2.1 A Petri net structure is a four tuple C = (P,T,I,0),
where P = {p1,pa,...,pn} is a finite set of places, T = {t1,t2,...,tm}
is a finite set of transitions, n,m > 0; PNT = ¢; I : T — P> is the input
function from transitions to bags of places and O : T — P> is the output
function from transitions to bags of places.

Definition 2.2 Petri net marking is an assignment of tokens to the places
of a Petri net. Tokens can be thought to reside in the places of a Petri
net. The number and position of tokens may change during the ezecution
of a Petri net. The tokens are used to define the execution of a Petri net.
The marking can also be defined as an n-vector p = (p1, j12, . . ., fin ), where
n = |P|; p; = number of tokens in pi, i = 1,2,...,n. (Also, we can write

u(pi) = pi).

Definition 2.3 A marked Petri net M = (C,p) is a Petri net Struc-

ture C = (P,T,1,0) and a marking u. This is also written as C =
(P,T,1,0,p).

Definition 2.4 (Execution rule for marked Petri net) A Petri net
ezecutes by firing transitions. A transition may fire if it is enabled. A
transition is enabled if each of its input places has at least w(p,t) tokens in
it, where w(p,t) is the weight of the arc from p to t. A transition fires by
removing w(p,t) tokens from each of its input places and then depositing
w(t,p) tokens into each of its output places, where w(t,p) is the weight of
the arc from t to p. If one of the input places of a transition contains no
tokens, then that transition is not enabled.

Firing sequence of transitions: Refer the example shown in figure 1.
u=(1,2,0,0,1).

Step 1 Initial marking is (1,2,0,0,1). #; is the only transition that is
enabled.

Step 2 When t, fires, it removes the only token at p; and deposits a token
in each of its output places, i.e., p2, p3, p5 : the marking now becomes
(0,3,1,0,2). Now both t» and ¢3 arc cnabled.
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Figure 1:

Step 3a Suppose 5 fires: Firing of t2 removes a token from each of its input
places, namely, p2, p3 and ps and deposits one token in ps. (In cffect
the number of tokens in ps is unaltered). Marking now is (0, 2,0,0,2).
No other transition is enabled-hence no execution can take place.

Step 3b Suppose t3 fires: Firing of 3 removes the only token at ps and
adds one in p;. The marking becomes (0,3,0,1,2). t4 is the only
transition that is enabled.

Step 4 Suppose t4 fires: the only token at p4 is removed and one each is
deposited at p, and p3. The marking is (0,4,1,0,2).

Once again, ¢ and t3 are enabled - when ¢ fires it removes the token
from p; and adds one in p; which makes ¢4 enabled again - this process
continues until ¢, fires.

Hence the sequence of firing transitions may be either {122 or t1i3t4t2
or t1t3t4t3t4t2 e i.e., (tl(t3t4)*t2).

Definition 2.5 A labeled Petri nety = (C, o, u, F), where C = (P, T,1,0)
is a Petri net Structure; o : T — 3 is a morphism defined by o(t;) = a; € X,
where ¥ is an alphabet (0 can be eztended in a natural way on T™); p is
the initial marking of C and F C P is a set of final places. A Petri net
Language of a Labeled Petri net is defined as L(vy) = {o(B) € X*/B € T*
and 8(u,B) € F} where § : N* x T* — N™ is o function where N is the
set of natural numbers including 0.

Definition 2.6 A labeled Petri net v = (C, 0, u, F) with language L(v) in
standard form satisfies the following properties:

1. The initial marking p consists of ezactly one token in start place ps
and zero tokens elsewhere; p; & O(t;) for anyt; € T.
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2. There exists a place p; € P such that

() F={ps}, if x& L(v) or F = {ps,psr}, if A € L().
(b) pr & I(t;) for allt; € T.

(c) 6(1t',t;) is undefined for allt; € T and y' € R(C, ) which have
a token in ps.

1t is true that every Petri net is equivalent to a Petri net in standard form.

3 Coded Petri net and coded Petri net lan-
guage

In this section, we define a new class of Petri nets called coded Petri nets.
We define the class of languages generated as coded Petri net languages.

Definition 3.1 A labeled extended Petri nety = (C, K, o, u, F) where C =
(P,T,1,0) is a Petri net structure, K is a set of labels w € &% and labeling
function o : T — K is defined by o(t;) = w € K. A Petri net language of
a labeled extended Petri net is defined as L(vy) = {o(8) € T+ : € K* and
8(u,B) € F}.

In the above definition, suppose K is taken as a code set, then the
corresponding extended Petri net is called coded Petri net.

Definition 3.2 A set K of words of % forms a code over T, if every word
of &% has at most one factorization using the words of K.

For example, {ab,ba} is a code set over ¥ = {a,b}, whereas {ab,a,b}
is not a code set over X. (The word abab has factorizations as (ab)(a)(b),

(@)(b)(a)(b), (ab)(ab), (a)(b)(ab)).

Definition 3.3 A coded Petri net (CPN) is a labeled extended Peiri net,
where K satisfies the code property and o satisfies the following properties:

1. Uniqueness of code words: For any word w in K, there erists a unique
pair of places p; and p; and transition ty with the code word w such
that o(ty) = w; I(t) = {p:i} and O(tx) = {p;}. i.e., every transition
has ezactly one input place and one output place.

2. Uniqueness of first letters of code words for transitions: Suppose that
there are two transitions t;, and t; and a place p, such that p, €
I(ti), pn € I(t)), w1 = a(ty) and we = o(t;) where w; and we are in
K, then wy and ws differ in their first letters.
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If v is a coded Petri net, then L(v) is defined as coded Petri net lan-
guage.
The class of coded Petri net languages is denoted as L(CPNL).

Definition 3.4 v = (C, K, 0,1, F) is called a bifiz coded Petri net if v is
a coded Petri net and the code set K forms a bifiz code (both prefiz code
and suffix code) i.e., no word in K is a proper prefiz or a proper suffiz of
another word in it. L(vy) is known as bifiz coded Petri net language.

The class of bifiz coded Petri net languages is denoted as L(BCPNL).

4 Properties of CPNL

In this section we give some examples of CPNs and their languages CPNLs.
We also prove a few algebraic properties of CPNLs and establish that a code
word assigned to a transition of CPN is unique.

Example 4.1

2_ab F={ps};p=(1,0,0);
cbb cabb K = {ab, cbb, cabb} is a bifiz
code set.
Y @ ——\———@ ~ is in standard form.
L(7) = {(cbb)(ab)*(cabb)} is a
PPty Pty Py BCPNL
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Example 4.2

F={ps};p=(1,0,0);
K = {ab,ac,bb,c} is not a
bifix code set.

v is in standard form.

L(y) = {(bb)(ab)*(c)} U {ac}
is a CPNL.

It is true that in a coded Petri net, any code word o € K occurs only
once as a label of a transition. This is due to the conditions in definition
3.3. Theorem 4.1 establishes this result.

Theorem 4.1 Let in o coded Petri net v = (C,K,o,u,F) where C
(P, T,1,0), fortwo placesp,p’ € P anda € K™, §(p,a) = q and §(p', o)
q forq,d eP=>p=p andq=4q.

Proof: (By induction)

Leta=wmus...uy, u; € K,i=1,2,...,n.

Letn=1,a=u € K

6(p.a) = §(p,u1) = q and

0p,a) = 6(p',u1) = ¢ = p=p and ¢ = ¢’. (By uniqueness of code
words)

Let n = k; let the statement hold good for k. ie., if §(p,a) = ¢ and
8(p', @) = q', where

a=uUy... u, eachu; € K,1<i<k, thenp=p' andg=4q4 (1)
B = aukty, where upy1 € K, 6(p,8) = r and §(p/, B) = r'.

I(p, qup41) =1 = 6(0(p, @), uks1) =7 = 8(q, k1) =7 (2)
S, aupsr) =1 = 8(0(p, ), uks1) =7 = (¢, upgr) =7 (3)

(1), (2) and (3) = p = p' and r = ’. Hence the theorem is truc for k + 1
and the induction is complete. 0

Theorem 4.2 The class L{CPNL) is not closed under the algebraic op-
erations of concatenation, union, reversal, homomorphism on the alphabet,
and complement of the language.
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Sl. No. | Operation

Example

1 Concatenation

K = {ab, cbaa, cbb, ccb}; L1 = {(ccb)(ab)}

Lo = {(cbb)(ab)(cbaa)}.

Ly Ly = {(ccb)(ab)(cbb)(ab)(cbaa)} is not a

CPNL, since ab € K occurs twice in Ly Lo
violating condition (1) of Definition 3.5.

2 Union

L, = {aa}; Ly = {aaa};

LU Ly = {aa,aaa} is not a CPNL.

since condition (2) of Definition 3.3 is violated.

3 Reversal

If L = {(ac)(bac)*(cb)}, then LR = {(bc)(cab)*(ca)},
which is not a CPNL (violates condition (2)

of Definition 8.8).

4 Homomorphism

L = {(ab)™c(ba)" : m,n > 0}. Define h on T by
h(a) = a, h(b) = b and h{c) = X\. Then

h(L) = {(ab)™(ba)* : m,n > 0} is not a CPNL
since condition (1) of Definition 3.3 is violated.

6 A-free homomorphism

L = {a™b? : m > 0}. Defineh on X by

h(a) = h(b) = ab. Then h(L) = {(ab)™ : m > 2}, is
not a CPNL since both the conditions of

Definition 3.3 are violated.

5 Complement

L ={)a}; then L¢ = {a" : n > 2}, is not a CPNL
since both the conditions of Definition 3.8 are violated.

5 Learning of finite coded Petri net language

The concept of identification in the limit formulated by E.M. Gold [4] has
been of basic importance in theoretical studies of inductive inference. He
has established that the class of languages containing finite languages and
at least one infinite language cannot be identified in the limit from pos-
itive sample. Hence, the class of regular languages is not identifiable in
the limit from positive sample. As a consequence, learning subclasses of
regular languages with positive data has gained importance (1, 3, 6, 11,
12]. Angluin [1] has established that k - reversible languages which form
a subclass of regular languages is identifiable in the limit from positive data.
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Algorithms for learning code regular languages are presented [3] by J.D.
Emerald in the framework of identification in the limit. E. Makinen has
proved (6] that given a finite sample of positive data, the problem of finding
a Szilard language of a linear grammar compatible with the sample can be
solved.

N. Tanida and T. Yokomori [11] have introduced a subclass of DFA’s
called strictly deterministic automata (SDA’s) and shown that the class
is learnable in the limit from positive data requiring polynomial time for
updating conjectures.

Here, we propose an algorithm analogous to the one developed in [5, 12],
for learning finite coded Petri net language which is a sub class of regular
languages. It consists of two phases. In the first phase, each example
is presented to the algorithm until the language of the target system is
identified in the form of a finite state acceptor. This phase is related to
inductive inference of regular languages (1, 4, 6]. In the second phase, the
dependency relation is extracted from the language and the structure of a
Petri net is guessed. This algorithm is for a class of live and safe Petri nets
and its running time is bounded by a polynomial function of given inputs.

Definition 5.1 For a Petri net C = (P,1,1,0), *p = {t; : O(t;) = p};
p* = {t; : I(t;) = p}, for every place p in P.

Definition 5.2 A marked graph is a Petri net such that |°p| = |p°| = 1,
for all p in P; i.e., every place is an input for eractly one transition and
an output for exactly one transition.

Definition 5.3 A marked graph has a loop at a place p if *pNp® # .

Definition 5.4 A five tuple © = (S,%,4,5,,G) is called an acceptor /
finite state automaton where S is a finile set of states, T is an alphabet,
d: S x X — 2% is a state transition function, S, in S is the initial state
and G C S is the set of final states.

Definition 5.5 Let ¥ = {a;:i =1,2,...,7} be an alphabet. Then the set
of sequences including the empty sequence over £ is denoted by X*. #;(2)
is the number of occurrences of a; in z € LF. ¢ : T* — N7, defined by
¥(2) = (#1(2), #2(2), .. ., #.(2)) is called Parikh mapping.

Definition 5.6 Let L C X*. Then Pref(L) = {c € T* : there exists
a € L* such that o € L}.

Definition 5.7 For every positive sample Q over T,
PT(Q) = (Pref(Q),%,8,),Q) is called prefiz tree acceptor for Q where
0(s,t) = st, whenever s, st € Pref(Q) and ) is the empty string.
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Definition 5.8 Two states s1 and sz of PT(Q) are equal if and only if
[ (s1)—(s2)| is either the zero vector or the vector of the form (1,1,...,1).

Definition 5.9 For L C ¥*, dependency relation D is defined as D =
{(x,y) € T X T : there exists 0 € T* such that oxy € Pref(L) and
oy & Pref(L)}.

Construction of a marked graph for a given finite positive sample

Throughout this discussion, we consider only live and self-loop free
marked graphs whose initial and final markings are the same, viz. mo=(1,
0, ..., 0). We employ an algorithm similar to the one developed in [5,
12] to construct a marked graph, reading a language containing the given
positive sample.

This algorithm develops a finite state automaton, which generates a
trace language. The algorithm then extracts a dependency relation of the
trace language and guesses the structurc of a marked graph from depen-
dency; language of this marked graph contains the given positive sample
Q. The running time of the algorithm is bounded by a polynomial function
of given inputs.

Step 1 In PT(Q), merge all equal states by definition 5.8 and obtain a
prefix tree acceptor © = (Pref(Q), %, d, A\, @), in which all states are
different.

Step 2

(a) Ci={y:68(si,y) # ¢}

(b) For each state s’ € §(s,z), let Y1 = {y: (s,y) # ¢} and
Yo = {y: 68(s".y) # ¢}. Foreachy e Yy, if y ¢ Y and if
z,y € C; for any i, then (z,y) € D (by definition 5.9).

Step 3 For every pair (z,y) € D, make a place p such that *p = z and
P’ =y.

In step 1, stripped acceptor obtained from the sample is produced; step 2
evolves the dependency relation and finally step 3 helps us to construct the
marked graph.

Example 5.1 Consider the code set K = {ab, bca, cab, abec, ac}.
Let Q = {(ab)(bca)(cab)(abec)(ac), (ab)(cab)(beca)(abec)(ac),
(ab)(cab)(abce)(bea)(ac), (ab){abee){cad)(bea)(ac), (ab)(abee)(bea)(cab)(ac)}
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For convenience, we number the code words as follows: ab as 1, bea as 2,
cab as 3, abce as 4 and ac as 5. Then Q = {12345, 13245, 13425, 14325, 14235}
Pref{Q} = {\,1,12,13,14,123,132,134, 143, 142, 1234, 1324, 1342, 1432,
1423,12345,...}.

The distinct states | § is defined as below | C;,i=1,2,...,8

80 =(0,0,0,0,0) | &(s0,1) =5, C, = {1}

S = (19 09 07 0’ 0) 5(31 » 2) = 82 Cl = {2, 394}
6(31 $3) =83
6(81 ’4) = 84

se = (1,1,0,0,0) 0(s2,3) = s5 Cy = {3,4}
6(32’4) =57

53 = (L0,1,0,0) | 6(s3,2) = o5 Ca = 12,4
(s3,4) = 56

84 = (1,0,0,1,0) 6(84,3) = 8¢ Cq = {2,3}
6(84) 2) = 87

8 = (1, 1, 1,0, 0) 5(35,4) = 88 05 = {4}

S6 = (1a 0,1,1, 0) 6(sﬁa 2) = S8 Ces = +r2J+

Sy = (la 1, Oa 1, 0) 6(377 3) = Sg 07 = {3}

8 = (11 1,1,1, O) 6(38,5) = 8o CB = {5}

Figure 2: The prefix tree acceptor obtained from the sample Q

D ={(1,2),(1,3),(1,4),(2,5), (3,5),(4,5),(5,1)}. The corresponding marked
graph is shown in Figure 3.

The language read by this marked graph is

{(ab)(bca)(cab)(abec)(ac), (ab)(bea)(abee)(cad)(ac),

(ab)(cab)(bca)(abee)(ac), (ab)(cab)(abee)(bea)(ac),

(ab)(abee)(cab)(bea)(ac), (ab){abec)(bea)(cab){ac)} D Q.
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Figure 3: The marked graph
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