Computing All Repeats of a Partial Word

K. Sasikala!, V.R. Dare? and D.G. Thomas?

!Department of Mathematics, St. Joseph’s College of Engineering
Chennai - 119, India. Email : sasikalaveerabadran@yahoo.co.in
2Department of Mathematics, Madras Christian College
Chennai - 59, India

Abstract

In this paper, we describe two algorithms to identify the repeat-
ing subwords in a given partial word wo = wo[l,...,n]. The first
algorithm uses the suffix tree and the second algorithm uses the va-
lency tree. Both algorithms take linear time to identify the repeating
subwords of a partial word.

1 Introduction

Partial words appear in comparing genes. Indced, alignment of two strings
can be viewed as a construction of two partial words that are compatible
in a sense that was described in [2]. The computation of all repeating sub-
strings in a given string = z[1 ...n] is a problem with various application
areas, most notably data compression; cryptography and computational
biology [1, 3]. Motivated by these studies, in this paper we describe two
algorithms to identify all repeating subwords of a given partial word.

2 Preliminaries

In this section, we give a short review of some basic notions on partial
words that will be used throughout this study [2].

Partial words are strings of symbols from a finite alphabet that may
have a number of “do not know” symbols. Similar to the definition of a
word as a total function from {1,...,|w|} to I, a partial word w is defined
as a partial function from {1,...,|w|} to £. The positions, where w(n)
(the n** letter of w) is not defined for n < |w| are called holes of w. If
D(w) stands for the domain of w, then the set of holes of w denoted by
H(w) is the set of numbers in {1,..., |w|}\D(w).

JCMCC 67 (2008), pp. 235-248

A word over ¥ is a partial word over ¥ with an empty set of holes (we
sometimes refer to words as full words). For any partial word u over T, |u|
denotes its length. In particular || = 0.

We denote by W) the set *, and for every integer i > 1, by W; the set
of partial words over & with exactly ¢ holes. W = |JW; is the set of all

i>0
partial words over & with an arbitrary number of holes.
If u is a partial word of length n over I, then the companion of u

(denoted by ug) is the total function ug : {1,...,n} — S U {0} defined by

woli) = { u(i) ifie D(w)

O otherwise

The symbol ¢ ¢ X is viewed as a “do not know” symbol. The word
up = abbQbObb is the companion of the partial word u of length 8 where
D(u) ={1,2,3,5,7,8} and H(u) = {4, 6}.

The reverse of a word u = apa; ...a,—1 is rev(u) = an-1...a1a9. The
reverse of a partial word u is rev(u). The reverse of a set X C W is the
set rev(X) = {rev(u)ju € X}.

Definition 2.1 If u and v are two partial words of equal length then u is
said to be contained in v, denoted by u C v, if D(u) C D(v) and u(i) = v()
Jor alli € D(u). The partial words u and v are compatible, denoted by u T v
if there exists a partial word w such that u C w and v C w.

We now recall the concept of special factors of a partial word introduced
in [5, 4].

Definition 2.2 Let w be a partial word over an alphabet ©. A word u is
o factor or subword of w if there ezist words or partial words p,q over ¥
such that w = puq. F(w) denotes the set of all its factors (subwords) and
alph(w), the set of all letters of the alphabet X occurring in w.

Example 2.1 Lel w = abQbaala. The factors of w are), a, b, ab, ba, aa, baa.

Let the cardinality of ¥ i.e., card(¥X) = d and w be a partial word over
the alphabet ¥. Let u be a factor of w. Since w is a partial word, the
factor u can be followed either by a letter of & or by the special symbol ¢.
We now define the positive and negative right valence of u.

For any factor u of w, we consider the maximal subset, with respect to
inclusion, R of ¥, such that uR C F(w). Thus for all letters x € R, one has
uz € F(w). We now introduce the maps (i) vp4 : F(w) — Z7* (the set of
all non-negative integers) defined for each u € F(w) as v,4(u) = card(R).
vr+ is called the positive right valence of «. (ii) v, : F(w) — Z~ {the set

236

of all negative integers) defined for each u € F(w) as v.—(u) = —m, if ud
occurs in m places in w is called the negative right valence of u.

Similarly one can define the left valence.

For any factor u of w, we consider the maximal subset, with respect
to inclusion, L of ¥ such that Lu C F(w), so that for all letters x € L,
zu € F(W). (i) w, : F(w) — Z7% is defined as for each u € F(w),
v, (u) = card(Lu) = card(L). (ii) vi_ : F(w) — Z~ is defined as for each
u € F(w), vi_(u) = —m, if ©Q occurs in m places in w.

Definition 2.3 A factor u of a partial word w is said to be right special if
it is followed by at least two distinct letters of T, i.e, vo4(u) > 2.
Similarly, left special fuctors can be defined.

The empty subword A of w has according to the definition a right and
a left valence equal to card(alph(w)).

For any u € F(w), —-m < vp—,v- < =1; 0 < v4,v4 < d where
m € N, card(X) = d.

Definition 2.4 A factor u of a partial word w is said to be bispecial if it
is both right and left special.

Remark 2.1
1. For any factor u of w, if v._(u) = vi_(u) = =1, then u is bordered
by holes.
2. For any factor u of w if either v,_(u) = —1 or v;_(u) = —1, then it

1s either preceded or followed by a hole.

9. For any factor v of w if (i) u is the suffix of w and (ii) it is either
not repeated or only followed by a hole in w, then its right valence is
defined as v, (u) = 0. Similarly v, (u) = 0, if (i) u is a prefiz of w
and i) it is either not repeated or only preceded by a hole in w.

Example 2.2 Let w = abOba®aaba.
F(w) = {a,b,ab, ba,aa}
vr_(a) = =2,v,_(b) = =1, v,_(ab) = —1,v,_(ba) = 0,v,_(aa) = —1.

3 Computing all Repeats of a Partial Word
using Suffix Arrays

In this section, we describe an algorithm to identify all repeating factors of
a given partial word by using the notion of a suffix tree.

237

Definition 3.1 Let w be a partial word. A repeat of u (subword) of a
partial word w is a tuple My, ., = (p;i1,ia,...,ir),T > 2, where

u=wli,...,51 +p=1] =wlig,..., o +p—-1] =+ = wliy,... i, +p—1].

Then u is said to be a repeating substring of w and u is a generator of
My . Again, p = |u| is the period of the repeat. If all the occurrences of u
in w are counted in M, ,,, then M,,,, is said to be complete and the tuple
is written as M,

w,u’

Example 3.1 Let w = ababQbaabadbaaab
u=aba, p=3, My, = (3;1,8), u = w[1,2,3] = w[8,9,10]. Since all the
occurrences of aba are counted in My, ., we have M, ,, = (3;1,8).

Definition 3.2 A repeat My, ., = (p;i1,%2, .- .,%r) is said to be left-extendable
(respectively right-extendable) if (p+1;41—1,i5—1,...,i.—1) (respectively,
(p+1;51,52, ..., Jr)) is a repeat. If M, ,, is neither left-extendable nor right-
extendable then it is said to be nonextendable. We abbreviate these terms
as LE, RE and NE respectively.

Example 3.2 Let w = ababQbaabadbaaad and u = ba.
Then My = (2;2,6,9,12), Myae = (3;1,8), Mypaa = (3;6,12).
Therefore u = ba is left-extendable as well as right-extendable. My poa =

(3;6,12) is neither left-extendable nor right-extendable. Hence it is nonex-
tendable.

The repeats which are right-extendable and left-extendable are sub-
strings of NE repeating subwords. Therefore in order to find all repeating
subwords of a partial word, it suffices to find only NE repeating subwords.

In the last few years, several algorithms have been proposed that employ
suffix trees to compute all the NE repeats in a given string z defined on an
ordered alphabet [3]. We employ suffix array and suffix tree to compute all
repeats of a partial word.

We give an algorithm to compute the suffix array of a partial word w.

Definition 3.3 The prefiz of the partial word upto the first hole of w is
called as the initial hole box. The suffiz of w after the last hole of w is
called as the terminal hole box. A factor of w, which is preceded as well as
followed by a hole is called as a proper hole boz.

Let w be a partial word of length n. Let ny be the number of holes in w
and the positions of the holes be hq, ha, ..., hy,,. Since there are ny holes,
the number of proper hole bozes is ny — 1. Let HBy be the initial hole boz,
HDB,,...,HDB,, be the proper hole bozes and HBp,+1 be the terminal hole
boz.

238

Definition 3.4 Let w = w[l,...,n| be a given partial word and n; be the
number of holes in w. The suffiz array Ay = A[1,...,n—mn,] is an array of
integers, such that A[i] = j, if i smallest suffiz of the hole bozes of w is
either w(j, ..., hx — 1] where hy is the first hole followed by the sequence of
letters from the j** position or wl[j,...,n] where there is no hole after the

7t position.

For effective use of suffix arrays, a second array m,, is also computed
that gives the length of the longest common prefix (Icp) of adjacent entries
in Ay.

Remark 3.1 If a partial word starts with a hole, then there is no initial
hole boz and if it ends with a hole, then there is no terminal hole boz.

Algorithm 1 (Compute suffix array and array)
Given the partial word w

1. Compute the hole boxes of w

HBl = w[l,...,h1~1]
HB,; = 'U.'[hi,_l’l'l,...,hi—l]

HBu, = wlhnyo1+ 1,y ~ 1]
HBn,1+l = w[hnl + 17"'yn]

2. Compute the suffizes of hole bozes
hO = 0)h111+1 =n+1
Fori=1ton; +1

Suﬂi.’ECS(HB,;) = {w[hi—l], w{h,-—2, h.,'—l], ey w[hi_l-f-l, ce hi—
1}

Compute the suffiz array \y,. Arrange the suffizes (HB;) fori =1
to ny + 1 in ascending lezicographical order. The suffix array Ay =
AlL,...,n—ny] is an array of integer, such that A[{] = j, if ith smallest

suffiz of the hole boxes of w is either w(j, ..., hx — 1] where hy is the

first hole followed by the sequence of letters from the j** position or

wlj, ..., n] where there is no hole after the j** position.

S

4. Compute the array my,
Tw(l) = 0, 7y (1) = lep(Mu(i — 1), Au(3)), for i =2 ton — n;.

239

Example 3.3 Let w = ababObaabadbaaab$

n=|w|=16, n; =2

D(w) ={1,2,3,4,6,7,8,9,10,12,13, 14, 15,16}

H(w) = {5,11}, hy = 5,hy = 11.

HB,; = abab, HB, = baaba, HB; = baaab.

suffizes of (HBy) is {b, ab, bab, abab}

suffizes of (H B3) is {a, ba, aba, aaba, baaba}

suffizxes of (HBs) is {b, ab, aab, aaab, baaab}.
The ascending lexicographical order of the suffizes of hole bozes is
{a, aaab, aab, aaba, ab, ab, aba, abab, b, b, ba, baaab, baaba, bab} .

Thus Xy, specifies the starting positions of the suffizes of hole boxes of
w in ascending lezicographical order.

1 234567891011121314
Aw=101314731581416 912 6 2

Tw 18 given below

1 234567891011121314
Aw=101314731581416 912 6 2

Tw= o 1 23122301 1232

For example lcp(7,3) = 1, as a is the longest common prefix of aaba
and ab.

Lemma 3.1 Let i be the reverse win] wn—1] ... w[l] of the partial word
w. Then a repeat M,,,, is LE if and only if My ; is RE.

We now give the suffix tree of a partial word and its reversal. Non
Right Extendable (NRE) repeats of a partial word are identified by its
suffix tree (as well as by its suffix array). The suffix tree represents only
the distinct prefixes of each suffix of hole boxes of w. The internal ()
nodes are recognizable as the longest common prefix (lep) values contained
in the array m,, while the leaf (J) nodes represent the starting positions
i of the suffixes of hole boxes HB;,7 = 1,2,...,n; + 1, as specified in the
array Ay.

As in every suffix tree, the lcp value at the root of each subtree applies to
all the leaf nodes of that subtree. The lcp values also specify the complete
repeats in w, which are NRE.

Example 3.4 Suffiz tree of w = ababObaabadbaaab$ is shown in Figure 1.

Since H(w) = {5, 11}, these positions are not indicated in the tree struc-
ture.

240

Figure 1: Suffix tree of w

The NRE repeats of w are w[7,8,9] = aab = w[14,15, 16],
w[1,2,3] = aba = w[8,9,10], w(12,13,14] = baa = wl[6,7,8].
Thus the NRE repeating subwords are aab, aba and baa.

Let us consider the reverse of w, 1 = baaabQabaabObaba$.
H B, = baaab, H By = abaab, HB; = baba
suffizes of (HB,) is {b,ab, aab, aaab, baaab}
suffizes of (HB,) is {b,ab, aab, baab, abaab}
suffizes of (HDBs) is {a, ba, aba,baba}
The suffizes of hole bozes of & can be written in the ascending lezico-
graphical order as follows.
@ = {a,aaab, aab, aab, ab, ab, aba, abaab, b, b, ba, baaab, baab, baba}.
The suffiz tree of W is shown in Figure 2.
Thus Ay, specifies the starting positions of the suffizes of hole bozes of
W in ascending lexicographical order.
H(w) = {6,12}. Position of holes are not indicated in the suffiz tree.
The NRE repeats of ¥ are
w(3,4,5] = ®[9,10,11] = aad
0|7, 8,9] = @14, 15,16] = aba
w(8,9,10] = ©[1, 2, 3] = baa.
Thus the NRE repeats of w and @ are {aab, aba,baa}.
Lemma 3.1, suggests a straight forward epproach to compute all the NE
repeats in w.

e Compute all the NRE repeats of w and all the NRE repeats of .

241

1 234567891011121314
Ap= 162 394714751115 1813
ny [

1 231223011232

Figure 2: Suffix tree of W

e Compare the NRE repeats of w and W to identify the repeats in both
lists. They are the NE repeats of w. Thus NE repeating subwords of
w are aad, aba, baa.

Computing the NE Tree

From Lemma 3.1, we know that the NRE repeats in % identify NLE
repeats in w. Suppose that some non-zero lep node p in Ty has as child
at position node . Then in 1, there exists an NRE repeating substring
@ = w[i,...1+ p — 1], that is, the reverse of an NLE repeating substring

u=wn—-(1+p~-2),...,n—(i1—1)] in w.

Thus the assignment i — n — (z +p — 2) identifies the starting position i of
an NLE repeating substring « in w of length p.

242

Definition 3.5 A substring u of w is mazimal NE repeating substring of
w if

1. u occurs at least twice in w

2. u is not a proper substring of any repeating substring of w.

Lemma 3.2 Ifu=wl[i,...,i+p—1] is a maximal NE repeating substring
of w, then the position node i occurs as a child of the lcp node p in T, and
n — (i +p — 2) occurs as a child of p in Ty,.

This lemma can be easily proved using the transformation on i « n —
(i +p—2), and which tells us that a maximal NE repeating substring must
be identifiable in both T}, and T}; and provides us with a simple strategy
for identifying all NE repeating substrings, that is, find the largest value of
p, then locate all their ancestors in T%.

Algorithm 2 (Compute the NE tree using suffix tree)
Given the suffiz trees T,, and Ty, compute the NE tree of w[l,...,n)].

1. traverse Ty, to create a table POINTER]i], that for each position i in
w points to the corresponding node in T,,.

2. for every lcp node p in T, do
NE|[p] — False

3. for every parent-child pair (,1) in Ty (§ > 0) do
Here use POINTER]i
ifi=n—(i+p—2) is a child of lcp node p in T, then
while not NE[p] do
NE[p] — true
if p#0 then
p — parent of p in T,

4. traverse T, deleting every sub tree rooted at an lcp node p for which
NE[p) = FALSE

Algorithm 2 is expressed in terms of four steps. Step (1) is a traversal of
T., that sets up a table enabling each position node i in Ty, to be accessed
later in constant time. In Step (2) a Boolean variable corresponding to each
marked node p in T}, is initialized to FALSE, indicating that no terminal
nodes in the subtree rooted at p have currently been identified as NE.
Step (3) processes every parent-child pair (p,7) in Ty, testing to determine
whether or not the equivalent parent-child pair (p,n — (2 + p — 2)) exists
in T, if so, then the marked node $ and all its ancestors in T;, must be
NE accordingly, until an ancestor is found that is already NE, p and its

243

ancestors in Ty, are identified as NE. A final step traverses T, to eliminate
all subtrees rooted at any node p for which N E[p] = FALSE, the remaining
tree is the NE tree of w.

Figure 3 displays the tree modified by the transformation ¢ — n—(i+p-2)
for the partial word w = ababQbaababaaab$.

Figure 3: T} with leaves labeled by the transformation ¢ «— n.— (i + p — 2)

The NE tree of w is shown in Figure 4.

a

® &

Figure 4: NE tree for w

Thus the repeating subwords of the given partial word w are a, b, aa, ab,
ba, aab, aba, baa.

244

Time Complexity
In Algorithm 1 (Compute suffix array A, and 7,)

1.

(47

4

The time taken to compute the hole boxes HB;, HB2,...,HBy, 41
of the partial word w is n, where n = |w|.

Let |HB;| = my, |HB2| = ma, ..., |HByp, 41| = my,4+1. The time
taken to compute the suffixes of the hole box HB; is ﬂi—'gﬁ—l), ji=
1,2,...,n; + 1. The total time taken to compute the suffixes of all
the hole boxes is

Z;‘:]Ll 31—(-—'%111—) = M, that is, the number of suffixes is M.

. To arrange the suffixes in ascending lexicographical order, the Algo-

rithm 1 takes M units of time.

. The Algorithm 1 takes 2M units of time to compute the suffix array

Aw and 7. Therefore the Algorithm 1 takes n + 4M units of time.

In Algorithm 2 (Compute the NE tree using suffix tree), the time
taken to locate the positions and the lep values is 2n units of time and
the time taken to identify the suffixes is M units of time. Therefore
the time taken to construct the suffix tree is 2n + M units of time,
similarly the time taken to construct Ty is 2n + M units of time.

. Let na < n be the number of nodes of NE tree. To traverse the NE

tree the time taken is n + no < 2n units of time. Similarly to delete
the nodes from NE tree the time taken is 2n units of time. Therefore
the total time taken by the Algorithms 1 and 2 is
n+dM+2n+M+2n+ M +2n+2n =9n +6M = O(n).

Valence Tree of a Partial Word

In this section, the valence tree of a partial word is given. The NE tree of
a partial word is identified by the valencies of the factors of w.

Remark 4.1 A factor u of a partial word w is a repeating factor if any
one of the following conditions are satisfied.

1.

u s right special.

2. u is left special.

3. u is hole special.

4.

Ve (u) =m, v,_(u) =-n,m=0,1,n>1.

245

Let us use the following procedure to find the repeating factors of a
partial word w using valence tree.

e Find F(w).
e Find their valencies.

o If the valence of a factor u of w satisfy any one of the conditions given
in Remark 4.1, then u is a repeating factor.

Algorithm 3 (Compute the NE tree using valence tree)
Given the valence tree VT, compute the NE tree of w(l,...,n].

1. Traverse VT, to create a table POINTER]i] that position i in w
points to the corresponding node in VT,,.

2. For every valence node i and valence node (i,7) in VT, do
NE[i} «— False, NE(i,j) — False.

3. For every node i in VT,
Here use POINTER]3)
if valence node (i) or valence node (i,) satisfies one of the following
conditions:

(a) v, (i) > 2.
() vr_(i) = —n,n>2.

(¢) vr (i) = myu._(§j) = —n,m = 0,1,n > 1. (For simplicity,
we write this condition as v.(i,J) = (m,—n), where m = 0,1,
n>1)

then NE(i) «— True or NE(i,j) — True.

4. Traverse VT, deleting every subtree rooted at a node for which N E(i) —
False or NE(i,j) «— False.

The valence tree represents only the distinct prefixes of each factor of
w, and the circular node represents the valencies of the factors of w.

Example 4.1 Let w = ababQbacbadbaaab

F(w) = {a, b,ab,ba, aa, aba, bab, baa, aaa, aab,abab, baab, aaba, baaa, aaab,
baaba, baaab}

The valence tree of w is shown in Figure 5.

Hence the repeating subwords of w are a,b, aa, ab, ba, aab, aba, baa.
The NE tree of a partial word is shown in Figure 6.

246

Figure 5: Valence tree of a partial word w

Time Complexity

1. The time taken to compute the hole boxes of w is n, where n = |w|.

2. The time taken to compute the factors of w is nM L, where ML is
the length of the maximal subword of w.

3. To find the valencies of the factors, the time taken is nM;, where M,
is the number of factors of w.

4. To construct the valence tree, the time taken is M) units of time.

5. To compute the NE tree, the time taken to traverse the tree is na,
where 75 is the number of nodes of NE tree.

Therefore the total time taken is
n+nML + nM; + M; + nz = 2n + no + (n + 1)M; = O(n) where na,
ML < n.

247

Figure 6: NE tree of a partial word w

Conclusion

We describe Algorithm 2 and Algorithm 3 to identify the repeating sub-
words in a given partial word w = w(l,...,n]. Algorithm 2 uses the suffix
tree and Algorithm 3 uses the valence tree. Both algorithms take lincar
time to identify the repeating subwords of a partial word.

Comparing Algorithm 2 and Algorithm 3 given in this Chapter to com-
pute the repeating subwords of a partial word w, we found that Algorithm 2

is simple and number of steps in the computation of NE tree is less in Al-
gorithm 3.

References

(1] Aldo De Luca. On the combinatorics of finite words. Theoretical
Computer Science, 218:13-39, 1999.

[2] Berstel. J and Boasson. L. Partial words and a theorem of Fine and
Wilf. Theoretical Computer Science, 218:135-141, 1999.

[3] Frantisek Franck, Willium F Smyth, and Yudong Tang. Computing
all repeats using suffix arrays. Journal of Automata, Languages and
Combinatorics, 8:579-591, 2003.

[4} Sasikala. K and Dare. V.R. Special factors of partial words and trape-
zoidal partial words. In Graphs, Combinatorics, Algorithms and Ap-
plications, pages 135-143. Narosa Publishing House, 2005.

[5] Sasikala. K, Kalyani. T, Dare. V.R, and Abisha. P.J. Subword com-
plexity of partial words. In Proceedings of NCMCM 2003, pages 253—
259. Allied Publishers, 2003.

248

