Investigation on Raster CNIN
Simulation

by Numerical Integration Algorithms
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It is understood that the characteristics of Cellular Neural Networks (CNNs)
are analog, time-continuous, non-linear dynamical systems and formally be-
long to the class of recurrent neural networks. CNNs have been proposed
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Abstract

The aim of this article is focused on developing an efficient algo-
rithm for simulating Cellular Neural Network arrays (CNNs) using
numerical integration techniques. The role of the simulator is that it
is capable of performing raster simulation for any kind as well as any
size of input image. It is a powerful tool for researchers to investigate
the potential applications of CNN. This article proposes an efficient
pseudo code for exploiting the latency properties of Cellular Neural
Networks along with well known numerical integration algorithms.
Simulation results and comparison have also been presented to show
the cfficiency of the numerical integration algorithms. Tt is observed
that the Runge-Kutta (RK)sixth order algorithm outperforms well
in comparison with the Explicit Euler, RK-Gill and RK-fifth order
algorithms.

Key-words: Cellular Neural Networks, Numerical Integration Tech-
niques, Raster CNN Simulation, Edge Detection.
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by Chua and Yang [6, 7], and they have found that CNN has many im-
portant applications in signal and real-time image processing [16]. Roska
et al. [17] have presented the first widely used simulation system which
allows the simulation of a large class of CNN and is especially suited for
image processing applications, real-time image processing (feature extrac-
tion, motion detection etc.,) patttern recognition, analysis of 3D complex
surfaces (minima, maxima detection etc.,) solving ordinary and partial dif-
ferential equations etc.

RK techniques have become very popular for computational purpose
(3, 4). RK algorithms are used to solve differential equations efficiently
that are equivalent to approximate the exact solutions by matching ’'n’
terms of the Taylor series expansion. Butcher [4] derived the best RK pair
along with an error estimate and by all statistical measures it appeared as
the RK-Butcher algorithms. This RK-Butcher algorithm is nominally con-
sidered sixth-order since it requires six functions evaluation, but in actual
practice the "working order” is equivalent to five (fifth order).

The RK-Butcher algorithm has been introduced by Morris Bader (1, 2]
for finding the truncation error estimates and intrinsic accuracies and the
early detection of stiffness in coupled differential equations that arises in
theoretical chemistry problems.

Ponalagusamy and Senthilkumar [14] have adapted the RK-sixth or-
der algorithm for computing the Time-Multiplexing CNN simulation using
limiting formulas of RK(7,8). Oliveria [12] introduced the popular RK-Gill
algorithm for evaluation of effectiveness factor of immobilized enzymes.

Chi-Chien Lee and Jose Pineda de Gyvez [5] introduced Euler, Improved
Euler, Predictor-Corrector and Fourth-Order (quadratic) Runge-Kutta al-
gorithms in Raster CNN simulation. Leon et al [10] proposed an cfficient
algorithm for converting digital documents to multi-layer raster formats.
Hadad and Piroozmand {11] have described the application of a multi-layer
cellular neural network to model and solve the nuclear reactor dynamic
equations. In this article, the raster CNN simulation problem is solved
with different approach using the algorithms such as Explicit Euler, RK-
Gill, RK-fifth order and RK-sixth order to yield higher accuracy, with less
error.
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2 Structure and Functions of Cellular Neural
Network

CNN is a hybrid of Cellular Automata and Neural Networks and it shares
the best features of both arecas. Like Neural Networks, its continuous time
feature allows real-time signal processing, and like Cellular Automata, its
local interconnection feature makes VLSI realization feasible. Its grid-like
structure is suitable for the solution of a high order system of first order
non-linear differential equations on-line and in real-time. CNN is an analog
nonlinear dynamic processor array shown Figure 1(a). The following are the
features of CNN [8].

1. Each analog processor is capable of processing continuous signals, in
either continuous-time or discrete-time modes.

2. The processors are placed on a 3D geometric cellular grid (several 2D
layers) and are basically similar.

3. Interaction among processors is local and mainly translation invari-
ant.

4. The mode of operation may be transient, equilibrium, periodic, chaotic,
or combined with logic (without Analog to /Digital Conversion)

The general CNN architecture consists of M x N cells placed in a rect-
angular array. The basic circuit unit of CNN is called a cell. It contains
linear and nonlinear circuit elements. Any cell, C(%, j) is connected only to
its neighbor cells (adjacent cells interact directly with each other). This in-
tuitive concept is called neighborhood and is denoted by N (%, 5). Cells not
in the immediate neighborhood have indirect effect because of the prop-
agation effects of the dynamics of the network. Each cell has a state z,
input u, and output y. The state of each cell is bounded for all time t > 0
and after the transient has settled down, a cellular neural network always
approaches one of its stable equilibrium points. This last fact is relevant
because it implies that the circuit will not oscillate. The dynamics of a
CNN has both output feedback (A) and input control (B) mechanisms.

The first order nonlinear differential equation defining the dynamics of
a cellular neural network cell can be written as follows.

1 .
B2 _ =g + Xowpeni A0 5k Dyalt)
dt + 2 cknenyy Bl dik Dua@) +1, 1<i<M, 1<j<N
2.1)
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Figure 1: Cellular Neural Networks:(a) Array Structure and (b) Block Di-
agram

and the output equation is given by
1 . ,
yis(t) = 5 {2y + 11~ 12;5(t) -1} 1<i<M, 1<j<N, (22)

where z;; is the state of cell C(i,7), ;;(0) is the initial condition of the
cell, ¢ is the linear capacitor, R is the linear resistor, I is an independent
current source, A(i,j; k,)yx and B(%, §; k, l)uy; are voltage controlled cur-
rent sources for all cells C(k,!) in the neighborhood N(i, 7) of cell C(3, 7),
and y;; represents the output equation.

From the equation (2.1) it is observed that the summation operators of
each cell is affected by its neighboring cells. A(.) represents on the output of
neighboring cells and is called as feedback operator, B(.) in turn affects the
input control and is known as the control operator. In particular, the entry
values of matrices A(.) and B(.) are dependent on the application chosen
by the user which are space invariant and are referred as cloning templates.
A current bias I and cloning templates establishes the transient behavior
of the cellular nonlinear network. A continuous-time cell implementation is
shown in figure 1(b) as an equivalent block diagram. CNNs have as input a
set of analog values and its programmability is done via cloning templates.
Thus, programmability is one of the most attractive properties of CNNs.
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3 Performance of Raster CNIN Simulations

Raster CNN simulation is an image scanning-processing technique for solv-
ing the system of difference equations of CNN. The equation (2.1) is space
invariant, which means that A(¢,j; k,!) = A(¢ — k,7 — 1) and B(4,j; k,1) =
B(i — k,j — 1) for all i, j, k,l. Therefore, the solution of the system of dif-
ference equations can be seen as a convolution process between the image
and the CNN processors. The fundamental approach is to imagine a square
sub-image area centered at (z,y), with the sub-image being the same size
of the templates involved in the simulation. The center of this sub-image
is then moved from pixel to pixel starting, say, at the top left comer and
applying the A and B templates at each location (z,y) to solve the dif-
ferential equation. This procedure is repeated for each time step, for all
the pixels in the image. An instance of this image scanning-processing is
referred to as "iteration”. The processing stops when it is found that the
states of all CNN processors have converged to steady-state values, and the
outputs of its neighbor cells are saturated, e.g. they have value [6, 7). This
whole simulating approach is referred to as raster simulation. A simplified
pseudo code is presented below gives the exact notion of this approach.

3.1 Pseudo Code for Raster CNN Simulation

Step 1. Initially get the input image, initial conditions and templates
from end user.

/ * M, N =Number of rows and columns of the 2D image */
while (converged-cells < total number of cells)

{

for i=lLii<=M;i++)for (=1, <=N;j++)

{

if (convergence-flag[i] [j])continue;

/* current cell already converged =/

Step 2. /+Calculate the next statex/.

Tij(tns1) = 35 (ta) + [0 (@(tn))dt
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Step 3. /+ Check the convergence criteriax/
. dx;;(t
if (-—%%ﬁ) =0 and yx =+1 forall c(k,l)€ N.(i,5)
convergence-flag(i][j] = 1;
converged-cells++ ;
}
}
/* end for %/

Step 4 /+ Update the state values of the entire image x/

for (i =Li <= M;i++) for (j =15 <= N;j++)
{

if (convergence-flag(i](]) continue;

Zij(tn) = Tij (tnt1);

}

Number of iteration++;

}

/* end while %/

For simulation purposes, a discretized form of equation (2.1) is solved
within each cell to simulate its state dynamics. One common way of pro-
cessing a large complex image is using a raster approach [6, 7]. This ap-
proach implies that each pixel of the image is mapped onto a CNN pro-

cessor. That is, it has an image processing function in the spatial domain
that is expressed as:

where f(.) is the input image, g(.) the processed image, and T is an operator
on f(.) defined over the neighborhood of (z,y). It is an exhaustive process
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from the view of hardware implementation. For practical applications, in
the order of 250,000 pixels, the hardware would require a large amount of
processors which would make its implementation unfeasible. An alternative
option to this scenario is multiplex the image processing operator.

4 Numerical Integration Techniques

The CNN is described by a system of nonlinear differential equations.
Therefore, it is necessary to discretize the differential equation for per-
forming behavioral simulation. For computational purposes, a normalized
time differential equation describing CNN is used by Nossek et al.,[13]

7 anr)) = L) (4.1)
—zi5(nT) + Xk yenn (i g) A 3 ks Dy (nT)
+ Ec(k,;)eN,(i,j) B(i,j; kv l)ukl + Ia (4-2)

1<i<M,1<j<N

v(nr) = 5 { @glnr) +11 = |wylor) =11} 1<i<M, 155N,

(4.3)
where 7 is the normalized time. For the purpose of solving the initial-
value problem, well established Single Step methods of numerical integra-
tion techniques are used [15]. These methods can be derived using the
definition of the definite integral

Tn+l

zij ((n + 1)7) — z35(nT) = / f(z{n7))d{nT) (4.4)

S Tn

Explicit Euler’s, the Improved Euler Predictor-Corrector and the RK -
fourth order are the mostly widely used single step algorithm in the CNN
behavioral raster simulation. These methods vary in the way they evaluate
the integral presented in [4].

4.1 Explicit Euler’s Algorithm

Euler’s method is the simplest of all algorithms for solving ordinary dif-
ferential equations. It is an explicit formula which uses the Taylor series
expansion to calculate the approximation.

zij((n + 1)7) = zi5(n7) + 7f'(2(nT)) (4.5)
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4.2 RK-Gill Algorithm

The RK-Gill algorithm was discussed by Oliveria [12] is an explicit method,
which requires the computation of four derivatives per time step. The
increase of the state variable z;; is stored in the constant k}’. This result
is used in the next iteration for evaluating k;j and repeat the same process
to obtain the values of k3§ and k.

kY = f'(zij(n7))
K = i) + kY

1. .
ﬁ)k?
= [z () - (%)k;j +L+ .

Therefore, the final integration is a weighted sum of the four calculated
derivatives is given below.

= F(ey(nm) + (s = P + (1 -

zi5((n + 1)7) = 235 (n7) + %{k? (2 VORY + 2+ VKT + K7} (4.6)

4.3 RK-Fifth Order Algorithm

The RK-fifth order algorithm is an explicit method discussed by Morris
Badder (1, 2]. It starts with a simple Euler method. The increase of the
state variable z;; is stored in the constant k” This result is used in the

next iteration for evaluating }cz - The same procedure must be repeated to
compute the values of k7, k7, k¢’ and kg .

ki = 7f(2i5(n7)),
ki = 7f (xi;(n7)) + %k?’,

g Lisi 14
Ky = 7f (zi5(n7)) + —"’;J + §k‘:’1’

ki = 7[(zs5(n7)) - SkF + k5,
k¥ =1 f(xi;(nT)) + ik” Dy

2 Y 16 164’

i G2 12 5 12, 8 .
I‘J =7f (:B,_-,(n’r))——kj-l— 7’”” 7"»;? —7’»3-%-713,:,’7.

Therefore, the final integration is a weighted sum of the five calculated
derivatives which is given below.

1 g g i - g
:zij((n +1)7) = Tij (n7) + %{7’\7;‘7 -+ 32’9;] + 12’94'7 + 32k? + 7’66‘7} 4.7)
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where f(.) is computed according to (2.1).

4.4 RK-Sixth Order Algorithm

The RK-sixth order algorithm is an explicit method discussed by Ponala-
gusamy and Senthilkumar [14]. It starts with a simple Euler method. The
increase of the state variable z;; is stored in the constant k” This result
is used in the next iteration for evaluating k¥ . The same procedure must
be repeated to compute the values of k3 &/ kgj k& and k7.

kY = 7f'(xi5(nT)),
k;j = Tf’(a:ij(n'r)) + %kij,

B = v (wiglnr) + K9 + 3’“
g 7 1 .
ij _ o Ay 2 gid
ki = 7f'(zij(n7)) + 36k + = k 12k3,
kl_’l = Tf’(sz(nT)) _ 35 i 55 ij ?Ek;) + %kij’

m v 35k
g 11 1 N DT B
= Tf’(.’l}ij(nT)) 36016” %k" - g '7 + -k] + —'k?

. 4
kY = 7f'(zij(nT)) - k” 22,55 43 i EL g+t gk”

260 3% + 156 ~ 30 195 3

Therefore, the final integration is a weighted suin of the seven caleulated
derivatives which is given below.

y L4, 13

%] g

{'”+ k3 k +55ks 25]c 2007
4.8)

:r:ij((n+1)r) = xij(nr) 200

where f(.) is computed according to (2.1).

5 Simulation Results and Comparisons

All the simulated outputs presented below here are performed using a high
power workstation, and the simulation time used for comparisons is the
actual CPU time used. The input image format is the X windows bitmap
format (xbm), which is commonly available and easily convertible from
popular image formats like GIF or JPEG. Figures (2) and (3) show the
results of the raster simulator obtained from a complex image of 1,25,600
pixels. Using RK-fifth order and RK-sixth order algorithms the results of
the raster simulator obtained from a complex image of 1, 25,600 pixels are
depicted respectively in figures (2) and (3). For the present example an
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averaging template followed by an edge detection template were applied to
the original image to yield the images displayed in figures 2(a) and 2(b),
respectively. The same procedure has been adapted for getting the results
shown in figures 3 (a) and 3(b). It is observed from figures (2) and (3) that
the edges obtained by the RIK-sixth order algorithm is better than that
obtained by the RIC-fifth order algorithm. As speed is one of the major
concern in the simulation, determining the maximum step size that still
vields convergence for a template can be helpful in speeding up the system.

The speed-up can be achieved by selecting an appropriate (At) for that
particular template. Even though the maximum step size may slightly vary
from one image to another, the values in figure (4) tend to be served as good
references. These results were obtained by trial and error over more than
100 simulations on a Lena image. Figure(5) shows that the importance
of selecting an appropriate time step size (At). If the step size is chosen
is too small, it might take many iterations, hence longer time. to achieve
convergence. But, on the other hand, if the step size taken is too large, it
might not converge at all or it would be converges to erroneous steady state
values; the latter remark can be observed in the case of the Euler algorithm.
The results of figure 5 were obtained by simulating a small image of size
256%256 pixels using Averaging template on a Lena image. For a larger
step size (At), the RK-sixth order algorithm takes lesser simulation time in
comparison with other numerical integration algorithms namely REK-fifth
order, RK-Gill and Explicit Euler.

Figure 2: (a) Original Lena Image, (b) After Averaging Template, (¢) Af-
ter Averaging and Edge Detection Templates by employing RK-fifth order
algorithin.
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Figure 3: (a) Original Lena Image, (b) After Averaging Template, (c)
After Averaging and Edge Detection Templates by employing RI- sixth
order algorithm.

6 Conclusion

The present article sheds some light on different numerical integration al-
gorithms involved in the raster CNN simulation. The importance of the
simulator is capable of performing raster simulation for any kind as well as
any size of input image. It is a powerful tool for researchers to investigate
the potential applications of CNN. The simulator adapted in the present
investigation meets the need in three ways: (1) Depending on the accu-
racy required for the simulation, the user can choose from five numerical
integration methods (2) The input image format is the X Windows bitmap
(xbm), which is commonly available and (3) The input image can be of
any size, allowing simulation of images available in common practices. It
is pertinent to pin-point out here that the RIK-sixth order algorithm guar-
antees the accuracy of the detected edges and greatly reduces the impact
of random noise on the detection results in comparison with the RK-fifth
order algorithm. It is of interest to mention that using RK-sixth order
algorithm; the edges of the output images are proved to be feasible and
effective by theoretic analysis and simulation.
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Edge Detection Averaging

Figure 4: Maximum Step Size (At) yields the convergence for four different
Templates .
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Figure 5: Comparison of Four Numerical Integration Techniques using the
Averaging Template.
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