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Abstract

A (2,2) packing on a graph G is a function f : V(G) — {0,1,2} with f(N[v]) <2
for all v € V(G). For a function f : V(G) — {0,1,2}, the Roman influence of
f denoted by Ir(f) is defined to be Ir(f) = (|Vi| + |Va| + 3¢y, deg(v)). The
efficient Roman domination number of G, denoted by Fr(G) is defined to be the
maximum of Irn(f) such that f is a (2,2)-packing. That is Fr(G) = max{Ir(f):
fis a(2,2) — packing}. A (2,2)-packing Fr(G) with Fr(G) = Ir(f) is called
an Fr(G) function. A graph G is said to be efficiently Roman dominalable if
Fr(G) = n, and when Fgr(G) = n, an Fr(G)-function is called an efficient
Roman dominating function. In this paper, we focus our study on certain graphs
which are efficiently Roman dominatable. We characterize the class of 2 x m and
3 x m gridgraphs, trees, unicyclic graphs and split graphs which are efficiently
Roman dominatable.
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1 Introduction

We consider only finite simple undirected graphs G = (V, E) of order
|V'| = n. For any vertex v € V, the open neighborhood of v is the set N(v) =
{u € V/uv € E} and the closed neighborhood is the set N[v] = N(v) U {v}.
For a set S C V, the open nelghborhood is N(S) = UyesN(v) and the
closed neighborhood is N{S] = N(S)US. A set S C V is a dominating set
if N[S] = V, or equivalently, every vertex in V\S is adjacent to at least
one vertex in S. The domination number v(G) is the minimum cardinality
of a dominating set in G, and a dominating set S of minimum cardinality
is called a y-set of G. A set S of vertices is called 2-packing if for every pair
of vertices u,v € S, N[u) N N[v] =

A Roman dominating function on a graph G = (V, E) is a function
f:V(G) — {0,1,2} satisfying the condition that whenever f(v) = 0, there
exists a u € N(v) for which f(u) = 2. Let Vp, V4, V2 be the ordered partition
induced by f where V; = {v € V/f(v) = i}. The weight of a Roman dom-
inating function is the value f(V) = ZveV(G) f(v). The minimum weight
of a Roman dominating function of G is called the Roman domination
number of G and is denoted by vr(G). Cockayne, Dreyer, Hedetniemi and
Hedetniemi (3], represented Roman dominating functions by three sets: Vg
is the set of vertices which receive no legions, V; is the set of vertices which
receive precisely one legion and V; is the set of vertices which receive two
legions.

Emperor Constantine had the requirement that an army or legion could
be sent from its home to defend a neighbouring location only if there was
a second army which stay and protect the home. Thus there are two types
of armies, stationary and traveling. Each vertex with no army must have
a neighbouring vertex with a traveling army. Stationary armies then dom-
inate their own vertices, and a vertex with two armies is dominated by its
stationary army, and its open neighbourhood is dominated by the travelling
army.

A variant of the domination number was suggested by an article in Scien-
tific American by Ian Stewart, entitled “Defend the Roman Empire!” {17].
A few lesser known articles by ReVelle [11,12] in the Johns Hopkins Mag-
azine suggested Roman domination a few years earlier. Since then, there
have been several articles on Roman domination [3-5, 8-10, 13]

Bange, Barkauskas and Slater [1,2] introduced the following efficiency
measure for a graph G. The efficient domination numnber of a graph, denoted
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by F(G), is the maximum number of vertices that can be dominated by
a set S that dominates each vertex at most once. A graph G of order
n = |V(G)| has an efficient dominating set if and only if F(G) = n. A vertex
v of deg(v) = |N(v)| dominates |[N[v]| = 1 + deg(v) vertices. Grinstead
and Slater [6] defined the influence of a set of vertices S to be I(S) =
Y ses(1+deg(v)), the total amount of domination being done by S. Because
S does not dominate any vertex more than once if and only if any two
vertices in S are at a distance at least 3 (that is, S is a 2-packing), we have
F(G) = maz{I(S) : S is a 2-packing}. A set S is an cfficient dominaiing
set if and only if [N (v)N S| = 1 for all vertices v € V(G), or equivalently, S
is an efficient dominating sct if and only if S is a 2-packing with I(S) =n =
F(G). A graph G has an cfficient dominating set if and only if F(G) = n.
The idea of cfficiency was extended to Roman domination by Rubalcaba
and Slater [15]. Following [14] a (j,k)-packing is a function f : V(G) —
{0,1,2,...,5} with f(N[v]) < & for all v € V(G). Thus a 2-packing is a
(1,1)-packing, and in particular, a (2,2)-packing is a function f : V(G) —
{0,1,2} with f(N[v]) <2 for all v € V(G).

Each stationary army stationed at a vertex {u} dominates only u. A
traveling army stationed at a vertex v dominates only its neighbours, N(v),
and it has influence deg(v). Any vertex with a traveling army necessarily has
a stationary army stationed at v Thus, for a function f: V(G) — {0, 1,2}
the Roman influence of f, denoted by Ig(f) is defined to be Ir(f) =
(1] + |Va| + ey, deg(v)). The efficient Roman domination number of
G, denoted by Fr(G) is defined to be the maximum of Ir(f) such that fisa
(2,2)-packing. That is Fr(G) = maz{Ir(f) : f is a (2,2)-packing}. A (2,2)-
packing f with Fr(G) = Ir(f) is called an Fg(G) function. Graph G is said
to be efficiently Roman dominatable, if Fr(G) = n, and when Fgr(G) = n,
Fr(G)-function is called an efficient Roman dominating function.

A star Kj ,,—1 has one vertex v of degree n—1 and n—1 vertices of degree
one. A split graph is a graph G = (V, E) whose vertices can be partitioned
into two sets V’ and V", where the vertices in V' from a complete graph
and vertices in V" are independent.

In this paper, we characterize the class of 2 x m and 3 x m grid graphs,
trees, unicyclic graphs, and split graphs which are efficiently Roman doma-
natable.

We need the following results for our further discussion.

Theorem 1.1 [15] For every graph G of order n = |V(G)|, we have Fr(G) <
n < Rg(G).
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Theorem 1.2 [15] For every graph G, we have Fr(G) = F(G)
Theorem 1.3 [15] If G is connected of order n > 3 and Fr(G) = n, then
every efficient Roman dominating function f has V; = f~1(1) = ¢.

2 Main Results

First we characterize 2 x m and 3 x m grid graphs which are efficiently
Roman dominatable.
Theorem 2.1 Let G be a 2 x m grid graph. Then Fr(G) = 2m if and only
if m is odd.

22 0 2_ 0 2 0 22 0 0 2 0
00 0 0 o0 2 0 0 2 0 0 0 0 2 o 0 O

Fig. 2.1. Construction for 2 x m grid graphs, 1 <m < 6

Proof. Let G be a 2 x m grid graph where m is odd. Let the vertices
of G be denoted as v1,1,v1,2,01,3,...V1,m, V2,1,2,2,V23,...V2,m. Define a
function f: V(G) — {0,1,2} as follows. For each i, such that 1 + 4i < m,
let f(v1,144:) = 2 and for each j, such that 3+ 45 < m, let f(v2,3445) = 2.
For all the remaining vertices u, let f(u) = 0. Then it is easy to see that f
is a (2,2)-packing with Fp(G) = Ir(G) = 2m. (Refer Fig 2.1)

Conversely let Fr(G) = 2m. Then we claim that m is odd. Suppose

not. Since Fr(G) = 2m, there exists a (2,2)-packing f with Fg(G) = 2m.
Hence every vertex in Vp is adjacent to exactly one vertex in Vo. Now
without loss of generality we assume that v;; € V2 and vy, € V. Then
clearly vy ,n, Vo, € Vo. But vy, is not adjacent to any member of V5, a
contradiction. Therefore m is odd. 0l
Theorem 2.2 Let G be a 3 x m grid graph. Then Fr(G) = 3m if and only
ifm<2.
Proof. Let the vertices of G be v;1,vi2,-.-,im, i = 1,2,3. If m = 2,
then define f : V(G) — {0,1,2} with f(v11) = f(vs2) = 2 and f(w)
= 0,w # 1,1, v3,2. Then clearly f is a (2,2)-packing with Fr(G) = Ir(G) =
3m. (Refer Fig. 2.2).

Conversely suppose Fr(G) = 3m. Then there exists a (2,2)-packing f :
V(G) — {0,1,2} such that every member of V; is adjacent to exactly one
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0 2

Fig. 2.2. Construction for 3 x 1 and 3 x 2 grid graphs

member of V, and no two members of V, are adjacent. By Theorem 1.3
Vi = ¢. We claim m < 2. Suppose m > 3. Then one of the following cases
arise. (l) V1,1 € Va (ll) U1 € Vo (iii) Vg2 € Vs

Case (i): v, € V5.

Since f is a (2,2)-packing v; 2,v1,3, V2,1, 2,2, v3,1 € Vo. Now va.2,v1,3, 3,1
must be adjacent to a member of V5. Hence both v 3,v32 € V3, which is a
contradiction since v3 3 is adjacent to two members of V2. (Refer Fig 2.3).
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Fig. 2.3.

Case (ii): v, € V5.

Now V1,1, V1,2, V2,2,V2,3,03,1V32 € Vo. Hence v1,2,V2,3,V32 € Vo must be
adjacent to a member of V,. Hence v1,3,v33 € Va. But vo 3 € V) is adjacent
to two members of V5, a contradiction. Similarly we deal with case (iii)
and get a contradiction. Hence m < 2. (Refer Fig. 2.4). a

We now characterize trees which are efficiently Roman dominatable. For
this purpose, we use the following notation.

Notation 2.3 For the star K; ,, we call the vertex of degree n, the head
vertex and the vertices of degree one, the end vertices. For K3, we will
consider one vertex to be the head vertex and the other as the end vertex.
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Fig. 2.4.

Fig. 2.5. A graph T* with 7 headvertices

Definition 2.4 We define a graph T to be the union of stars K 121 <

i < k and a collection & of edges subject to the following conditions.

(). If e = vw € &, then e is an edge joining v € V(K),,) and w €
V(K1,n,),i# j where v and w are end vertices.

(ii). For any pair of vertices v € V(K ) and w € V(Ki,n;),i # J, there
exists a unique path joining v and w. (Refer Fig. 2.5).

Remark 2.5 Clearly T is a tree.

Theorem 2.6 Let T be a tree of order n. Then Fgr(T) = n if and only if

T=T

Proof. Suppose T is of the given type. Then define f : V(T) — {0,1,2}

with f(v) = 0 if v is an end vertex of a star Ky,, and f(v) = 2, if v
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is a head vertex of a star K, ,, for some i. It is easy to see that f is a
(2,2)-packing with Fg(T) = Ig(f) =n.

Conversely suppose Fr(T) = n. Let f be a (2,2) packing with Ir(f) = n.
Note that since Ir(f) = n, for any v € Vj, there exists exactly one vertex
z € N(v) with f(2) = 2. Further by Theorem 1.3, V; is empty. Let V5 =
{u1,u2,...ux}, k < n. Since f is a (2,2)-packing, V; is independent.

Let K, be the star with u; as the head vertex, 1 < i < k. Now since f
is a (2,2)-packing, N(u;) " N(u;) = ¢ for every 4,5, 1 <i <k, 1 <5<k,
i # j. Let e = vw be an edge in G[V\V5]. Now there exists no ¢ such that
v, w are both end vertices of K ,,. Otherwise u;vw u; form a cycle in T,
a contradiction. Hence v and w are the end vertices of Iy »; and K. 1,n;
respectively for some ¢, j, ¢ # j. Let v € V(IKi,,) and w € V(Ky,,;),
1<i<kl1<j<kandi#j. Since T is a tree, there exists a unique path
joining v € V(K1,,,;) and w € V(K1,n;),% # j. Hence T = T™. a

We now proceed to characterize the class of unicyclic graphs which are
efficiently Roman dominatable.

Theorem 2.7 Let G be a unicyclic graph of order n. Let C be the cycle in
G. Then Fr(G) = n if and only if one of the following holds.

(i) There exists an edge e = vw in C such that G — e = T* where either
both v and w are end vertices of Ky n; in T* for somei or v is an end
vertex of Ky n, in T and w is and end vertez of K, m; m T for some
i and j,i # j.

(i) There exists a verter w in C such that the components 11,15,...T;
of G — w are isomorphic to T* where G is obtained by joining w to
a head vertez of one component T; and to end vertices of stars in the
other components T;(j # ).
Proof. Suppose the graph is of type (¢). Let ¢ = vw be an edge in C.
Define f : V(G) — {0,1,2} such that f(v) = 2 if v is the head of a star in
T*, f(v) =0if v is an end vertex of a star in T*. If the graph G is of type
(ii), let 1 < T; < s be the components of G—w. Define f : V(G) — {0,1,2}
such that, f(w) = 0, f(z) = 2if z is the head vertex of astarin 1,1 < i < &
and f(z) =0 if z is an end vertex of some star in T;, 1 < i < k. Clearly f
is a (2,2)-packing with Fr(G) = Ir(G) =n.

Conversely suppose Fr(G) = n. Let f be a (2,2)-packing with Ir(f) = n.
As in the proof of Theorem 2.6, we define V5 and K ,,;, 1 <4 < k. Since
G is unicyclic there exists at most one star K ,,, such that N(u;) is not
independent.
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Case (i): N(u;) is not independent for some 4, 1 < i < k.

Let N(u,) be not independent. In this case there exists neighbours w; and
wg of u, such that w; and ws are adjacent. Let e = wyws. Suppose e’ # e
is an edge in G[V'\V]. Then clearly €’ is an edge joining an end vertex of a
star K; ,, and an end vertex of a star K Ln s & # j. Now between a vertex
of K;,, and a vertex of K, ;» there exists a unique path. Otherwise G
will have more than one cycle which is a contradiction. Hence in this case
G=T*Ue.

Case (#4): N(u;) is independent for all i.

As in case (4) if ¢’ is an edge in G[V\V;] then e’ joins an end vertex of
K, and an end vertex of K ,, ;e Since G is unicyclic there exists a cycle
say C. Let e; = vw be an edge in C. If v,w ¢ Vj, then clearly G — e, is
isomorphic to T". Hence G = T* U e;. Then the graph is of type (i). If
v € V5 and w € Vj then there exists a vertex z, in C which is adjacent to
w such that 2, € V;. Let the components of G — w be T}, T5,...T, with
Ty containing v and 2;. Let 23, 23... z, be the neighbours of w such that
2 ¢ V(C)and 2, € V(T3),1 <i < s Clearly 2; € Vo, 1 < i < s. Hence
2; is an end vertex of a star in T;. Hence the components of G — w are
isomorphic to T* where G is obtained by joining w to v, a head vertex in
Ty and to z; end vertices of stars in T;. Hence the theorem. O
Theorem 2.8 Let G be a split graph of order n with bipartition (X1, Xs)
with X, independent and G[X2] complete. Then Fr(G) = n if and only if
one of the following conditions hold.

(¢). There ezists a vertex u in X such that N[u] = X; U X,.

(#). Bvery vertex in Xs has ezactly one neighbour in X;.

Proof. Suppose the graph is of the given type. If (i) holds then define
f:V(G) - {0,1,2} with f(u) = 2and f(v) = 0 for every v # u, v € V(G).
It is easy to see that f is a (2,2)-packing with Fr(G) = Ig(f) = n. If (ii)
holds then define f : V(G) — {0, 1,2} with f(w) = 2 for every w € X, and
f(w) = 0 for every w € X5. Since Uwex, N(w) = X2, Ir(f) = n. Hence f
is a (2,2)-packing with Fr(G) = Ig(f) =n.

Conversely, let G be a split graph with bipartition (X, X,) with X,
independent and G[X3) complete with Fr(G) = n. Let f be a (2,2)-packing
with Ip(f) = n. By Theorem. 1.3, V; = ¢. Since Ig(f) = n for any v € Vj,
there exists exactly one vertex z € N(v) with f(z) = 2. Since f is a
(2,2)-packing, V5 is independent. If there exists a vertex u in X» such
that N{u] = X; U X2 we are through. Otherwise we claim that f(v) # 2
for every v in X5. Suppose f(v) = 2 for some v in X5. Then f(w) = 0
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for every w € X,, w # v. Let z € X;\N(v). Since f is a (2,2)-packing,
f(z) = 0. Therefore z is not adjacent to any member of V3, a contradiction.
Therefore f(v) # 2 for every v € X,. Hence f(v) = 2 for every v € X;.
Now we claim N(u)NN(v) # ¢, for every u,v € X;. Let w € N(u)NN{v).
Then w is dominated by both v and v, a contradiction. Hence our claim.
Finally we claim {J,,ex, N(w) = Xa. Suppose not. Then there exists a
z € Xo\(Uwex, N(w)). Now z is not adjacent to any vertex in X3, which
in turn is not adjacent to any member of V3, a contradiction. Hence G is
of type (7). (]
Remark 2.9 In view of Theorem 1.2, the class of 2 x m and 3 x m grid
graphs, trees, unicyclic graphs and split graphs with F(G) = n have also
been characterized.
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