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Abstract

A labeling of the vertices of a graph with distinct natural numbers induces a natural
labeling of its edges: the label of an edge (z,y) is the absolute value of the difference
of the labels of £ and y. We say that a labeling of the vertices of a graph of order
7 is minimally k-equitable if the vertices are labeled with 1,2...n and in the induced
labeling of its edges, every label either occurs exactly k times or does not occur at all.
In this paper, we prove that Butterfiy and Benes networks are minimally 27- equitable
where 7 is the dimension of the networks.
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1 Introduction

The area of graph theory has experienced a fast development during the last
60 years. Among all the different kinds of problems that appear while studying
graph theory, one that has been growing strong during the last three decades
is the area that studies labelings of graphs. This is not only due to its math-
ematical importance but also because of the wide range of applications arising
from this area. For instance, we can find labelings of graphs showing up in
x-rays, crystallography, coding theory, radar, astronomy, circuit design, and
communication network addressing (5, 6).

A graph labeling is an assignment of integers to the vertices or edges, or both,
subject to certain conditions. Graph labeling was first introduced in the 1960s.
Over the past three decades more than 600 papers have spawned a bewildering
array of graph labeling methods. Despite the unabated procession of papers,
there are few general results on graph labeling. Indeed, the papers focus on
particular classes of graphs and methods and feature ad hoc arguments.

2 An overview of the paper

In 1990, Cahit [7] proposed the idea of k-equitable labeling. For any graph
G(V, E) and any positive integer k, assign vertex labels from {0,1..k — 1} so
that when the edge labels are induced by the absolute value of the difference of
the vertex labels, the number of vertices labeled with 7 and number of vertices
labeled with j differ by at most one and the number of edges labeled with i and
number of edges labeled with j differ by at most one. A graph with such an
assignment is called k-equitable.
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Bloom defined a labeling of graph to be k-equitable if in the induced labeling .

of edges, every label occurs exactly k times. Furthermore a k-equitable labeling
of a graph of order n is said to be minimal if the vertices are labeled with 1,2...n.
A graph is minimally k-equitable if it has a minimal k-equitable labeling.

Wojcicchowski {12, 13] proved that C,, is minimally k-equitable if and only
if k is a proper divisor of n. Barrientos and Hevia [2] proved that if G is k-
equitable of size ¢ = kw then §(G) < w and A(G) < 2w. Barrientos, Dejter,
and Hevia [1} have shown that a forest of even size is 2-equitable. They also
prove that for k = 3 or 4, a forest of size kw is k-equitable if and only if its
maximum degree is at most 2w and that if 3 divides mn + 1, then the double
star S, , is 3-equitable if and only if ¢/3 < m < |(¢ ~ 1) /2]. They discuss the
k-equitability of forests for k > 5 and characterize all caterpillars of diamneter
2 that are k-equitable for all possible values of k. Barrientos proves that the
one-point. union of a cycle and a path and the disjoint union of a cycle and a
path are k-equitable for all k that divide the size of the graph. Barrientos and
Hevia (2] have shown the following: C,, x Ky is 2-equitable when n is even;
books Bp(n > 3) are 2-equitable when 7 is odd; the vertex union of k-equitable
graphs is k-equitable; and wheels W,, are 2-equitable when n 2 3(mod4). They
conjecture that W, is 2-equitable when n = 3(mod4) except when n = 3.

Bhat-Nayak and M.Acharya [3, 4] have proved the following: the crowns
C2a 9 K are minimally 4-equitable, the crowns Cs, ) K; are minimally 3-
equitable. More complete results on minimnally k-equitable graphs can be seen
in the survey paper by Gallian (8].

In this paper we prove that Butterfly and Benes networks are minimally 27-
equitable where 7 is the dimension of the networks.

3 Terminology

Networks are represented as undirected graphs whose nodes represent processors
and whose edges represent inter-processor communication links. A multistage
network consists of a series of switch stages and interconnection patterns, which
allows N inputs to be connected to N outputs. A multistage network uses
dynamic interconnection to allow communication paths to be established as
needed for the transfer of information between /0 nodes. The Butterfly and
Benes networks are important multistage interconnection networks, which pos-
sess attractive topological for communication networks. They have been used
in parallel computing systems such as IBM SP1/SP2, MIT Transit Project, and
NEC Cenju-3, and used as well in the internal structures of optical couplers,
e.g., star couplers |9, 10].

3.1 The Butterfly Network

The set of nodes V of an r-dimensional Butterfly corresponds to the set of pairs
[w. ], where i is the dimension or level of a node (0 < i < r) and w is an 7-bit
binary number that denotes the row of the node. Two nodes [w,i} and [w %]
are linked by an edge if and only if i’ = i + 1 and either

1. w and w are identical, or

2. w and w differ in precisely the ith bit.
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An r-dimensional Butterfly is denoted by BF(r). The r-dimensional but-
terfly has (» +1)2" nodes and 27" edges.
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Figure 1: Binary labeling of a 2-dimensional butterfly (a) Normal form and (b)
Diamond form

Efficient representations for Butterfly and Benes networks have heen ob-
tained by Manuel et al. [11]. The butterfly in Figure 1(a) is drawn in normal
representation; an alternative representation, called the diamond representation,
is given in Figure 1(3). Note that by diamond we mean a cycle of length 4.

Two nodes [w,i] and [w',i] are said to be mirror images of each other
if w and w' differ precisely in the first bit. The removal of the level 0 vertices
U1, V2, ..., var of BF(r) gives two subgraphs H; and Hy of BF(r), each isomorphic
to BF(r — 1). Since {v;,v2,...,vp+} is a vertex-cut of BF(r), the vertices are
called binding vertices of BF(r).

X
@ <— Binding vertex
Binding diamond —1p\ A of BF (1)

/ !\ Lefi binding

- \
Bmdl;rg;f;l)ex .{ v }v, v,{ ¥ v,) veriex of BF (2)
0 ,
Binding edge —" 1 ‘o \ Right binding

\ @ \ 7 veriex of BF (2)
y

Figure 2: A 2-dimensional butterfly

A 4-cycle zviyvex in BF(r) where x € V(H,),y € V(H,) and v, v are
binding vertices of BF(r) is called a binding diamond. The edges of a binding
diamond are called binding edges. There are exactly two binding vertices of
BPF(r) adjacent to a binding vertex of Hy = BF(r —1). One is called the left
binding vertex and the other is called the right binding vertex. See Figure 2.
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3.2 The Benes Network

The Benes network is very similar to the butterfly network, in terms of both its
computational power and its network structure. As butterfly is known for FFT,
Benes is known for permutation routing.

The Benes network consists of back-to-back butterflies. An r-dimensional
Benes network has 27+ 1 levels, each level with 2" nodes. The level zero to level
r vertices in the network form an r-dimensional butterfly. The middle level of
the Benes network is shared by these butterflies. An r-dimensional Benes is
denoted by B(r). The r-dimensional Benes has (2r + 1)2" nodes and #27+2
edges. See Figure 3.

fevel 0 Levell Level 2 Level 3 Levelq

A

(a) (b)

Figure 3: Binary labeling of a 2-dimensional Benes network (a) Normal form
and (b) Diamond form

The removal of the level 0 vertices vy,vs,...,v3» and the level 2r vertices
Ugrg1, Vgrpg, .., Uge+r Of B(7) gives two subgraphs H; and Hp of B(r), each
isomorphic to B(r—1). Asin Butterfly networks, we may define binding vertices,
binding edges and binding diamonds for a Benes network. See Figure 4.
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Figure 4: A 2-dimensional Benes network

4 BF(r) and B(r) are minimally 2"- equitable

Theorem 1 The r-dimensional butterfly BF(r) is minimally 2" - equitable.
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Proof. We give an inductive labeling of the vertices of BF(r). The 1-dimensional
butterfly is labeled as shown in Figure 5.

1
1 2
e
2 1
4

Figure 5: Labeling of a 1-dimensional Butterfly

For 1 > 2, the mirror image of vertex labeled 7 in BF(t — 1) is labeled
as i+ (t+2)277, 1 < i < 1271, The left child of the binding vertex of
BF(t — 1) with label 7 is labeled as i + (¢ + 1)2*~2and the right child is labeled
as i+ (t + 3)2'~2. Figure 6 illustrates the labeling of BF(3).

Figure 6: Labeling of BF(3)

We prove by induction that the labels on the edges of BF(r) induce a min-
imally 27- equitable labeling. By verification, BF(1) is minimally 2- equitable.
Assume that BF(¢ — 1) is minimally 2¢~!- equitable. Consider BF(t). Since H,
and Hy are isomorphic to BF(t — 1), H; and Hp are minimally 2'~’- equitable.
Therefore each edge label is repeated 2(27') times.

i

(14112 (1+3)2"?

i+ (1+1)2"2 i+ (1+3)2"2
(r+3)2"2 (1+1)2"?

i+ (1+2)2

Figure 7: Labeling of a binding diamond of BF(t)

We need only to consider the binding diamonds of BF(t). The labeling of
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when # is even and i + 2° when ¢ is odd. The right child of the binding vertex of
B(t) with Jabel i is labeled as i + (61 + 3)2!~2 when t is even and i + 2t+! when
1 is odd. Figure 9 illustrates the labeling of B(3).

We prove by induction that the labels on the edges of B(r) induce a mini-
mally 2"- equitable labeling. By verification, the labels on B(1) is minimally 2-
equitable. Assume that B(t — 1) is minimally 2'~'- equitable. Consider B(t).
Since Hy and H; are isomorphic to B{t — 1), Hy and Hy are minimally 2:-1-
equitable. Therefore each edge label is repeated 2(2!~1) times.

We need only to consider the binding diamonds of B(t). The labeling of a
binding diamond of B(t) when ¢ is even as shown in Figure 10(a). The labels
(61—1)2'"2 (61+3)2t-2, (20 +1)2¢~2, (2t +5)2'~2 are repeated only once in each
binding diamond. B(t) has 2* binding diamonds and hence each edge label is
repeated 2* times when t is even. Next the labeling of a binding diamond of B(t)
when t is odd as shown in Figure 10(b). The labels 2¢,2!+1 (2t + 1)2¢—1 (2t -
1)2'=1 are repeated only once in each binding diamond. B(t) has 2 binding
diamonds and hence each edge label is repeated 2 times in B(t) when ¢ is odd.

(61-1)2"2 (6143322

+1

i+ (61-1)2"2 i+ (61+3)2'2

Lr+1)22 (2r+5)2"2

i+ (20-1)2"1 i+ r+3)21
(a) (b)

Figure 10: Labeling of a binding diamond of B(t) (a) t even and (b) ¢ odd

It remains to show that the labels {(6t — 1)2!~2 (Gt + 3)2°~2, (2t + 1)2¢~2,
(2t + 5)2*=2} in the binding diamond of B(t) when ¢t is even and the labels
{2, 2"+ (2t + 1)2'~1,(2t - 1)2'~'} in the binding diamond of B(¢) when ¢ is
odd are pair wise distinct. Let (62~ 1)2!~2 and 2!*! be the labels of the binding
edges of B(t) and B(L + 1) respectively. Supposc (6t - 1)2:=2 = 2t+! Then
6t = 9, which is a contradiction. All other pairs can be proved similarly. Hence
B(1) is minimally 2'- equitable. O

5 Conclusion
In this paper we have proved that Butterflv and Benes networks are minimally
2"-equitable where r is the dimension of the networks. This problem is under in-

vestigation for certain other parallel architecture like hexagonal and honeycomb
" networks.
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when t is even and i + 2¢ when ¢ is odd. The right child of the binding vertex of
B(t) with label i is labeled as 4 + (6t + 3)2:~2 when ¢ is even and i + 2'*! when
t is odd. Figure 9 illustrates the labeling of B(3).

We prove by induction that the labels on the edges of B(r) induce a mini-
mally 27- equitable labeling. By verification, the labels on B(1) is minimally 2-
equitable. Assume that B(t — 1) is minimally 2!~7- equitable. Consider B(t).
Since H; and H, are isomorphic to B(Z — 1), H; and H, are minimally 2'~1-
equitable. Therefore each edge label is repeated 2(2:~!) times.

‘We need only to consider the binding diamonds of B(t). The labeling of a
binding diamond of B(t) when ¢ is even as shown in Figure 10(a). The labels
(6t—1)2t-2,(6t+3)2t2, (2t +1)2¢2, (2t +5)2'~2 are repeated only once in each
binding diamond. B(t) has 2! binding diamonds and hence each edge label is
repeated 2¢ times when t is even. Next the labeling of a binding diamond of B(t)
when ¢ is odd as shown in Figure 10(b). The labels 2¢, 2+, (2t + 1)2¢7, (2t -
1)2¢-1 are repeated only once in each binding diamond. B(t) has 2¢ binding
diamonds and hence each edge label is repeated 2! times in B(t) when ¢ is odd.

(66-1)2"2 (61+3)2"2

i+ (61-1)2"2 i+ (e1+3)2% 2

fr+1)22 (21+5)2"2 pr+1)2°!

i+ (20-1)21 i+ or+3)2"t
(a) (b)

Figure 10: Labeling of a binding diamond of B(t) () t even and (b) ¢t odd

It remains to show that the labels {(6t — 1)2:=2, (6t + 3)2¢~2, (2t + 1)2'~2,
(2t + 5)2*=2} in the binding diamond of B(t) when t is even and the labels
{2¢,2t+1 (2t 4+ 1)271,(2t — 1)2¢1} in the binding diamond of B(t) when t is
odd are pair wise distinct. Let (6t —1)2t~2 and 2'*7 be the labels of the binding
edges of B(t) and B(t + 1) respectively. Suppose (6t — 1)2'~% = 2*+1. Then
6t = 9, which is a contradiction. All other pairs can be proved similarly. Hence
B(t) is minimally 2!- equitable. O

5 Conclusion
In this paper we have proved that Butterfly and Benes networks are minimally
27-equitable where  is the dimension of the networks. This problemn is under in-

vestigation for certain other parallel architecture like hexagonal and honeycomb
networks.
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