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Abstract

Embeddings capablities play a vital role in evaluating interconnection net-
works. Wirelength is an important measure of an embedding. As far as the most
versatile architecture hypercube is concerned, only approximate estimates of the
wirelength of various embeddings are available. This paper presents an optimal
embedding of hypercube into a new architecture called k-cube necklace which
minimizes wirelength. In addition this paper gives exact formula of minimum
wirelength of hypercube into k-cube necklace and thereby we solve completely
the wirelength problem of hypercube into k-cube necklace.

Keywords: Fixed interconnection parallel architecture, hypercubes, cube
necklace, embedding, wirelength.

1 Introduction and Terminology

A parallel algorithm or a massively parallel computer can be each modeled
by a graph, in which the vertices of the graph represent the processes or
processing elements, and the edges represent the communications among
processes or processors. Thus, the problem of efficiently executing a parallel
algorithm A on a parallel computer M can be often reduced to the problem
of mapping the graph G, representing A, on the graph H, representing M,
so that the mapping satisfies some predefined constraints. This is called
graph embedding [13], which is defined more precisely as follows:

Let G and H be finite graphs with n vertices. V(G) and V(H) denote
the vertex sets of G and H respectively. E(G) and E(H) denote the edge
sets of G and H respectively. An embedding [4] f of G into H is defined
as follows:

(). f is a bijective map from V(G) — V(H)

(i1). f is a one-to-one map from E(G) to { Ps(f(u), f(v)) : Ps(f(u), f(v))
is a path in H between f(u) and f(v)}.
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Figure 1: Embedding of a Hypercube into a Grid

See Figure 1. A sct of edges of H is said to be an edge cut of H if the
removal of these edges results in a disconnection of H.

The congestion of an embedding f of G into H is the maximum number
of edges of the graph G that are embedded on any single edge of H. Let
ECy(G, H(e)) denote the number of edges (u,v) of G such that e is in the
path Pr(f(u), f(v)) between f(u) and f(v) in H. In other words,

ECs(G,H(e)) = |{(u,v) € E(G) : e € Py(f(u), fF)}|

where Py;(f(u), f(v)) denotes the path between f(u) and f(v) in H with
respect to f.

The Edge Congestion Problem The edge congestion [16] of an em-
bedding f of G into H is given by

ECy(G,H) = max EC(G, H(e))

where the maximum is taken over all edges e of H. Then, the minimum
edge congestion of G into H is defined as

EC(G, H) = min EC{(G, H)

where the minimum is taken over all embeddings f of G into H. See Figure
2. The edge congestion problem of a graph G into H is to find an embedding
of G into H that induces the minimum cdge congestion EC(G, H). ®
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Figure 2: For the embedding mentioned in Figure 1, the edge congestions
are marked on the respective edges of the Grid

The Wirelength Problem The wirelength of an embedding f of G into
H is given by

X
WL(G, H) = dr (f(w), f())
(u,v)EE(G)

where dy (f(u), f(v)) denotes the length of the path Ps(f(v), f(v)) in H.
Then, the minimum wirelength of G into H is defined as

WL(G, H) = minWL(G, H)

where the minimum is taken over all embeddings f of G into H. The wire-
length problem (4, 5, 7, 13, 9] of a graph G into H is to find an embedding
of G into H that induces the minimum wirelength W L(G, H). o

2 Overview of the Paper

The wirelength of a graph embedding arises from VLSI designs, data struc-
tures and data representations, networks for parallel computer systems,
biological models that deal with cloning and visual stimuli, parallel archi-
tecture, structural engineering and so on (16]. VLSI Layout Problem (1} is
a part of grid embedding. Embedding problems have been considered for
star networks into hypercubes [2], complete trees into hypercubes [3], hy-
percubes into grids [4], incomplete hypercube in books {10}, grids in surfaces
[8], cycles into faulty twisted cubes [12], complete graphs into hypercubes
[11], ladders into hypercubes [6], hypercubes into complete binary trees
(15], and binary trees into grids [13].

Even though there are numerous results and discussions on the wire-
length problem, most of them deal with only approximate results and the
estimation of lower bounds [4]. The embeddings discussed in this paper
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produce an optimal wirelength. We also derive a formula for the minimum
wirelength of hypercubes into k-cube necklace. ©

3 A Few Basic Results

Here onwards, for the sake of simplicity ECf(G, H(e)) wilhbe represented
by ECg(e). For any set S of edges of H, EC(S) = ECf(e) The

following lemma will be used throughout this paper. We apply this result
to estimate the edge congestion and wirelength.

Partition Lemma [14] Let G be an r-regular graph and f be an em-
bedding of G into H. Let S be an edge cut of H such that the
removal of edges of S leaves H into 2 components Hy and H, and

let Gy = f~(Hh) and G, = f~"(H3). Also § satisfics the following
conditions:

(i) For every edge (a,b) € G;, i = 1,2, Ps(f(a), £(b)) has no edges in S.
(i) For every edge (a,b) in G with a € G4 and b € G2, Ps(f(a), (b))
has exactly one edge in S.
(iii) G1 is a mazimum subgraph on k vertices where k = |[V(G,)|.
Then ECf(S) is minimum.

Lemma 1 Let f : G — H be an embedding. Let {Sy,S2,...,5p,} be a
partition of E(H) such that each S; is an edge cut of H. Then

X
WL, G H) = EC/Sy).

i=1

4 Wirelength Problem of )" into k-Cube
Necklace

Definition 1 For r > 1 let Q" denote the graph of r-dimensional hyper-
cube. The vertex set of Q7 is formed by the collection of all r-dimensional
binary representations. Two vertices z,y € V(Q") are adjacent if and only
if the corresponding binary representations differ ezactly in one bit [3, 16].

Definition 2 Let P = v,v,...,um be a path. Let H; be a graph such

that P U H; has just v; as a cut vertexr, i = 1,2,...,m. Then the graph

PU (_TLYJ:H.-) is called a necklace. We refer to P as spine, the vertices and
i=

edges of P as spine vertices and spine edges respectively.
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If each H; is isomorphic to a hypercube H* then it is called k-cube
necklace. A 1- cube necklace is a comb. When & = 2, we call it a diamond
necklace and when k& = 3 we call it a cubic necklace.

The main focus of this paper is to embed the guest graph Q" into the
host graph which is a k-cube necklace, H™* 1 < k < .

Theorem 1 Let Q7 denote the graph of r-dimensional hypercube. Fori =
0,1,..,27 =1, L; ={0,1,...,%} induces a mazimal subgraph of Q".

In this section, we show that the lexicographic embedding solves the
wirelength problem of Q" into the k-cube necklace H™*.

Lexicographic Embedding

The lexicographic embedding of Q" with labeling 0 to 2" — 1 into k-cube
necklace H™* is an assignment of labeling of nodes of H"¥,1 < k < r as
follows: For 0 <4 <27k _1

(i) The 2"—* spine vertices on the Spine are labeled as i2*, from left to
right..

(ii) The vertices of hypercube incident with spine vertices labeled 23, is
labeled (i x 2 + 1, x 28 +2,..., (ix2F + (2 —1)),0 < i < 2k —1.

This embedding is denoted by f. See Figure 3.

Figure 3: Lexicographic embedding of Q® into H5*

We bigin with k = 3.
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Lemma 2 There erxists an embedding f of Q" into H™ which induces
minimum wirelength WL(Q", H™3).

Proof. Let A;, 0 < i < 273 — 1 be an edge cut of the hypercube in
cubic necklace H™3 consisting of 2"~3 vertices on the spine such that A;
disconnects each H™? into two components H{1’3 and H{2‘3 where the vertices
of H[are labeled {233,2% +1,2% +4,2% +5},0 < i < 2"~3-1. Sce Figure
4. Let Gy, = f~Y(H]®) and Gy, = f~"(H]®). Then, G, is a subcube
induced by the vertlces {2%4,2% +1,2% + 4, 33+ 5,0<i< 28 1.
Hence by Partition Lemma, EC(A; ) is minimum.

Consider an edge cut B;, 0 5 j < 27731, The edge cut B; disconnects
H™® into two components H} ™3 and H ™3 where the vertices of H} "3are
labeled {235 + 1,235 + 3,235 + 5,235 + 7} 0<j<2-3-1. See Flgure
5 Let Gj, = f~"(H} 3) and Gj, = f~ 1(H""v') Then, Gj, is a subcube
induced by thevertlces {233 +1,23 43,235 + 5 2% +7}1,0< <23 -1
and by Partition Lemma, ECy (Bj) is minimum.

In the same way EC;(C}) is minimum for k = 0,1,...,2"~3 — 1. Also,
D, disconnects H™? into two components such that D;, and D;, such
that f='(Dy, ) is a subcube induced by the vertices {0,1,..., (123 — 1)}
l =1,2,.,2-3 — 1. By Theorem 1, f~"(D,, ) is a subgraph of Q" and
hence by Partition Lemma ECy (D)) is minimum for [ = 1,2,...,2773 — 1.
See Figure 6. m
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Figure 4: Each A; is an edge cut of the cubxc necklax,e such that A; discon-
nects H52 into two components H *and H

4.1 Derivation of Wirelength of WL(Q", H")

Until now we have demonstrated that the embedding f of Q" into H™3
provides minimum edge congestion and minimum wirelength. We proceed
to obtain the exact wirelength.
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Figure 5: Each B; is an edge cut of the cubic necklace such that B; dis-
connects H5? into two components H?f‘and H 5’2’3

Theorem 2 [14] WL(Q", Por) = 2271 — 271,
We now derive a similar expression for WL(Q", H™3).

Theorem 3 The exact wirelength of Q" into H™ is WL(Q",H™®) =
22r=4 71 4 3 x 2V (r - 2).

Proof. The embedding f has a nice symmetric property. The sum of the
edge congestions on edges of cut A4;, cut B;, and cut Cy are the same and
is equal to 4r — 8. By Theorem 2, the sum of edge congestion on the spine
= 22WL(Q "3, P,-3).Hence the total wirelength
= 22r=4_r=1 4 273 x 3(4r —8)
= 2Zr—=4_r-1 4 3Ix277V(r-2)
This proves the theorem.
Proceeding in the same lines as in Lemma 2 we obtain the following
results for £ > 3.

Lemma 3 There exists an embedding f of Q" into H™* which induces
minimum wirelength W L(Q", H™ ).

Proof. Let s = (s1, 52, ..., 5&) be a k-tuple and let ¢ be an integer. We define
s+t as follows: s+t = (s7+t,82 +¢,..., se +1). Let T} = {0,1,...,2""1 -1}
.For1<i<k-1,0<j<2%—1,defineC},, as C,, = {T; +j2~,T; +
2+ 28, Ty + 2 x 28+ j2% . (T, + 28(2F—* — 1) + j2*)}. The k-edge cuts of
H™* are of the form A?, 1 < i < k. Each edge cut A7 divides H™* into two
components Ai and Afz where the vertices of A{1 are Aﬂ = {Ci,,}, for
1<i<k-1,0<;j<2*-1,andfori =k, Al ={0,1,.., 251 —1+;2%}.

Proceeding as in Lemma 2, we notice that the inverse images A} and A},
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Figure 6: Each C}, is an edge cut of the cubic necklace such that Cj discon-
nects H52 into two components H,f;"'and H,f;a and each D is a cut dege

such that D; disconnects H5? into two components H,51‘3and Hlsz‘3

induces maximum subgraph in Q". Then by Partition Lemma, ECy (Af ) is
minimun for 1<i<k—-1,0<j<2r% -1,

Also, each B; disconnects G into By, and Bj, such that f~(B,,) is a
subcube induced by {0, 1,...,125-1},1 =1,2,...,2""%¥-1,2 < k< r—1. By
Theorem 1, f~1(B,,) is a maximum subgraph of Q" and hence by Partition
Lemma, EC;(B;) is minimum for [ = 1,2,...,2" % ~1. m

4.2 Derivation of Wirelength of WL(Q", H™)

Until now we have demonstrated that the embedding f of Q" into H™*
provides minimum edge congestion and minimum wirelength. We proceed
to obtain the exact wirelength.

Theorem 4 The exact wirelength of Q" into H™ is WL(QT, H™*) =
22r—k—1 —or=14 2r—1(,r —k+ 1)k, 1<k<m

Proof. By Theorem 2, 2*W L(Q"~3, P,.-3) gives the sum of edge conges-
tion on the spine. The edge congestion of each of the k cuts is the same
and is equal to 28=1(r — k + 1), 1 < k < 7. Hence the total wirelength

2k(22(r—k)=1 _pr—k=T) oy or—k % 2k=1 x k(r —k + 1)
22r—k-1 _ or—1 + 277V xk(r—k+1)
22r—k=1 _ ar—1 + 2 r —k+ Nk

]
This proves the theorem.
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5 Conclusion

We solve the wirelength problem of hypercube into k-cube necklace.The
Partition Lemma yields a new technique to estimate the lower bound of
wirelength. This problem deals with necklaces which contains all possible
hypercubes of dimension one less than that of the guest hypercube. Us-
ing this technique it will be interesting to find whether it is possible to
solve wirelength problem for architectures such as butterfly, torus, star and
pancake architectures. &

References

[1] S. N. Bhatt and F. T. Leighton, A framework for solving VLSI graph
layout problems, J. Computer and System Sciences, 28 (1984), 300 -
343.

[2] S. Bettayeb, B. Cong, M. Girou and I. H. Sudborough, Embedding of
star networks into hypercubes, IEEE Transactions on Computers 45
(1996), 186 - 194.

(3} S. L. Bezrukov, Embedding complete trees into the hypercube, Dis-
crete Appl. Math. 110 (2001), 101 - 119.

[4] S. L. Bezrukov, J. D. Chavez, L. H. Harper, M. Rottger and U. P.
Schroeder, Embedding of hypercubes into grids, MFCS 1998, 693 -
701.

[5) S. L. Bezrukov, J. D. Chavez, L. H. Harper, M. Rottger and U. P.
Schroeder, The congestion of n-cube layout on a rectangular grid, Dis-
crete Mathematics 213 (2000}, 13 - 19.

[6] R. Caha and V. Koubek, Optimal embeddings of generalized ladders
into hypercubes, Discrete Mathematics 233 (2001), 65 - 83.

[7] J. D. Chavez and R. Trapp, The cyclic cutwidth of trees, Discrete
Appl. Math. 87 (1998), 25 - 32.

(8] J. F. Geelen, R. B. Ritcher, and G. Salazar, Embedding grids in Sur-
faces, European Jr. of Combinatorics 25 (2004), 785 - 792.

[9] Indra Rajasingh, J. Quadras, Paul Manuel and A. William, Embed-
ding of cycles into arbitrary trees, Networks, 44 (2004), 173 - 178.

[10] Jywe-Fei Fang, and Kuan-Chou Lai, Embedding the incomplete hy-
percube in books, Information Processing Letters 96 (2005), 1 - 6.

75



[11) M. Klugerman, A. Russell and R. Sundaram, On embedding complete
graphs into hypercubes, Discrete Math. 186 (1998), 289 - 293.

[12] Ming-Chien Yang, Tseng-Kuei Li, Jimmy J. M. Tan, Lih-Hsing Hsu,
On embedding cycles into faulty twisted cubes, Jr. of Information Sci-
ences, 176 (2006), 676 - 690.

(13] J. Opatrny and D. Sotteau, Embeddings of complete binary trees into
grids and extended grids with total vertex-congestion 1, Discrete Appl.
Math. 98 (2000), 237 - 254.

[14] Paul Manuel, Indra Rajasingh, Bharati Rajan and Helda Mercy, Ex-
act wirelength of hypercube layout on a grid, Submited to Journal of
Discrete Applied Mathematics after revision.

(15] Paul Manuel, Indra Rajasingh, J. Quadras and A. William, Embed-
ding of hypercubes into complete binary trees, Presented in the ICICS
International Conference, Saudi Arabia- Submitted for publication.

[16] J. Xu, Topological Structure and Analysis of Interconnection Net-
works, Kluwer Academic Publishers, 2001.

76



