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Abstract

A node ranking problem is also called ordered coloring problem [6],
which labels a graph G = (V, E) with C : V — {1,2, .-k} such that
for every path between any two nodes v and v, with C(u) = C(v),
there is a node w on the path with C(w) > C(u) = C(v). The value
C(v) is called the rank or color of the node v. Node ranking is the
problem of finding minimum k& such that the maximum rank in G
is k. There are two versions of node ranking problem, off-line and
on-line. In the off-line version, all the vertices and edge are given
in advance. In the on-line version, the vertices are given one by one
in an arbitrary order (say vi,v2,-*-,vn) and only the edges of the
induced subgraph ({vi,v2,---vi})c are known when the rank of v;
has to be chosen. This paper establishes the node ranking number of
complete r-partite graphs for off-line version and gives a tight bound
for on-line version with the algorithms to accomplish them in linear
time.

Keywords: on-line node ranking, off-line node ranking, complete r-partite
graph

1 Introduction

A graph G = (V,E) is called k-rankable if there is a mapping C : V —
{1,2,-- -k} such that for any path of G with end-vertices u, v and C(u) =
C(v), there is a vertex w lies on the path with C(w) > C(u) = C(v). The
mapping C is called a node ranking labeling of G and the value C(v) is
called the rank or color of the vertex v. The ranking number x,.(G) of a
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Figure 1: Off-line node ranking of complete bipartite graph K 5.

graph G is the smallest integer k such that G is k-rankable. A node ranking
labeling is called an optimal node ranking labeling of G if its maximum rank
is xr(G). The node ranking problem (also called ordered coloring problem
[6]) is the problem of finding the ranking number x,.(G) of a graph G. For
an arbitrary graph G, the decision version of the node ranking problem is
NP-complete [1]. In fact, this problem remains NP-Complete even with
restriction of the graph to be co-bipartite graphs [13]. The node ranking
problem is an interested problem and it can be applied on communication
network design [17][5][12][15], computing Cholesky factorizations of matri-
ces in parallel [1][4][11], finding the minimum height elimination tree of a
graph (17](3], and VLSI layout problem [10][16] etc. There are two versions
of node ranking problem, namely off-line and on-line versions. In off-line
version, we consider the node ranking problem of a graph with vertices and
edges given in advance. On the contrary, the vertices are given one by one
in an arbitrary order together with the edges adjacent to the vertices that
are already given in the on-line version. Assuming the vertices are given
in the order vy, va,- -+, v,, then only the edges of the induced subgraph
({v1,v2,---v;})g are known when vertex v; gets its rank assignment. We
want to assign the rank of the vertex in real time and the rank of a vertex
cannot be changed once it gets an assignment. We use x}:(G) to denote
the on-line ranking number of graph G. Figure 1 and Figure 2 shows an
example of node ranking of a complete bipartite graph with off-linc and
on-line versions respectively.

Node ranking problem has been studied since 1980s. Most of them
worked on off-line version in which the whole graph is given beforehand. It is
known that x,(P,) = |logn|+1 for n > 1 [6] and x,(C,) = |log(n — 1)]|+2
for n > 3 [2]. An upper bound of the ranking number of an arbitrary tree
with n nodes was given by (5], they proposed an O(nlogn) time optimal
node ranking labeling algorithm of trees, which was further improved to
O(n) by [14]. For the on-line version, (2] gave bounds of the node ranking
number of paths and cycles as |logn] +1 < x:(P.) < 2|logn] + 1 and
llog(n —1)] + 2 < x3(Cr) < 2|log(n —1)] + 1 respectively. An on-line
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Figure 2: On-line node ranking of complete bipartite graph Ky 5.

ranking algorithm for trees using CREW PRAM model with O(n3/ log®n)
processors was given by [8]. And [9] provided an optimal on-line ranking
algorithm for stars and an O(n3) time algorithm for arbitrary trees. [7] has
further improved the algorithm to O(n2). Although some simple graphs’
ranking problems have been solved, we have not seen any discussion about
complete r-partite graphs. This paper establishes the node ranking number
of complete bipartite graphs for off-line version and gives a tight bound
for on-line version with the algorithms to accomplish them in linear time
and extends the results to complete r-partite graphs. The rest of this
paper is structured as follows. Section 2 solves the node ranking number
of complete bipartite graphs for off-line version and extends to complete
r-partite graphs. Section 3 gives a tight bound of the node ranking number
for on-line versions and presents the algorithm to achicve it in linear time.
Then section 4 concludes the whole work.

2 Off-line Version

In this section, we present an off-line optimal node ranking algorithm for
complete bipartite graphs.

Algorithm Off Kmn:
Input: A complete bipartite graph G = K, » for m < n with two partite
sets Vin = {v1,v2,+ - vm} and V, = {uy,u2, - - u,}.
Output: A rank assignment of G.
Method:
1. For all vertices v; € V,,,, C(v;) =i + 1.
2. For all vertices u; € V,,, C(u;) = 1.
End of Algorithm Off_ Kmn

Theorem 1 Algorithm Off-Kmn produces a node ranking labeling for com-

plete bipartite graph G = Ky, n for m < n with mazimum rank m + 1 in
linear time.
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Proof: Since each vertex gets its rank according to the partite set it
belongs to, the algorithm Off Kmn takes only linear time. Since only the
vertices in partite sets V;, gets the same rank (= 1), and all vertices in the
other partite set has rank greater than 1, the rank assignment produced by
Algorithm Off_Kmn satisfy every path between any two nodes u and v, with
C(u) = C(v), there is a node w on the path with C(w) > C(u) = C(v)
which implies it produces a node ranking labeling of complete bipartite
graphs. O
Lemma 1 comes directly from the definition of node ranking.

Lemma 1 Let G = K,,, », be a complete bipartite graph with m < n. Let
Vi, Vo be two partite sets of G with m and n vertices respectively. Let C
be a node ranking labeling of G. Then C(v) # C(u) for all v € V,, and
ueV,.

It’s trivial since every vertex v € V,,, is adjacent to every vertex u € V,,

which implies that C(v) # C(u).

Lemma 2 Let G = K, , be a complete bipartite graph with m < n and
Vin, V. be two partite sets of G with m and n vertices respectively. Let C' be
a node ranking labeling of G. If two vertices in the same partite sel have the
same rank T, then all vertices in the other partite set must have different
ranks greater than r.

Proof: Let C be a node ranking labeling of G with C(u) = C(v) = r for
some u,v € Vy,. Then Vz € V, there is a path uzv € G which implies
C(z) > C(u) = C(v) Vz € V,. Now consider z,y € V, such that z # y.
Since zuy is an induced path in G, and we already know that C'(u) < C(z)
and C(u) < C(y), if C(z) = C(y) it will contradict to the fact that C is a
node ranking labeling of G, so we have C(z) # C(y). o

Lemma 3 Let G be a graph and C : V(G) — {1,2,---k} be an optimal
node ranking labeling of G. Then for all i, 1 < i < k, there is a vertex
v € V(G) such that C(v) = 1.

Proof: Assume that C : V(G) — {1,2,---k} is an optimal node rank-
ing labeling of G, such that 3i, 1 < ¢ < k and Vv € V(G), C(v) # i.
Then this mapping can be shownas C: V(G) — {1,2,---i - 1,i+1,--- k}
and x,(G) = k. Consider another labeling C’ of graph G, C’' : V(G) —
{1,2,---k — 1} such that C’'(v) = C(v) for all v € V(G) with C(v) < i and
C'(v) = C(v)—1 for allv € V(G) with C(v) > i. Thenif 3 z,y € V(G) such
that C’(z) = C’'(y), we must have C(x) = C(y). Since C is an optimal node
ranking labeling of G, there exists a vertex w such that C(w) > C(z) =
C(y). If C(w) < i, then C'(w) = C(w) > C'(z) = C'(y) = C(z) = C(y).

80



If C(w) > i and C(z) < i, then C'(w) =C(w) — 1 >i > C'(z) = C(z). If
C(w) > i and C(z) > i, then C'(w) = C(w) — 1 > C(z) — 1 = C'(z). So
C’ is a node ranking labeling of G with maximum rank less than & which is
the node ranking number of G, which is a contradiction. Hence the lemma
implies. o

Theorem 2 Let G = K, , be a complete bipartite graph with m < n.
Then xr(G) =m + 1.

Proof: By lemma 2, at least one partite set have verities with all different
ranks, since m < n, we have x.(G) > m. By lemma 1, the vertices in
different partitc set must have different ranks, which then implies x,(G) >
m + 1. By theorem 1, algorithm Off. Kmn produces a nodc ranking labeling
with maximum rank m + 1, which implies x,(G) < m + 1. Therefore we
have x-(G) =m + 1. D

Corollary 1 Let G = Kn n,,.. e be a complete r-partite graph with ny <
ng < <n,.. Then x-(G) =Y .2 1 n; + 1.

Proof: By lemma 1, if there are any two vertices u, v have the same
labeling, these two vertices must be in the same partite set. By considering
these two vertices are adjacent to all vertices in other partite sets, according
to lemma 2, all vertices in others partite set must have different ranks
which are greater than C(u) = C(v). Since ny < np < .... £ n,, we have
xr(G) > 312 1 n;. By lemma 1, the vertices in dlfferent partlte set must
have different ranks, which then implies x,(G) > 32| n:; + 1. Consider
a labeling C which assign all vertices in the greatest partite set with rank
1 and all other vertices with rank from 2 to > 7_ 1 n; + 1. Since only the
vertices in the partite set with n, vertices gets rank 1, and all vertices in
other partite sets have different ranks greater than 1, C satisfies every path
between any two nodes u and v, with C(u) = C(v), there is a node w on
the path with C(w) > C(u ) C(v), hence C is a node rankmg labeling of
G with ér{,ax C(v) = ¥iZ{ ni+ 1. That is x,(G) < iz ni + 1, which

then implies x,(G) = Yi=) n; + 1. o

3 On-line Version
In this section, we propose an on-line ranking algorithm for complete bi-

partite graphs, then give the bound for complete bipartite graph in on-line
version.
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Algorithm On_Kmn

Input: Two integers m and n with m < n, which indicate the number of
vertices in each partite set. The complete bipartite graph K, , where the
vertices vy, Vg, - - Um4n are entered one by one with the edges adjacent to
those vertices that have been entered.

Output: An on-line rank assignment of G.

Method:
If (2m > n) then {
Clv1) = 1;
t=2;

Fori=2tom+ndo
If (v;iv1) € E(G) then {
Clui)=t;t=t+1;}
Else C(v;) =1

}

Else { // 2m < n
z=1f/z=|V;|,v1 €V,
y=0;//y=V)|, m ¢V,
Cv)=2;t=3;

For i =2 tom +n do {
If (viv1) € E(G) then {
y=y+1;
If (y > m) then
Cvi) =1;
Else {
v=t t=t+1;}
Y/ vieV,
Else {
c=z+1;
If (x > m) then
Clvi) =1;
Else {
vi=tt=t+ 1;}
Y/ /vie Vs
} //end for
} //end else
End of Algorithm On_Kmn

Lemma 4 Let G = K, n be a complete bipartite graph with m < n. Al-
gorithm On_Kmn produces an on-line node ranking labeling for G in linear
time with

max C(v) <

veV(C)

n+1 if 2m > n;
2m+ 1 otherwise.
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Proof: Since each vertex gets its rank assignment for only a constant
number of comparisons, algorithm On_Kmn only takes linear time. To see
that the algorithm On_Kmn produces an on-line node ranking labeling, we
have following two cases.

Case 1: 2m > n. Since all vertices in the same partite set as v; gets the
same rank 1, and all other vertices in the other partite set gets ranks from
2tom+1or n+1 (depend on which partite set v; is), the algorithm has
maximum rank either n + 1 or m + 1.

Case 2: 2m < n. In this case, since the only duplicate rank of the
vertices is 1 and all these vertices are in V,, by lemma 2 we know that
algorithm On_Kmn produce an on-line node ranking labeling. Since each
partite set has m vertices with different ranks greater than 1, there are two
partite sets, we have to use 2m + 1 different ranks. That is g{;}z}é ) Cv) =

v

2m + 1 for 2m < n. (]

Theorem 3 Let G = K,,,, be a complete bipartite graph with m < n.
Then

m+1<x:G) <min{n+1, 2m+ 1}.

Proof: The lower bound is trivial since for all graph G, x,.(G) < x(G)
and by theorem 2, x.(Km,») = m + 1. By lemma 4, we know the upper
bound is achievable. Hence the proof is completed. O

Corollary 2 Let G = Ky, n,,....n. be a complete r-partite graph with ny <
ng < ....<n,. Then

r—1 r—1
Zn,~+1$x;( )<m1n{2nz+12n,+nr 1+1}
i=1

i=2 i=1

Proof: The lower bound is trivial since for all graph G, x-(G) < x:(G).
Similar to the algorithm On_Kmn, when n, < n; + n,._;, just assign rank
1 to the vertices with the same partite set of the vertex that entered first,
and all others a different rank greater than 1, then we have a node ranking
assignment which has maximum rank no more than Z;z n;+ 1. Ifn,. >
ny + n._1, then we assign each vertex different ranks greater than 1 until
the biggest partite set has been determined, then assign rank 1 to the vertex
of the rest of biggest partite set. Then we have a node ranking assignment
which has maximum rank no more than Z 1 n; + n-_1 + 1. Hence, we

have 377 lnl+1<xr(G' <m1n{21_2nl+1 Zz_ln,+nr_1+1}

83



4 Conclusion

In this paper, we presented both off-line and on-line node ranking algo-
rithms for complete bipartite graphs and extend the results to complete
r-partite graphs. The node ranking number of both complete bipartite
graphs and complete r-partite graphs are established for off-line version
and the tight bounds are given for the on-line version.
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