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Abstract: In this paper we study the prime filters of a bounded
pseudocomplemented semilattice. We extend some of the results of [3] to
pseudocomplemented semilattice. It is observed that the set all prime filters P of
a pseudocomlplemented semilattice S is a topology and it is Tp and compact. We
also obtain some necessary and sufficient conditions for the subspace of maximal
filters to be normal.
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1. Introduction and preliminaries

A semilattice is a partially ordered set in which any two elements have a
greatest lower bound. Let S be a semilattice. A semiideal of S is a nonempty
subset A of S such that ac A, b<a(beS)=>bcA. An ideal of S is a semiideal
A of S such that the join of any finite number of elements of A, whenever it
exists, belongs to A. If acS, {x€S|z<a} is an ideal. It is called the principal
ideal generated by a and is denoted by (a]. A filter of S is a nonempty subset F'
of S such that (i) acF, b>a(beS)=>beF and (ii) a,be F=aAbeF. The dual
of a principal ideal is called a principal filter. The principal filter generated
by a is denoted by [a). A maximal ideal(filter) of .S is a proper ideal (filter)
which is not contained in any other proper ideal(filter). A prime semiideal(ideal)
is a proper semiideal(ideal) A such that aAbE A=>a€A or b€ A. A minimal
prime semiideal(ideal) is a prime semiideal(ideal) which does not contain any
other prime semiideal(ideal). Let F(S) denote the set of filters of S. A prime
filter of S is a filter A such that B,CeF(S), BNCCA, BNC#¢=>BCA or
CCA. If Ais a prime filter of S and A,,..., A, €F(S), AiN...NA,CA,
AiN...NA,#¢p=>A;=>A for some i€{1,...,n}. A semilattice S with 0 is
pseudocomplemented if for each €S, there exists a *€S such that zAy=0
if and only if y<z*([6]). Pseudocomplemented semilattices have been studied
by [8]. An element z of S is said to be normal if a=a**.
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A O-distributive lattice is a lattice with 0 in which aAb=0=aAc implies
an(bve)=0 ([1]). In [12], it has been proved that a lattice L bounded below
is O-distributive if and only if the ideal lattice I(L) is pseudocomplemented. It is
also observed that for an ideal lattice, the two notions of pseudocomplementedness
and O-distributivity are equivalent. A O-distributive semilattice is a semilattice S
with 0 such that I(S), the lattice of ideals of S is O-distributive ([2]). O-distributive
semilattice has been studied by [13]. It is observed that our concept of
O-distributivity is different from that of Varlet's sense ([2]). Most of the results of
this paper are based on the fact that every maximal filter of a pseudocomplemented
semilattice is prime. But it is observed that the maximal filter of a O-distributive
semilattice need not be prime ([2]). Hence we are motivated to consider the
pseudocomplemented semilattice. Most of the results in this paper are the extension
of the corresponding results of [3]. A complemented semilattice is a semilattice
with 0 and 1 such that for any a€.S, there is a b€S such that aAb=0 and 1 is the
only upper bound of a and b ([6]).

For the topological concepts which have now become commonplace the reader
is referred to [7] and [5]. For the lattice theoretic concepts the reader is
referred to [4].

Let X be a topological space. X is called Tj if distinct points of X have
distinct closures. A point p of X is called a T} point if the closure of p contains
no point other than p. A point p of X is called an anti-T; point if the closure of
no other point other than p contains p (for closure we use the notation C1.). X is
called T if every point of X is 17. X is called T3 if any two distinct points of X
have disjoint neighbourhoods.

A closed (open) subject of X is called a closed domain(open domain) if it is
identical with the closure of its interior(interior of its closure). A closed(open)
subset of X is called regular if it is an intersection(union) of closed domains(open
domains) whose interiors(closures) contain(are contained in) it. X is called regular
if every open subset of X is regular. The regularity of X may alternatively be
expressed as follows. Given a nonempty closed subset C of X and a point of
p¢ C, we can find closed subsets C;, C, of X containing C, p respectively such
that p¢ C), C1NCa=¢ and C\UC>=X. AT regular space is called a T - space.
A subset A of X is called compact, if every open cover of A has a finite subcover.
A subset A of X is said to be dense if Cl. A=X. X is said to be connected if
X is not the union of two disjoint nonempty open subsets of X . Otherwise, X is
said to be disconnected.
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Let A and B be any two disjoint subsets of X, we say A is weakly separable
from B if there exists an open subset of X containing A and disjoint from B.
Clearly A is weakly separable from B if and only if ANCI.B=¢. X is called
g if every nonempty open subset of X contains a nonempty closed subset. X is
called normal if given any two disjoint closed subsets C, C of X we can find
subsets C3, C4 of X containing C,, C; respectively such that C;NCy=¢p=C2NC3
and C3UCy=X.

Throughout the remaining part of this paper S denotes a bounded
pseudocomplemented semilattice.

In [11] it has been proved that every maximal filter of a pseudocomplemented
lattice is prime.

Lemma 1.1:  Every maximal filter of S is prime.
Proof: Let M be a maximal filter of S and let xe M. Then there is a prime

filler P in S such that MCP and z*¢ P ([8]). It follows that A/=P and so
M is prime.

Lemma 1.2:  Every Pseudocomplemented semilattice is O-distributive.

Proof: Let S beapseudocomplemented semilattice. Then by Lemma 1.1, every
maximal filter of S is prime. Hence S is O-distributive ([2]).

0-distributive semilattice need not be pseudocomplemented.

S(F) denotes the lattice of all filters of S and P the set of prime filters
of S. For any filter A of S, F'(A) denote the set of all prime filters containing
A and F!'(A)=P-F(A). Since every proper filter of S (not necessarily
pseudocomplemented) is contained in a maximal filter, by Lemma 1.1 it follows
that F(A) is nonempty if A#S.

Theorem 1.3: Let {A;/icI} be any family of filters of S and Ay, ..., A, be
any finite number of filters of S. Then

1. F(VA;)=nF(4;)
2. F(AiNn...NA,)=F(A;)U...UF(A,)

3. F(S)=¢
4. F([1))=P
Proof:

1. Let B be a prime filter of S. Then B2VA,; if and only if BDA; for all 7.
Hencel.
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2. If B is a prime filter such that BDA N...NA,, then BDA; for
some j€{1,...,n}. Hence F(A1N...NA,)CF(A)) U...UF(A,). The
reverse inclusion is obvious.

3. and 4 are obvious.

Hence the proof follows.

Since F!(A)=P—F(A) as a consequence of Theorem 1.3 we have

Theorem 1.4: Let { A; /i€ I} be any family of filters of S and A,,..., A, be any
finite number of filters of S. Then

1. FY{(VA;)=UF(A;)

2. FY(A1N...NA)=FY(A)N...NF(A,)
3. F1(9)=P

4. Fl([1))=¢

By Theorem].4, it follows that {#!(A)/A€S(F)} is a topology on P. We
shall denote this topology by T" and the resulting topological space (P, T') also by
‘P when there is no ambiguity. The sets F'(A) are precisely the closed subsets of
P. From Theorem 1.3 and Theorem 1.4, it follows that the mapping A—F'(A)
(A—>F(A)) is a homomorphism (dual homomorphism) of the lattice of open
subsets (closed subsets) of P onto S(F).

2. Properties

Theorem2.1: If X isany subsctof P, Cl.X=F(Xy) where X is the intersection
of the members of X.

Proof: Clearly F(Xy) is a closed subset of P and X CF(Xy). If XCF(A) for
some filter A, then AC X and so F/(X,)CF(A). Hence the result follows.

Theorem 2.2: P is Ty and compact.

Proof: From Theorem 2.1, it follows that the closure of a single point is the set
of all prime filters containing it. Clearly of any two distinct (prime) filters there
is one which does not contain the other. Hence distinct points of P have distinct
closures. Thus P is T.

Let P=UF'(A;). By Theorem 1.4, P=F'(VA;). Since every proper filter
of S is contained in a maximal filter by Lemma 1.1 it follows that VA;=S.
Hence there exists a finite number of elements a;1, ..., ain (a;;€A;;) such that
0=a;;A...Aa;,. Consequently A, V... VA;,,=SandsoP=F1(A;)V...VA;,)
=F1(A;)U...UF(A;,). Thus P is compact.
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Theorem 2.3: The closure of the set of Ty points of P is F(D) where D is the
filter consisting of the dense elements of S.

Proof: By Lemma 1.1, every maximal filter of S is in P. As an immediate
consequence of Theorem 2.1, we have the T points of P are precisely the maximal
filters of S and the closure of the set of T3 points of P is F'(D).

Theorem 2.4: P is m if and only if D=[1).

Proof: Let D=[1) and F''( A) be any nonempty open subset of P. Then A#D
and so AZ M, for some maximal filter M of S. {M} is a closed subset of P by
Theorem 2.3 and clearly F!(4)D{M}. Thus P is mo.

Suppose D#[1). Let F(B) be any nonempty closed subset of P. Then
B#S and so BCM for some maximal filters M. by Lemma [.1, MeP,
so that MeF(B). But M¢ F(D). Hence F!(D)ZF(B) and thus P is
not 7.

Theorem 2.5: P is normal if and only if [a)N[a)*=[1) for every normal
element a€S.

Proof: Suppose |a)N[a)*=[1) for every normal element acS. Let F(A)
and F(B) be any two distinct closed subsets of 7. Then by Theorem 1.3,
F(AvB)=¢. Hence AvB=S. Hence there exist acA and beB such that
anb=0. It follows thatb < a* and so a*€ B. Let C1=F([a**)) and C2=F([a*)).
Then F(A)NCo=F(A)NF([a))CF([))NF((a*)) =F(a)V]a*))=F (aAa*))
—F(0)=F(S)=¢ and F(B)NCi=F(B)NF(|a**))CF(la"))NF([e"))
=F([a*)V[a**))=F([a*ra**)) =F(]|0))=F(S)=¢. Sincea<a**,a**cAandso
C12F(A). As a*€B, C,DF(B). Also C1UC;=F([a**))UF([a*))=F([a**)n
[a*))=F(la**Vva*))=F([1))=P. Hence P is normal.

Conversely suppose P is normal and z be any normal element of S. Set
Fi=F([z)) and F,=F([z*)). Then F1NFy=¢. As P is normal there exist
closed subsets F3=F(A), Fy=F(B) containing Fy, F» respectively FiNFy=¢,
FonF3=¢ and F3 U Fy=P. From FiNFy;=¢, it follows that [z)VB=S and so
xAb=0 for some be B. Hence b<z*. By similar arguments a<z**=z for some
acA. Since F3UF,=P it follows that ANB=(1). Hence [a)N[b)=(1) and so
aVvb=1. Now l=a V b<z*vz**. It follows that [z)N[z**)=[1).

Let us denote the set of all maximal filters of S by M. By Theorem 2.3, the
subspace M is T.
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Theorem 2.6: The subspace M is the smallest of the subspaces X of P such
that X is not weakly separable from any point outside it.

Proof: Let A€P and Aec M. Clearly CI{A}=F(A). Also ACM for some
MeM and hence MNCI{A}#¢. Thus M is not weakly separable
from A.

Let Y be any subspaces of P such that M'ZY . Then there exists M €M such
that M¢ Y. By Theorem 2.3, Cl.{M}={M} and so YNCL.{M }=¢. Thus Y is
weekly separable from M.

Theorem 2.7:  Let X be any subset of P containing M. Then X is compact. In
particular M is compact.

Proof: Let XCF1(A;). Then XCF!(VA;) and so MCFY(VA4;). It follows
thatVA;=S. Hence there exists a finite number of elements a;1, . . ., ain (ai; € 4;;)
such that O0=a;1A...Aai,. Consequently A;V...VA;,=S and so XC
FY1(A;pVv...VA,)=FY(An)J...UF(A;). Thus X is compact.

Theorem 2.8: The first two of the following statements concerning S are
equivalent and each of these is implied by the third.

1. PisaT; - space
2. P=M

3. Every prime ideal of L is minimal prime.

Proof: By Theorem2.3. 1 & 2.

3 <> 2. Suppose 3 holds let AeP. Clearly S—A is a prime ideal and is
therefore a minimal prime ideal by 3. Let B be any minimal prime semiideal
contained in S—A. S—D is a proper filter and so S—BCM for some maximal
filter M. By Lemma 1.2, S is O-distributive.lt follows that S—M is a minimal
prime ideal ([2] Theorem 2.3 4). Also S—-MCBCS—A. Hence S—-M=S-A4
and so M=A. Thus Ac M. Hence PCM. The reverse inclusion follows by
Lemma 1.1.

Theorem 2.9: If S is Complemented P is T5.

Proof: Let X and Y be distinct points of P. Then X 2Y or Y 2X. Without loss
of generality, we may assume X 2Y. LetacY — X, U=F!([a)) and V=F'([a'))
where a! is a complement of a. Clearly U and V are ncighborhoods of X
and Y respectively. Also UNV=F*([a))NF([a}))=F([a Va'))=F([1))=¢.
Thus P is T5.
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Theorem 2.10 Let S be complemented. Then P is connected if and only if S is
the two element chain.

Proof: Suppose S is the two-element chain. Then P=[1) and so P is connected.
Suppose 5#{0,1}. Let a€S such that a0, 1 and a! be a complement of a. Then
F([a)) U F}([a"))=F"([a)V[a'))=F"([ara')=F"(S)=P and F'([a))N
F1([a"))=F*([)[a}))=F"(Java!) =F}([1))=¢. Since F*(la))=F([a*)) and
F([a*))=F([a)) and S is O-distributive(Lemma 1.1), F'!([e)) and F''([a!)) are
nonempty ([2]). It follows that P is disconnected.

Theorem 2.11:  Let S be complemented. Then M is closed in P.

Proof: By Theorem 2.1, Cl.M=F(D). Let AcCl.M. We shall prove that
AeM. LetaeS and a¢ A. As ava'=1 (where a! is the complement of a) we
have (aVa!)*=0 and so ava'€ DCA. Then [a)n[a’)CA. As A is prime and
[@)Z A it follows that [a!)C A and so a! € A. Consequently 0=aAa'€AV|a) and
50 AV[a)=S. Hence Ae M. It follows that Cl M=M. Hence the result follows.

Corrollary 2.12: Let S be complemented. Then the subspace M is compact.

Lemma 2.13:  The set U(a)={MeM/acM} is a closed subset of M.

Proof: Clearly U(a)=F([a))NM. Hence U(a) is a closed subset of M.
We denote M—U(a) by U(a).

Definition 2.14: Two ideals A and B of a semilattice S (not necessarily
pseudocomplemented) are said to be weakly comaximal if (AVB)ND#¢.

Definition 2.15: Two ideals A and B of a semilattice S (not necessarily
pseudocomplemented) are said to be comaximal if AvB=S.

Lemma 2.16: Let N be any non dense minimal prime ideal of S. Then N=(a)*
Jor some ac N*.

Proof: Since N is non dense a#0 for some a€ N*. Let be N. Then aAb=0 and
so be(a)*. Let ce(a)*. Then cAa=0. Clearly ae S—N and so ce N. It follows
that N=(a)*.

The following theorem extends the result of [9].
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Theorem 2.17:  The set complement of a prime filter of S is a prime ideal and
every minimal prime ideal of S is non-dense and (a)* A(b)*=(aAb)* for all a, b
in S. Then the following statements are equivalent.

1. Each A€ F(D) is contained in a unique maximal filter.

2. For MMy in M there exist a1€S—M, and as€S—Ms such that
a1VazeD.

3. Mis Tg.
4. M is normal.

3. Any two distinct minimal prime ideals of L are weakly comaximal.

Proof: 1=2. Suppose 1 holds. Let M), MoeM and M;#M,. Since S is
O-distributive (Lemma 1.2), S—M, and S—M> are minimal prime ideals ([2]).
By Lemma 2.16, S—M;=(z)* and S—Mo=(y)* for some ze(S—M;)* and
y€(S~Mz)* such that 25£0 and y#0. Clearly (S—M;)V(S—Ms)=(z)*V(y)*=
(zAy)*. We claim ((S—M)V (S—M2))ND#¢. Suppose ((S—M;)V(S—M3))
ND=¢. Hence (xAy)*ND=¢. Since S is O-distributive (Lemma 1.2), for each
a in § and each proper filter B containing a, there is a prime ideal N containing
(a)* and contained in B([2], Theorem 2.4 6). Now S—N is a prime filter
containing B3 and disjoint from (a)*. Hence there exists A€ F(D) such that
((S—My)V(S—M2))NA=¢ and consequently ACM;NM, which is a
contradiction to 1. Hence ((S—M;)V(S—M;))ND#¢p. Let te((S—My)v
(S—M3))ND. Then ¢ is an upper bound of a; and ay for some a,€5- M,
and a2€S—Mj. Since te€ D, we have [a1)N[a2)CD.

2=>3. Suppose 2 holds. Let My, M€ M such that M17#M,. By 2 there
exists ay€S—M; and a;€S—M, such that [a;)N[a2)CD=NM. It follows
that U(a,), U(az) are neighborhoods of M;, M, respectively and U'(a;)N
Ul(ag)=4¢.

3=>4. Suppose 3 holds. Then M is T>. By Theorem 2.7, M is compact. It
follows that M is normal.

4=>1Suppose there exists A€F(D) such that ACM,eM, ACMeM and
M,#M,. Clearly {M;} and {M,} are disjoint closed subsets of M. Let
F1(A;) be any neighborhood of {M;} and F(A3) be any neighborhood of
{Mz}. Then AeF1(A;)NFY(A2) and so F!(A)NF'(Ag)#é. Thus M is
not normal.

2=5. Suppose 2 holds. Let N; and N, be any two distinct minimal prime
ideals of S. Clearly S—N, and S— N are proper filters. Hence S—Ny;C M, and
S—N,C M, for some maximal filter M and M, of S. Since S is O-distributive
(Lemma 1.2), S— M, and S— M5 are minimal prime ideals ([2]). Also S—M;CN,;
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and S—Mggl\rg. It follows that S—M;=N; and S—My=N,. Also N; and N,
are minimal prime semi ideals. Hence S—/N; and S— N, are distinct maximal
filters. By 2 there exist a; €N and a2 €N> such that [a,)N[a2)CD. It follows
that (N1 VNg)ﬁD;éqﬁ.

5=>2. Suppose 5 holds. Let M, MseM and M;#M,. Since S is
O-distributive (Lemma 1.2), S—M, and S— M, are minimal prime ideals ([2]).
By 5, ((S—M;)v(S—M;))ND+#¢. Hence there exist a; €S— M, and a2€S— M,
such that [a; )N[a2)eD.

The following theorem generalizes some results of [10].

Theorem 2.18:  The set complement of a prime ideal in S is a prime filter. Then
the following statements are equivalent.

1. Every prime filter of S is contained in a unique maximal filter.
2. Every prime ideal of S contains a unique minimal prime ideal.
3. Any two distinct minimal prime ideals of S are comaximal.
4

. For any two maximal filters M, and M, of S there exist a;€S—M; and
ap¢S— M, such that 1 is the only upper bound of a, and as.

5. Mis T2.
6. M is normal.

Proof: 1=2. Suppose there is a prime filter Q such QCM; and QC M, for
some distinct maximal filters M, and M,. Since S is O-distributive (Lemma 1.2),
S—M; and S—M, are distinct minimal prime ideals ([2]). Clearly S—-Q
is a prime ideal and S—M;CS—Q and S—M,CS-Q. It follows that
1=52.

2=1. Let Q be any prime ideal of S. It follows that Q2N,; for some
minimal prime ideal Ny([2]). Suppose Q2N for some minimal prime ideal
N1#N. By our hypothesis S—@Q is a prime filter, Now S—QCS—-N and
S—QCS—N). Itis easily seen that S— N and S—N; are maximal filters. Thus
2=1.

3=4. Suppose 3 holds. Let M; and M be distinct maximal filters of S.
Since S is O-distributive (Lemmal.2), S—M; and S—M; are distinct minimal
prime ideals ([2]). By 3, (S—M;)V(S—M2)=S. Hence there exist a,€5—M;
and ao€S5— M, such that ay Vas=1.

4=$3. Let N} and N; be distinct minimal prime ideals of S. By our hypothesis
S—~N is a prime filter and so S—N;CM for some maximal filter M. Also M
is prime(Lemma 1.1). Clearly S—M is a prime ideal contained in N;. By the
minimality of N7, S—M=N;. Hence N; is a minimal prime semiideal ([2]).
By similar arguments N, is a minimal prime semiideal. Then S—N; and S—N»
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are maximal filters of S. By 4, there exist a;€S—(S—N;)=N; and
a2€S—(S—N3)=N, with a;Vas=1. Hence 1€ N;VN, and so N; and N, are
comaximal.

4=>1. Let A be a prime filter of S and let ACM; and ACM, such that
My#M,. Then there exist a;€S—M,; and ap€S— M, such that a;Vas=1.
Clearly [a;)Z A and [a2)Z A and [a; )N[az)=[1)C A. This contradicts the primality
of A. Hence the result.

1=-3. Suppose 1 holds. Let N; and N, be any two distinct minimal prime
ideals of S such that N1VNo#S. Clearly S—(N;VN?) is a prime filter. By 1,
S—(N;y V N,) is contained in a unique maximal filter M. It is easily seen
that S—N; and S—N, are maximal filters. Also S—(N;VN2)CS~N; and
S—(N1VN3)CS—Ns. It follows that 1=>3.

3=5. Suppose 3 holds. Let M, Moe M and M;#M,. Hence S—M,; and
S— M, are distinct minimal prime ideals ([2]). By 3, (S—M;)V(S—M,) =S.
Hence there exist a;€S—M, and as€S—M; such that a;Vaz=1. It follows
that U(a,) and U*(ay) are neighborhoods of M, and M, respectively and that
U'(a))NU(az)=¢. Thus M is T>.

5=6. Suppose 5 holds. Then M is T5. By Theorem 2.7, M is compact. It
follows that M is normal.

6="1. Suppose there is a prime filter @ of S such that QCM; and QCM>
for some M, Mae M with My#M,. Clearly {M;} and {M,} are disjoint
closed subsets of M. Let F*(A) be any neighborhoods of { M, } and F'!(B) any
neighborhood of {M,}. Clearly Qe F'(A)NF!(B) and so F'(ANF!(B)#4¢.
1t follows that 6=>1. Hence the proof.

3. Conclusion

We have elaborated the stone topology on the set of prime filters of a
pseudocomplemented semilattice. Most of the results of [3] are based on the
fact that every maximal filter of a O-distributive lattice is prime. So the extension
needs a class of semilattices satisfying the above mentioned condition. We have
restricted ourselves to pseudocomplemented semilattice since every maximal filter
of it is prime. In [14], O-distributive poset is defined as follows. A O-distributive
poset is a poset P with 0 such that I{ P), the lattice of ideals of P is O-distributive.
The results of this paper can be extended to the class of O-distributive posets in
which every maximal filter is prime.
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