The Algorithmic Complexity of Alliances in Graphs

Lindsay H. Jamieson and Stephen T. Hedetniemi
Department of Computer Science
Clemson University
Clemson, SC, USA

Ich@cs.clemson.edu, hedet@cs.clemson.edu

Alice A. McRae
Department of Computer Science
Appalachian State University
Boone, NC, USA

aam@appstate.edu

Abstract

In 2001 Kristiansen, Hedetniemi and Hedetniemi [9] first defined the concept
of a defensive alliance in a graph, to be a subset S C V of a graph G = (V,E)
having the property that every vertex v € S has at most one more neighbor in V-S
than it has in S (i.e. [IN[v]N S| 2 IN[v] — S|). Since then several other types of
alliances have been defined and studied including strong, offensive, global, pow-
erful, and secure alliances. To date, no algorithms or complexity analyses have
been developed for alliances in graphs. This is the subject of this paper.

Keywords: alliances, global alliances, complexity, algorithms
AMS Subject Classification: 05C69

1 Introduction

In order to define an alliance in a graph, we need the following definitions.
Let G = (V,E) be a graph. For any vertex v € V, the open neighborhood of v

JCMCC 68 (2009), pp. 137-150

is the set N(v) = {u : uv € E}, while the closed neighborhood of v is the set
N[v] = N(v)U {v}. The open and closed neighborhoods of a set S c V are defined
as N(S) = Uyes N(v) and N[S] = N(S) U S, respectively. The boundary of a set S
is the set §(S) = U,es(N(v) — S). A non-empty set of vertices S c V is called a
defensive alliance if and only if Vv € S, IN[VIN S| > |N[v] - S|. This is equivalent
to saying that every vertex in S has at least as many neighbors in the alliance S
(including itself) as it has neighbors not in the alliance. The defensive alliance
number of a graph G equals the minimum cardinality of a defensive alliance in G
and is denoted a(G). A defensive alliance is called strong if this inequality is strict,
i.e. Vv € S, |N[vINS| > |N[v]—S|. A non-empty setS c V is an offensive alliance
ifYv € 68, IN[vINnS| 2 |IN[v]-S|. The offensive alliance number a,(G) equals the
minimum cardinality of an offensive alliance in G. An offensive alliance is called
strong if Yv € 4S,|N[v] N S| > |N[v] — S|. An alliance which is both defensive
and offensive is called a powerful alliance, (a,(G) denotes the powerful alliance
number of a graph G) while an alliance S for which 65 = V - § is called a global
alliance. First defined in 2001 [9] by Kristiansen, Hedetniemi and Hedetniemi,
alliances have been studied mathematically in [2], [1], [3], [4], [5), [6), [7], [8]
and [10]. To date, however, no algorithms or complexity analyses have been
developed for alliances in graphs. In this paper, we present linear algorithms for
finding a minimum cardinality powerful alliance and global powerful alliance in
an arbitrary tree T, using an interesting adaptation of the dynamic programming
method developed by Wimer [11]. We also establish the NP-completeness of
the decision problems corresponding to a minimum defensive and a minimum
powerful alliance in an arbitrary graph.

2 Powerful Alliances in Trees

In this section we present a linear time algorithm for finding the powerful al-
liance number of an arbitrary tree which is based on the dynamic programming
method of Wimer et al [11]. However, Wimer’s method must be modified in a
new way in order to record the balance between neighbors in a powerful alliance
and neighbors not in a powerful alliance at every vertex. Although having to re-
member this information does not change the complexity of the algorithm, it does
require the use of conditionals in the composition tables.

In order to compute the powerful alliance number of a tree, we must determine
the possible types of subtrees that could be created by a minimum cardinality
powerful alliance, denoted p.a. Let S be the set of vertices in a minimum pow-
erful alliance. Let T be the tree for which we are computing ay(T). Let r be the
root of the current subtree. There are 6 cases for the subtree at any point in the
algorithm, with the current difference between the number of neighbors that are
in and not in S for each case being indicated by the value i, thatisi = [N[rj N S | -

138

IN[rJN(V-S)I.

[Li]={reS,SNT+o@isap. a.inT}/*i>20%

[25]]={re S,SNT # @isnotap. a. in T, but adding neighbors in § to r can
createap. a.}/*i< Q¥

[3:i)={r¢ S,S NT # @is exactly a p. a. in T (the balance is 0), S N N[r] # @}
[¥i=0%

[4i)={r¢S,SNT #@isap. a. in T but the p. a. is not minimal, S NN[r] # @}
iz 1%

(5:il={re¢S,SNT+oisap.a.inT,SNN[r]=0} /*i<0*
[6:il={regS,SNT=@and S isnotap.a. inT}/*i;0*
[7i]={re¢S.SNT #@and S isnotap. a. in T, but adding neighbors in S to r
cancreate ap. a.} /*ii0*/

Once these cases have been defined, we can consider the composition of tree
T from its subtrees. At each point we combine a subtree T), rooted at ry, p. a.
S, and difference i, with a subtree T, rooted at r,, p. a. S, and difference j,
to produce a new subtree T = T o T with root r and p.a. §; U S,. We must
consider all possible combinations of cases [a:i] and [b;j], for 1 <ab<7. Ifa
particular combination can never occur when producing a minimum cardinality
powerful alliance, then this combination is marked with an X in 1.

From 1, we obtain a set of recurrence relations as follows:
[1:+1] = [L:i)o[1:j] U [2:i]o[1:]] U [2:i]e[2:]]
[L1:i-17 = [1:i)o[2:j] U [1:i]o(3:j] U [1:i]o[5:j] L [L:i]o[6:]]
[2:1+1] = [2:1]0[1:j] U [2:1]o[23]]
[2:i-1] = [1:i]e[3:j] U [L:i]o[5:j] U [L:i}o[6:] U [2:i}o[3:j] U [2:i]o[S:;j] U [2:i]0[6:]]
[3:i+1] = [3:1)0[1:]] U [5:i)o[1:j] U [6:i]o[1:]]
[3:i-1] = [3:i]o[5:]]
[4:i-1] = [4:i]o[5:5] U [5:i]e[3:j] U [5:i]o[4:)]
[5:1-1] = [5:1]o[53]
[6:i+1] = [5:1]o[1:] U [6:i]0[1:j]
[6:i-1] = [3:i]¢[5:j] U [6:i)e[5:)]

The initial values for each case combine to form the initial vector for the algo-
rithm. We use either the number of vertices in the set, or oo to represent a state
which cannot logically exist. When combining subtrees, we want to minimize the
number of vertices in the set. The only cases which logically can exist initially
for an isolated vertex are case 1, with a value of 1, and case 6, with a value of 0.
This means that the initial vector for all vertices is [1, oo, 00, o0, 00, 0, 0]. As
the last step to set up the tree for the algorithm, we create a parent array for the
tree. This means that we have an array which stores, for each vertex, the parent of
that vertex, with the roots parent being co. After execution of the algorithm, we

139

L:j] (2 3] 4:j] {5:) [6:)] {73)
[1:4) Li+l1] it (j =1 (2i1] Lbi-17 | X if(j=-1) | if(j=-1)
-1) then then (if (i | then {if (i
[L:i+1] >0) then | > 0) then
else X [L:i-1] else | {l:i-1] else
[2:i-1} else | [2:i-1) else
X X
i) [if (1 =]if(j=-1) {211 | 2:i-1 X [2:i-1] if(j=-1)
<1) then | then {if (i then [2:i-1)
[L:i+1]else | = -1) then else X
[2:i+1] [L:i+1]) else
[2:i+1]}
else X
[Bil [if (j > X X X X [7:i-1] X
0) then
[4:i+1]
else X
4] | if G > | X X X X if (=D} X
0) then then [3:i-1)
[4:i+1] else 4:i-1]
else X
S5i) | X X X X X [5:i-1 X
[6:1 if(j>0) | X X [5:4-17 | [5:-1] | (6:i-1 X
then { if (i
= -1) then
{3:i+1])else
[7:i+1])
else X
[79] | if(j>0) | X X X X [7:-1] X
then { if (i
= -1) then
[3:i+1} else
(7:i+1])
else X

Table 1. Compositions for powerful alliances.

need to determine the answer. Only three cases can produce a minimum powerful
alliance. These are [3:x], [4:x], or [5:x] where x can be any value, or [1:(x>0)].
The minimum value from the final vector in these 4 cases is the size of a minimum
powerful alliance for the tree T'.

Limitations of space preclude a full discussion of all 49 entries in 1. We will
discuss three of the more interesting cases: [2:i]o[2:j], [4:i]0[6:}], and [6:i]o[5:j].

To start, consider the combination of a subtree 7 of case [2:i] with a subtree
T, of case [2:j]. If either i or j = -1, then the root has 2 more children not in the
set than in the set. If either i or j is less than -1, then root has 2 or more children
not in the set than in the set. So, if we try to combine a tree with i < -1 with a

140

tree with j < -1, we do not get a valid tree because the tree with j < -1 will never
be combined with anything else and its root is not defined. If j = -1 there are two
choices:

1. i = -1 : This forms a powerful alliance because the addition of a child r2
in the set S creates a powerful alliance for the subtree T ([2:i]) and the
addition of a parent in the set S creates a powerful alliance for the subtree
T, ([2:j1). Thus, the new tree T is [1:i+1]

2. i < -1: This does not form a powerful alliance in the subtree 7 ([2:i]).
However, the addition of a parent in the set S does create a powerful alliance
in the subtree T, ([2:j]), so the new tree T is [2:i+1] since the composition
adds one more defender for r;.

Consider next the combination of a subtree T, of case [4:i] with a subtree T
of case [6:j]. Because T, has no vertices in the set S, the value of j has no bearing
on the combination. This means that there are two possibilities for tree 7':

1. i = 1: Combining these two trees takes i to 0. This means that currently we
have a powerful alliance exactly in the subtree 7'y. This is the definition of
case 3, so the new tree is [3:i-1].

2. i> 1: Adding a child to r, which is not in S will still leave a powerful
alliance which is not minimal in T, so this combination is [4:i-1].

Finally, consider the combination of a subtree T of case [6:i] with a subtree
T of case [5:j]. Because a powerful alliance exists somewhere in T3, a powerful
alliance will still exist in the combined tree at a level below the children of the
root, so the new tree is [5:i-1].

3 Global Powerful Alliances in Trees

When trying to create a set S which is a global powerful alliance, g.p.a., in a
tree T, there are fewer cases to consider. Again, r is the root of the tree T. There
are only 4 cases:

[lii]={reS,SNTisag. p.a.inT}/*i=20%

[2:i]={r e S,SNTisnotag p. a inT, butadding neighbors in S to r can
createag. p. a.} /¥i <0 %/

[3i]={r¢S.SNTisag.p.a. inT}/*i=20%

[4i) ={r ¢ S,SNTisnotag. p.a inT,butadding neighborsin S to r can
createa g. p. a.} /*i<0 ¥/

Once these cases have been defined, we can consider the composition of a tree
T from these subtrees. At each point we combine a subtree T rooted at ry and

141

g.p-a.) with a subtree T, rooted at r, and g.p.a. S» to produce a new tree 7’
=T, 0T, withroot r; and g..a. §; US,. We must consider all possible combi-
nations of cases [a:i] and [b:j] for 1< a,b < 5. If a particular combination cannot
occur when producing a minimum cardinality global powerful alliance, then this

combination is marked with an *X’.

1:j] [2:] [3:] [4:]
[1:]) L:i+1] if(j=-1)then | if (i > 0) then | if (= -1) then {if
[L:i+1] else X [L:i-11else [2:3-1] | (i > 0) then [L:i-
1 else [2:i-1}) else
X
[2:i] | if G > 0) then | if (j = -1) | [2:i-1] if (j=-1)then
{ if G = -1)| then{if (G =-1) [2:i-1] else X
then [l:i+1] else | then [l:i+1] else
[2:i+1] Jelse X [2:i+1]} else X
[3:) | if (j>0)then | X ifG>0)then{if | X
[3:i+1] else X (i > 0) then [3:i-
1] else [4:i-1])
else X
[41] | if G > 0) then | X if (j>0)then[4:i- | X
{ if G = -1 else X
then [3:i+1] else
[4:i+1]} else X

Table 2. Compositions for global powerful alliances.

From 2, we obtain the following recurrence relations:
[1:i+1] = [Liile[1:§] U [1:)0[2:5] U [2:i]e[1:] U [2:i]0[2:]
[1:i-1] = [Lii]o[3:] U [1:i]o[4:]]
[2:i41] = [2:i]o[1:j] U [2:1]0[2:]]
[2:3-1] = [2:i)0[3:j] U [2:i)0[4:j] U [L:i]o[3:j] U [1:i]o[4:j]
[3:i+1] = [3:i]o[1:j] U [4:i]0[1:]]
[3:i-1] = [3:i]o[3:]]
[4:1+1] = [4:1]0[1:]]
[4:i-1] = [3:i]o[3:5] U [4:i]o[3:]]
As with non-global powerful alliances, the initial values for each case in global
powerful alliances combine to form the initial vector for the algorithm. We use
either the number of vertices in the set or oo to represent a state which cannot
logically exist. When combining subtrees, we want to minimize the number of
vertices in the set. The only cases which logically can exist initially are case 1,
with a value of 1, and case 4, with a value of 0. This means that the initial vector
is [1, 0o, 0o, 0]. As the last step to set up the tree for the algorithm, we create a
parent array for the tree. This means that we have an array which stores, for each
vertex, the parent of that vertex, with the roots parent being co. After execution
of the algorithm, we need to determine the answer. Two states can determine a
global powerful alliance. These are [3:x] where x > 0, or [1:(x>0)]. The minimum
value from the final vector in these two cases is the size of the minimum global

142

powerful alliance for that tree.

As before, we will only discus a couple of entries in 2. We will examine two
entries which are different from those examined in the powerful alliances section:
[3:i]0[2:f] and [4:i]o[1:]].

First, consider the combination of a subtree T of case [3:i] with a subtree of case
[2:j]. A subtree of case [3:i] will have i > 0 more children of the root in the
set S than notin S. A subtree of type [2:j] will have the absolute value of j +1
more children of the root not in the set S than are in the set S . This combination is
invalid because this is the last composition involving the [2:j] tree T, and it doesnt
have a global powerful alliance. Adding another vertex not in S adjacent to the
root r, of T is not going to make a global powerful alliance. This is therefore, an
invalid combination, which is denoted with an X.

Next, consider the composition of a subtree T of case [4:i] with a subtree T of
case [1:j). A subtree of case [4:i] will have i > 0 more children of the root not in
the set S than in the set S. A subtree of case [1: j] will have j-1 more children
of the root in the set S than not in the set S. For this combination, if j = 0, then
combining with a subtree of type [4:i] will add a parent of [1:j] which is notin §,
which means that a global powerful alliance will no longer exist. So we consider
j > 0. There are 2 options:

1. i =-1: [1:j} will still be a global powerful alliance with [4:i] and [4:i] will
now be a global powerful alliance, so it becomes a [3:i+1].

2. i < -1: [1:j] will still be a global powerful alliance when connected to [4:].
However, [4:i] will not be a global powerful alliance, so it becomes [4:i+1].

4 Complexity of Alliances

In this section we establish the NP-completeness of the following two decision
problems:

DEFENSIVE ALLIANCE
INSTANCE: Graph G = (V, E), positive integer k < |V].
QUESTION: Does G have a defensive alliance of size at most k?

POWERFUL ALLIANCE
INSTANCE: Graph G = (V, E), positive integer k < |V|.
QUESTION: Does G have a powerful alliance of size at most k?

4.1 Defensive Alliance Complexity

THEOREM: DEFENSIVE ALLIANCE is NP- complete, even when restricted
to split, chordal, or bipartite graphs. PROOF: DEFENSIVE ALLIANCE is clearly

143

in NP. A set S of size at most k, could be given as a witness to a yes instance
and verified in O(E) time to be a defensive alliance. In order to show that DE-
FENSIVE ALLIANCE is NP-complete we construct a transformation from the
following well-known NP-complete problem.

HITTING SET

INSTANCE: Set X = {x;, x3, ... X}, Collection C = {C),C3,...C,) of subsets of
X, positive integer k < |X|.

QUESTION: Does there exist Y ¢ X with |¥] > k such that Y contains at least one
element from each subset in C?

It is known that HITTING SET remains NP-complete even when |Cj| = 2, YC; €
C. We will use this restricted form. Since we want each element to appear in at
least two subsets, we can repeat any subset that contains an element that appears
in only one subset, and if some element appears in no subset, then w.l.o.g. we can
remove it from X.

Transformation: Let X, C, k be an arbitrary instance of the restricted HITTING
SET problem,

Create an instance DA(G, k) of DEFENSIVE ALLIANCE in this way:

1. For each x; € X, create a singleton vertex x;.

2. For |C| = m, create 2m vertices labeled ¢y, ¢s, . . ., Cus Cims 1, - - - » C2 and form
a clique among these 2m vertices.

3. Add 2k+1 independent vertices: zy, 2, . . - , 22k, Z2k+1. Add all possible edges

between the z vertices and the second half of the ¢ vertices ¢y 1, Cims2s - . - » Com.

4. For each vertex ci, 1 i m, if Ci = xr, xs then add edges cixr and cixs.
5. Set k = m+k (recall that |C|] = m).

Example

X = {xy, x2, X3, Xa, X5}

C = {{x1, xa}, {x1, x3}, {x2, x5}, {x4, x5}, (x2, 21}, {x3, x5}}
k=2

Note that there is a clique defined on the set of ¢ vertices; all of these edges are
not shown.
Claim: Given a hitting set Y of size at most &, the set S = Y U {¢,¢3,...C} is a
defensive alliance of cardinality < k.
The x-vertices in S will have N[x] NS = N[x], so they satisfy the definition of a
defensive alliance. Each of the vertices ¢, ¢z, . .., ¢,y has degree 2m-142 = 2m+1,
50 | N[¢;]l = 2m+2. Since all of the vertices c;,...,c, are in S and at least one of

144

Figure 1. Defensive Alliance Example

the two x-vertices adjacent to each ¢; is in S (from the hitting set) | NlclinS| =
m+1 for each ¢;,1 < i < m. Thus, S is a defensive alliance of cardinality <k =
m+k.

Conversely, suppose we have a defensive alliance S of size at most m+k.

1. The ¢-vertices Cms1, - - . » Cam have degree 2m-1+2k+1. Therefore IN[c:]l =
2m+2k+1, for m+1 < i leq 2m. Therefore, their degree is too big for any of
these vertices tobe in S.

2. If a z vertex is in S, then some of its neighbors must be in S, but its only
neighbors come from Cps1s .+ s C2ms and we just ruled this out.

3. It follows that only the x-vertices and the vertices ¢, ..., ¢, can be elements
of S. If an x-vertex is in S, then some ¢ vertex must also be in § as well.
But since the degree of each c; vertex is 2m+1 at least m of the neighbors
of a c-vertex in S must also be in S. Therefore either all of the vertices
{c1,€2.. ..} € S, or all but one of these vertices are in S.

(@ fc1,c2,...,¢m} € S. Then at most k x-vertices are in S since |S] <
k + m. Each ¢; in S must be adjacent to at least one x vertex, since at
least m + 1 of the vertices in ¢;s closed neighborhood must be in S.
Therefore the, at most k, x-vertices in S form a hitting set.

(b) m-1 of the vertices ¢y, ¢2,...,Cm arein §. Each of the c-vertices in S,
must have m+1 vertices chosen from their closed neighborhood. So
both of the x-vertices they are adjacent to must be in . There are at
most k+1 x-vertices in § (/S| - (m-1) = k+1) and these x-vertices hit
each subset twice. Because each of these x-vertices appears in at least
two subsets, selecting any k of these x-vertices produces a hitting set
because each of the ¢, c2, - . . » Cmy Will have at least one x-vertex inS.

145

Note that the graph G is a split graph, since the vertices can be partitioned into an
independent set (the x and z vertices) and a clique (the c-vertices). Split graphs are
also chordal. Thus DEFENSIVE ALLIANCE remains NP-complete even when
restricted to split or chordal graphs. The NP-completeness of DEFENSIVE AL-
LIANCE when restricted to bipartite graphs can be shown by making a complete
bipartite graph from two independent sets ¢, ..., ¢,y and ¢4y, - - . €2y, and making
a few other minor changes (details omitted).

4.2 Powerful Alliance Complexity

THEOREM: POWERFUL ALLIANCE is NP-complete, even when restricted
to bipartite graphs. PROOF: POWERFUL ALLIANCE is in NP. A set S of size at
most k can be given as a witness to a yes instance and verified in O(E) time to be a
powerful alliance (both offensive and defensive). We construct a polynomial-time
transformation from the following, well known NP-complete problem.
DOMINATING SET
INSTANCE: Graph G = (V, E), positive integer k < |V].

QUESTION: Does G have a dominating set of cardinality < k?

Given an instance G = (V, E) of DOMINATING SET, we construct the following
graph H. We first construct what is called thc VV-graph, with vertices labeled
ay,...,a, (Ayand vy,...,v, (V) where v; is adjacent to a; and v; is adjacent to g;
if i and j are adjacent in E. To this we add another set of n independent vertices
labeled by,...,b, (B) and form a VV+-graph with the A vertices. We then add
an additional n vertices cy,...,c, (C) that form a VV-graph with both the V and
B vertices. We add one additional vertex d;, which is connected to each of the
V vertices and add an additional 3n independent vertices, ey, ..., es, (E), that are
only connected to vertex d. Let H denote the graph so constructed.

Example: n=5k =2

Claim: Graph G of order n has a dominating set of size at most k if and only if
there is a powerful alliance of size at most k+2n in H. Highlighted is a dominating
set of size k = 2 for the original graph G and a powerful alliance of size 2+2*5
for the transformed graph H. Let deg(x) be the degree of vertex x in the original
graph G. If G has a dominating set of size k, then there is a powerful alliance S of
size k +2n as follows:

I. Choose all the B and C vertices added in steps one and two of the transfor-
mation. This gives us 2n vertices.

2. Choose the vertices corresponding to the dominating set from the A ver-
tices. This is an additional k vertices.

This is a defensive alliance because the chosen vertices in S fall into one of three
categories.

146

TP

&7/
;‘3//, "

Figure 2. Powerful Alliance Example

1. The B vertices have as neighbors the C vertices corresponding to those they

were connected in the original graph and the A vertices to which they were
connected in the original graph, plus its corresponding vertex in the original
graph because g; is adjacent to b; for 1 < i < n. This means that, including
itself, each of the vertices has 2deg(i)+1 neighbors in H and at least deg(i)
+1 neighbors in §.

. The C vertices c¢; have deg(i) neighbors in B and deg(i) neighbors in V. This
means that, including itself, each of the C vertices has deg(i) neighbors in
S and at most deg(i) neighbors not in §.

. The A vertices in the dominating set S have as neighbors the B vertices to
which they were connected in G plus its corresponding vertex in the original
graph. This means they have deg(i)+1 neighbors that are in S and deg(i)
neighbors not in §. Thus, including itself, each of the A vertices in § has
deg(i)+2 neighbors in S and deg(i) neighbors notin S.

Each of these cases combine to form a defensive alliance. The set S is also an
offensive alliance because the vertices fall into one of 2 categories.

1. The A vertices which are not part of the dominating set in the original graph

have as neighbors the B vertices to which they were connected in the origi-
nal graph, plus its corresponding vertex in the original graph, which means

147

deg(i)+1 vertices that are in S, and the V vertices to which they were con-
nected in the original graph, that is, deg(i) neighbors not in §. This means
that, including itself, each of the vertices has deg(i)+1 neighbors in § and
deg(i)+1 neighbors notin S.

2. The V vertices have as neighbors the C vertices to which they were con-
nected in the original graph, which means deg(i) vertices that are in S, and
the A vertices to which they were connected in the original graph. Since the
dominating set of the original graph is in S, at least one of the A- neighbors
must be in § and at most deg(i)-1 neighbors are not in S. Including itself,
each of the vertices has at least deg(i)+1 neighbors in S and at most deg(i)
neighbors notin S.

Because S is both an offensive and a defensive alliance, by definition, it is a
powerful alliance of size at most k+2n. Conversely, if graph H has a powerful
alliance S of size at most k+2n, then we must show that G has a dominating set
D of size at most k:

1. If S contains any of the E or V vertices or vertex dj, then S must contain at
least half of them because the size of the closed neighborhood of d is 4n+1
and, in order to have a powerful alliance, if any of the vertices in N[d,]
are in S, at least half of these vertices must be in S. However, half of the
neighbors of d1 would be [(4n+1)/2] which is more than k+2n. Thus S has
no vertices in E or V or d.

2. If S is a powerful alliance of Hand SNE=0,S N{d}=@and SNV =09,
then it is easy to see that:

(a) S € A isnot possible, (S does not dominate half of N[v;] and is not a
defensive alliance)

(b) S C B is not possible, (S does not dominate half of N[c;] and is not a
defensive alliance)

(¢) § € Cisnot possible (S does not dominate half of N[v;] or N[b;] and
is not a definsive alliance)

(d) S € AUB isnot possible (S does not dominate half of Nic;] or N[v;])

() S € A U Cis not possible (S does not dominate half of N[a;] for
a; ¢ S, and is not a defensive alliance)

(f) S €BUCis not possible (S does not dominate half of N[v;])
Thus, SNA#@,SNBx@and SNC#@.

3. If we take any of the C vertices then we need to take all of the C vertices
and all the B vertices because each ¢; has a closed neighborhood of size
2*deg(i)+1. So, if we take c;, we need to take every b; vertex to which

148

it is connected because we cant take any of the v-vertices to which it is
connected. Also, if we take any b; vertex which has a closed neighborhood
of size 2*deg(j)+2, we need to take every c; vertex to which it is connected.
Because of these connections, we end up taking all of the C and B vertices.

4. Although S cannot contain any of the V vertices, they affect the powerful
alliance because they are in the neighborhood of the C vertices that are in
S. Therefore, there must be an offensive alliance which can dominate the
V vertices. These vertices have closed neighborhoods of size 2*deg(i)+2.
Because S contains all of the C vertices, there are deg(i) vertices in S ad-
jacent to each of the v; vertices. Therefore we must take at least one vertex
from the A vertices that are connected to each of V vertices. If we take a
dominating set of the graph G and associate that set with the A vertices,
then at least one of the vertices connected to each of the V vertices will be
in §. This means each v; will have at least deg(i)+1 vertices in S and at
most deg(i)+1 vertices not in § from its closed neighborhood.

Note that this graph is bipartite, which means that POWERFUL ALLIANCE is
NP-complete even when restricted to bipartite graphs.

5 Open Questions

Having proved that DEFENSIVE ALLIANCE and POWERFUL ALLIANCE
are NP-complete and having introduced linear time algorithms for powerful al-
liances and global powerful alliances in trees, it will be interesting to see if one can
construct a polynomial time algorithm for circular-arc graphs or interval graphs.

6 Acknowledgments

The authors would like to thank Dr. Goddard at Clemson University for point-
ing out a flaw in the original powerful alliance algorithm which we have now
fixed.

References

[1] R.C.Brigham, R. D. Dutton, T. W. Haynes, and S. T. Hedetniemi. Powerful alliances
in graphs. submitted.

[2] R. C. Brigham, R. D. Dutton, and S. T. Hedetniemi. A sharp lower bound on the
powerful alliance number of ¢, X ¢,. Congr. Numer., 167:57-63, 2004.

[3] O. Favaron, G. Fricke, W. Goddard, S. M. Hedetniemi, S. T. Hedetniemi, P. Kris-
tiansen, R. C. Laskar, and D. Skaggs. Offensive alliances in graphs. In I. Cicekli,
N. K. Ciceklie, and E. Gelenbe, editors, Proc. 17th Internat. Symp. Comput. Inform.
Sci, number ISCIS XVTI, pages 298-302, Orlando, FL, USA, October 2002. CRC
Press.

149

[4) O. Favaron, G. Fricke, W. Goddard, S. M. Hedetniemi, S. T. Hedetniemi, P. Kris-
tiansen, R. C. Laskar, and D. Skaggs. Offensive alliances in graphs. Discussiones
Math. Graph Theory, 24:263-275, 2002.

[51 G.H. Fricke, L. M. Lawson, T. W. Haynes, S. M. Hedetniemi, and S. T. Hedetniemi.
A note on defensive alliances in graphs. Bull. ICA, 38:37-41, 2003.

[6] T. W. Haynes, S. T. Hedetniemi, and M. A. Henning. Global defensive allliances
in graphs. In I Cicekli, N. K. Cicekli, and E. Gelenbe, editors, Proc. 17th Internat.
Symp. Comput. Inform. Sci, number ISCIS XVII, pages 303-307, Orlando, FL, USA,
October 2002. CRC Press.

[7]1 T. W. Haynes, S. T. Hedetniemi, and M. A. Henning. Global defensive allliances in
graphs. Electr. J. Comb., 10(1):R47, December 2003. Global defensive allliances in
graphs.

[8] T.W. Haynes, S. T. Hedetniemi, and M. A. Henning. A characterization of trees with
eqal domination and global strong alliance number. Util. Math., 66:105-119, 2004.

[9] P. Kristiansen, S. M. Hedetniemi, and S. T. Hedetniemi. Introduction to alliances
in graphs. In I. Cicekli, N. K. Cicekli, and E. Gelenbe, editors, Proc. 17th Internat.
Symp. Comput. Inform. Sci, volume ICIS XVII, pages 308-312, Orlando, FL, USA,
October 2002. CRC Press.

[10] K. H. Shafique and R. D. Dutton. On satisfactory partitioning of graphs. Congr.
Numer., 154:183-194, 2002.

[11] T. V. Wimer, S. T. Hedetniemi, and R. C. Laskar. A methodology for constructing
linear graph algorithms. Congr. Numer., 50:43-60, 1985.

150

